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Abstract
Although several large-scale single-cell RNA sequencing (scRNAseq) studies addressing the root of Arabidopsis (Arabidopsis
thaliana) have been published, there is still need for a de novo reference map for both root and especially above-ground
cell types. As the plants’ transcriptome substantially changes throughout the day, shaped by the circadian clock, we per-
formed scRNAseq on both Arabidopsis root and above-ground tissues at defined times of the day. For the root scRNAseq
analysis, we used tissue-specific reporter lines grown on plates and harvested at the end of the day (ED). In addition, we
submitted above-ground tissues from plants grown on soil at ED and end of the night to scRNAseq, which allowed us to
identify common cell types/markers between root and shoot and uncover transcriptome changes to above-ground tissues
depending on the time of the day. The dataset was also exploited beyond the traditional scRNAseq analysis to investigate
non-annotated and di-cistronic transcripts. We experimentally confirmed the predicted presence of some of these tran-
scripts and also addressed the potential function of a previously unidentified marker gene for dividing cells. In summary,
this work provides insights into the spatial control of gene expression from nearly 70,000 cells of Arabidopsis for below-
and whole above-ground tissue at single-cell resolution at defined time points.

Introduction

Bulk collection of tissue-specific cell populations by fluores-
cence-activated cell sorting (FACS) has provided valuable
insights of gene expression within, for example Arabidopsis

(Arabidopsis thaliana) root tissues, but this approach masks
information about cellular heterogeneity within a given tis-
sue (Birnbaum et al., 2003; Brady et al., 2007). Nowadays,
high-throughput single-cell RNA sequencing (scRNAseq) is
widely used technologies to study transcriptomes at single-
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cell resolution by dissecting cellular heterogeneity. scRNAseq
techniques are more challenging to apply to plants, mainly
due to the size-variable plant cell populations ranging from
10 micrometer to several hundred micrometers and the nec-
essary digestion of cell walls (protoplasting) that substan-
tially changes their transcriptome as seen with single-cell
sequencing after FACS (Birnbaum et al., 2003).

However, recent studies have successfully implemented
scRNAseq methods for plant tissues. In particular, dissecting
gene expression of root and shoot cell types provides
insights into tissue-specific gene activity and cellular phase
changes, that is dividing versus maturing cells, into cellular
metabolism, and into developmental and regulatory path-
ways. In detail, the root of Arabidopsis with its relatively few
and distinct cell types has served as an ideal tissue for
scRNAseq methods such as Drop-seq and 10� Genomics
(Denyer et al., 2019; Jean-Baptiste et al., 2019; Ryu et al.,
2019; Shulse et al., 2019; Turco et al., 2019; Zhang et al.,
2019; Wendrich et al., 2020). Recently, the method was ex-
panded to above-ground tissues, producing single-cell tran-
scriptomic maps of the leaf vasculature and the shoot
apices of Arabidopsis (Kim et al., 2021; Zhang et al., 2021).

Nonetheless, there is still need for a de novo reference
map for both root and especially for the less well-defined
cell types of the aerial (above-ground) parts of Arabidopsis
at clearly defined diel time points of harvest and growth
conditions. Most available scRNAseq studies do not indicate
an exact time point of harvest although it is well established
that the transcriptome changes significantly depending on
the circadian clock especially between the end of the day
(ED) and the end of the night (EN). We address these
aspects and provide insights into the spatial control of gene
expression at single-cell resolution from nearly 70,000 cells
of Arabidopsis for below- and, for the first time, whole
above-ground tissues at ED and EN time points. This ap-
proach allows us to answer questions, such as, what com-
mon cell types and corresponding markers can be found
between root and shoot, or how does the single-cell tran-
scriptome change in certain tissues depending on the time
of the diel cycle?

Results
To profile both Arabidopsis root and above-ground cells in
single-cell resolution and to generate the necessary scRNAseq
library, we customized the Drop-seq protocol (Macosko et al.,
2015) for plant cells (Supplemental Methods S1, S2 and
Supplemental Figure S1).

For root single-cell analysis, we used three tissue-specific
reporter lines grown 7 d under neutral day (ND) conditions
(12/12-h photoperiod) on 0.5� MS plates supplied with
0.6% w/v sucrose. The used reporter lines were expressing
the H2B-Venus fluorescent marker under tissue-specific pro-
moters marking the phloem pole pericycle (PPP; line V161),
the xylem pole pericycle (XPP; line V171), and post-
meristem differentiated cells (line V311) (Machin et al.,
2019). For each reporter line, the roots were harvested 1 cm

below the hypocotyl (Figure 1, A), 75 min before the ED for
protoplasting followed by scRNAseq (Drop-seq) co-
encapsulation at the ED time point. We also collected all tis-
sues of 5-weeks-old non-flowering A. thaliana Col-0 plants
grown under ND conditions on soil at ED and at EN
(Figure 1, A) above the hypocotyl, which includes 8–10
true rosette leaves, petioles, and shoot apical meristem
(SAM). For both, roots and above-ground tissues, we col-
lected three replicates for each time point and correspond-
ing reference RNA libraries of the same plant material at the
same time point to investigate the effect of protoplasting
and scRNAseq protocol (Supplemental Methods S3). The
cDNA libraries for the reference samples were produced
with the same protocol as the single-cell libraries, that is a
barcode-like primer (Supplemental Table S1) was used that
resembles the barcoded-beads.

Prior to deep sequencing, the quality of the cDNA libraries
was confirmed by RT-PCR (Supplemental Methods S4 and
Supplemental Figure S2). Presence of ACTIN2 (ACT2,
AT3G18780) verified successful RNA capture and cDNA pro-
duction, and presence of SUCROSE-PROTON SYMPORTER 2
(SUC2, AT1G22710), a well-known phloem companion cell
marker gene, confirmed protoplasting of vascular phloem
cells in all three single-cell libraries. Therefore, we concluded
that our scRNAseq libraries contain not only transcripts from
the most abundant or easily protoplasted cells, but also tran-
scripts from cells present in deeper layers and with a more
rigid cell wall. Rare cell types like the root QC indicated by
WUSCHEL RELATED HOMEOBOX 5 (WOX5, AT3G11260)
(Sarkar et al., 2007) were not detected in the single-cell librar-
ies. This was expected because not all cell types are efficiently
protoplasted and because only a small fraction of the proto-
plasts is successfully barcoded further reducing the probabil-
ity of rare cells to be represented in the cDNA libraries.
Finally, the detection of H2B-Venus transcripts in the root li-
braries validated the presence of the cell types of interest:
PPP, XPP, and post meristem/differentiating cells.

Also, the above-ground tissue cDNA libraries were con-
firmed using ACT2, KNOTTED-LIKE FROM ARABIDOPSIS
THALIANA (KNAT1, AT4G08150), and SUC2 transcript pres-
ence as markers for successful cDNA production and the
presence of companion cells, vascular cambium/meristem,
and stomata cells. In addition, to confirm that the light
treatment and time of harvest reflected ED and EN, two
transcripts: LUX ARRHYTHMO (LUX, AT3G46640), peaking
at the ED, and LATE ELONGATED HYPOCOTYL (LHY,
AT1G01060), peaking around EN were used to validate that
the libraries reflect the expected diurnal transcriptomic pro-
files (Supplemental Figure S2, B).

The quality controlled scRNAseq and reference RNAseq li-
braries were submitted to deep sequencing (Supplemental
Tables S2, S3) and established algorithms for unsupervised
clustering (Stuart et al., 2019) were applied to characterize
the identities of the cell types represented in each cluster
via highly specific known and previously unidentified marker
genes. In general, we could identify the main root, shoot,
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and leaf tissues. We also searched for common markers in
root and shoot tissues, which were analyzed in more detail
and experimentally confirmed using RNA in situ hybridization
(see below). Furthermore, we investigated the tissue-specific
differences of ED and EN marker transcripts, di-cistronic tran-
scripts, and of non-annotated transcripts.

Differential gene expression of single-cell and
reference tissue transcriptomes
In order to compare the scRNAseq and reference RNAseq li-
braries, we performed principal component analysis (PCA),
correlation-based clustering, and differential gene expression
analysis. The root and shoot libraries are separated among
PC1 (32.93% of variance) and scRNAseq and reference
RNAseq libraries are separated among PC2 (29.34% of vari-
ance) (Supplemental Figure S3, A). Similarly, root and shoot
libraries build the two main clusters that are subdivided into
scRNAseq and reference RNAseq (Figure 1, B and
Supplemental Figure S3, B). As expected, the clustering indi-
cates that the tissue type (root versus shoot) along with the
growth condition (plates and soil, respectively) has the big-
gest influence on the transcriptome, followed by the
method (scRNAseq versus reference RNAseq) and the time
point of harvest (ED versus EN). The correlation among rep-
licates is high (r4 0.9), thus, we obtained a good reproduc-
ibility of the samples (Supplemental Figure S3, B). Also, the
correlation between gene expression of scRNAseq libraries
and their corresponding reference RNAseq libraries is gener-
ally high (r = 0.77–0.82; Supplemental Figure S3, C).
However, for the genes previously described to be induced

(Birnbaum et al., 2003; 346 genes) or differentially expressed
upon protoplasting roots (Denyer et al., 2019; 6,063 genes)
and shoots (Kim et al., 2021; 8,845 genes), the correlation is
lower in the respective tissues (r = 0.48, 0.46, and 0.67, re-
spectively; Supplemental Figure S3, D).

Next, we tested for differential expression (DE) of genes
between scRNAseq libraries and their corresponding refer-
ence RNAseq libraries (jlog2FCj 4 1; Figure 1, C and
Supplemental Table S4). For the root, we found 11,750 dif-
ferentially expressed genes (DEGs) (6,121 up- and 5,629
down-regulated), which largely overlap with the published
6,063 genes previously shown to be DE upon root proto-
plasting (Denyer et al., 2019; overlap: 3,646; Supplemental
Figure S4, A). Within the shoot libraries, we found nearly
9,000 DEGs for both time points (ED 8,973 DEGs with 5,201
up- and 3,772 down-regulated genes; EN 8,941 DEGs with
4,884 up- and 4,057 down-regulated genes) with an overlap
of 6,488 genes. These genes also largely overlap with the
published 8,845 genes shown to be DE upon shoot proto-
plasting (Kim et al., 2021; overlap: 2,920; Supplemental
Figure S4, A). Furthermore, the DEGs found in root (11,750)
and shoot at ED and EN (6,488) also largely overlap (4,199).
For analysis of MapMan annotation of these protoplast-
induced (up-regulated) genes, see Supplemental Text S1.
Thus, a substantial proportion of genes is affected by the ex-
perimental procedure necessary for single-cell sequencing
that is largely reproducible across different tissues, time
points, and studies.

Lastly, we also checked for DEGs between ED and EN
time points in the shoot for scRNAseq (4,273 genes) and

A B C

D

Figure 1 Experimental overview with clustering and DEGs. A, Roots were harvested at the ED from 7-d-old plants approx. 1 cm below the hypo-
cotyl (indicated by the black line); the above-ground tissue was harvested at the ED and EN from 5-week-old plants. For the single-cell samples,
the tissue was harvested 75 min before the ED (or EN) time point and used for protoplast preparation. For the reference RNAseq libraries, the tis-
sue was harvested 15 min before the ED (or EN) time point and shock frozen in liquid nitrogen. B, Hierarchical clustering of the sequenced
scRNAseq (sc) and reference RNAseq (ref) libraries using Pearson’s correlation coefficient (r) as distance measure. C, Venn diagram of DEGs be-
tween scRNAseq and reference RNAseq for the different timepoints and tissues. D, Venn diagram of DEGs between ED and EN for scRNAseq and
reference RNAseq. DEGs are defined as jlog2FCj5 1 and FDR of 0.05.
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reference RNAseq libraries (2,601 genes) with an overlap of
1,432 genes (Figure 1, D). As expected, this list contains
typical diurnal clock-related genes such as LHY, CCA1, and
GLYCINE RICH PROTEIN 7 (GRP7, AT2G21660) among the
most significantly changed genes. This is also reflected by
GO enrichment analysis, where “circadian rhythm” (fold
enrichment: 8.91; P-value: 4.05E–18) and “response to
light intensity” (fold enrichment: 5.23; P-value: 1.34E–07)
are among the most enriched categories (Supplemental
Table S5).

Clustering scRNAseq libraries
To facilitate the identification of cell types, we used Seurat
to separate the scRNAseq data into clusters for root and ED
and EN shoot datasets. Prior to clustering, we filtered out
the data of cells with too few reads, with large amounts of
plastidial transcripts, or with unspecific gene-expression that
are likely to be noise (Supplemental Figure S5 and
Supplemental Methods S5). For root, we obtained 19,153
cells from three replicates. For shoot, we obtained 18,313
and 31,665 cells from the three ED and EN replicates, re-
spectively (Supplemental Table S2). The average number of
transcripts/genes per cell in root, ED, and EN was 1,994/822,
816/422, and 793/377, respectively (Supplemental Tables
S6–S9).

Note that while the information content per cell seems
lower than in other published scRNAseq datasets, one must
consider two things: Firstly, most studies use a different
method, that is 10� Chromium which provides better read
coverage per cell. Secondly, these numbers are highly cutoff-
dependent. For example, by increasing the minimum num-
ber of transcripts/genes per cell in root from 500/200 to
2,000/1,000, the average number of transcripts/genes per cell
rises from 1,994/822 to 4,386/2,040. However, instead of
nearly 20,000 cells, only 53,000 cells with high depth would
remain for clustering. As the main purpose of this study was
the discovery of potentially rare cell-types and transcripts,
we decided for a lower cutoff, which results in a larger num-
ber of analyzed cells and subsequently more clusters to be
analyzed further.

For root, the analysis resulted in 35 clusters, whereas for
the individual ED and EN datasets, we obtained 37 and 25
clusters, respectively. We also combined the scRNAseq data
from ED and EN to obtain a pooled ED/EN dataset, for
which the number of clusters was 16. Finally, we confirmed
that cells from the same replicates are well distributed
across all clusters (Supplemental Figure S6).

In order to evaluate the robustness of each clustering, we
randomly subsetted 80% of our library reads (100 times)
and repeated the computational pipeline. We then checked
what proportion of cells (0–100%) that previously formed a
cluster are still co-occurring in a single cluster when using
the subsetted reads for clustering (Supplemental Figure S7).
The average co-occurrence was used to score the robustness
for each cluster. This analysis revealed that majority of clus-
ters is highly robust with 450% co-occurrence.

Next, the most significantly enriched genes for each clus-
ter were identified (Supplemental Tables S10–S13), in order
to annotate cell types/developmental stages to clusters by
comparison with tissue-type-specific transcriptome data
from the ATH1 database (Schmid et al., 2005) and by the
presence of known marker genes.

Cluster identification of above-ground tissue
scRNAseq data
For this study, whole above-ground tissue harvested at two
different time points (ED and EN) was submitted to
scRNAseq. Thus, the transcriptome data represent a mixture
of leaves of different developmental and physiological stages
and shoot apices. The cluster annotation was first performed
for the individual ED and EN and then for the combination
of the ED and EN datasets.

Unlike the Arabidopsis root tissues, different cell types of
leaves at different developmental stages are less well under-
stood. There is also a lack of high-resolution tissue-specific
transcript data and of available transgenic marker lines.
Because of this, the shoot-derived clusters were annotated
in a broader fashion than the root-derived clusters.

First, we separately clustered the cells from ED and EN
samples (Figure 2, A and B; for detailed description of the
individual cluster, see Supplemental Texts S2, S3). In sum-
mary, we detected all main tissues within the clustering,
however, the strong presence of photosynthesis-related tran-
scripts dominates the dataset. Therefore, slight differences in
types of photosynthetically active cells seem to be lost as
the cells cluster together due to the strong expression of
these genes.

In order to ascertain tissue-type/cluster identification, we
pooled the datasets from both time points (Figure 2, C) by
normalizing the consistent differences between ED and EN
(see “Materials and methods”). Thus, each cluster consists of
a well-mixed number of cells from ED and EN
(Supplemental Figure S6, D). The information how the cells
map between the individual clustering and the pooled ED/
EN clustering (Supplemental Table S14) also supported the
annotation in the pooled ED/EN dataset, which forms 16
clusters based on 49,978 cells with specific marker genes
(Supplemental Table S13) that facilitate further dissection of
rosette anatomy at the cell type level.

We identified clusters representing the main tissues of the
shoot (Figure 2), that is epidermal cells, mesophyll cells,
SAM, phloem cells, and myrosin cells. In addition, we found
clusters annotated as senescent leaf cells, dividing cells, and
stressed cells (for detailed information, see Supplemental
Text S4 and Supplemental Figure S8).

Notably, we do not find stomata as a unique cluster in
our dataset, instead key transcripts known to specifically reg-
ulate stomatal development are found distributed across
several clusters. We therefore concluded that the dominant
photosynthesis expression pattern prevents these cells from
clustering as a specific cell type.
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Figure 2 Single-cell transcriptome of A. thaliana above-ground tissue. A, t-SNE projection plot of 37 clusters identified from 18,313 cells in Col-0
rosette tissues harvested at the ED (n = 3 replicates). B, t-SNE visualization of 25 clusters identified from 31,665 cells in Col-0 rosette tissues har-
vested at the EN (n = 3 replicates). C, t-SNE projection plot showing 16 main clusters identified from 49,978 pooled cells in Col-0 rosette tissues
harvested ED and EN (n = 6 replicates). Each dot represents the transcriptome from one cell. Cells represented by the same colors correspond to
the same cluster. Cells identified in different clusters but belonging to the same tissue types are represented with similar colors. The cluster ro-
bustness was scored based on cell co-occurrence in subsampled data 75%–100% (***), 50%–75% (**), 25%–50% (*) (see “Materials and methods”;
Supplemental Figure S7). D, Schematic representation of rosette cell types of Arabidopsis plants. Upper panel represents longitudinal section
through the meristem, whereas lower panel shows longitudinal and cross section of the leaf.
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The MapMan functional category “Carbohydrate metabo-
lism” provided a good example for ED and EN differential
gene enrichment, although this category did not fall into
the highly enriched ones. In the subcategory “starch metab-
olism biosynthesis” created for the pooled shoot ED + EN, a
clear enrichment was found for the cluster 15 (and 1), repre-
senting mesophyll cells where most of the starch is synthe-
sized (Supplemental Figure S9). To further investigate the
potential functional differences between ED and EN, we dis-
play the datasets of both time points separately
(Supplemental Figure S9). Notably, starch metabolism bio-
synthesis subcategory was enriched for the EN, while starch
metabolism degradation was enriched at ED.

Tissue-specific differences in ED versus EN
Notably we see a change of cluster distribution in the clus-
tering between ED and EN. For example, at ED 10 mesophyll
clusters and at EN only 4 mesophyll clusters appear to be
present (Figure 2, A and B). To gain insights into their dif-
ferences, we performed MapMan category enrichment
analysis across the clusters of ED, EN, and pooled ED/EN
datasets (Supplemental Figure S10). At ED, 6 out of 10 me-
sophyll clusters are enriched for genes related to photosyn-
thesis (including cell-rich 0, 2, 4, and the clusters 7, 13, 24).
At EN, two out of four mesophyll clusters show reduced
photosynthesis gene expression (including cell-rich clusters 0
and 2). This is also reflected in the pooled ED/EN clustering,
where cluster 1, which is enriched for photosynthesis-related
genes, contains ED clusters 0 and 2 cells from EN cluster 1
that are also enriched in photosynthesis gene expression
(Supplemental Table S14).

Furthermore, the mesophyll clusters show distinct meta-
bolic features in such that sucrose–phosphate synthase
encoding transcripts of SUCROSE PHOSPHATE SYNTHASE 4F
(SPS4F/SPSC, AT4G10120) and SUCROSE PHOSPHATE
SYNTHASE 2F (SPS2F/SPSA2, AT5G11110) (Volkert et al.,
2014) was low at ED in all mesophyll clusters and even absent
in mesophyll cluster 27. In contrast, these transcripts are rela-
tively highly expressed in all EN mesophyll clusters. This indi-
cates that the ED mesophyll cluster 27 contains starving cells
with low photosynthetic net production which is in line with
the absence of transcripts for the chloroplastic antiporter
CA(2 + )/H( + ) ANTIPORTER1 (CCHA1, AT1G64150) necessary
for the assembly of the PSII core subunits and the oxygen-
evolving complex (Wang et al., 2016). Another example of
distinct sugar metabolism was found in the ED mesophyll
cluster 7 with the highest expression levels of all four starch
synthases (SS1, AT5G24300, SS2, AT1G74020, SS3,
AT1G74020, and SS4, AT4G18240) genes relative to the other
ED mesophyll clusters. Sucrose production seemed to be high
in clusters 4 and 7 marked by relative high expression of
SUCROSE SYNTHASE 1 (SUS1, AT5G20830) and SUS2
(AT5G49190) with the latter not detected in in clusters 2, 3,
6, 13, 24, and 27.

To further characterize circadian rhythm (ED or EN)-de-
rived changes at the tissue level, we analyzed the datasets
regarding complexity. Complexity is here defined as the

variation in response, such that a tissue exhibiting a uniform
response to a stimulus would be considered less complex
than a tissue responding heterogeneously. For this analysis,
the clustering of the shoot scRNAseq dataset was repeated
without the previously described normalization used to cre-
ate the pooled ED/EN dataset (Figure 3, A and B and
Supplemental Table S15). For each cell, we mapped the new
cluster assignment to the existing annotations of the pooled
ED/EN clustering, which was sufficient to annotate nearly all
clusters (Supplemental Table S16). Thus, we could investi-
gate which cells cluster based on their tissue identity or
time of harvest. Clusters of dividing cells (#14), epidermis
(#7), SAM (#10), and partly myrosin cells (#12) have a mix-
ture of ED and EN cells (Figure 3, C) and, thus, display no
strong difference depending on the time of the day. A clear
ED versus EN separation was observed for clusters of meso-
phyll cells, senescent cells, and partly myrosin cells. Some
clusters merged mesophyll and senescent cells (#0, #1, and
#9b); however, the clusters strictly separate into cells from
ED or EN.

Importantly, this approach allowed us to investigate tis-
sue-specific markers depending on the time of the day. In
order to find ED- or EN-specific markers, we analyzed ED
and EN cells separately for (i) clusters with a mixture of ED
and EN cells and (ii) clusters with same annotation but split
for ED and EN cells (Supplemental Table S17). For example,
in the mixed clusters of dividing cells, SAM, and epidermis,
we found several cell-cycle-related genes (G1/G2 phase) to
be markers in either ED or EN cells (but not both).
Interestingly, these genes were not differentially expressed
between ED and EN cells on the global scale. Thus, we iden-
tified a circadian response of genes related to cell growth
such as GRP7 that would have been undetected without
looking separately at the clusters and time points.

Cluster annotation of root scRNAseq data
In this study, protoplasts were made from approximately 2–
3-cm long roots and, thus, included the root apical meri-
stem (RAM) and mature regions of the root with different
stages of lateral root initiation sites (Supplemental Figure S1,
A). The root dataset was generated at ED using marker lines
for tissues of interest: PPP, XPP, and post-meristem differen-
tiated cells (Machin et al., 2019). Since there are several pub-
lished scRNAseq datasets of roots, we provide only a
summary of the clusters and their annotation (for detailed
information, see Supplemental Text S5).

In short, we identified clusters representing the main tis-
sues of the primary root (Figure 4) including tissue subdivi-
sions as in the phloem and xylem poles of the pericycle. In
addition, we identified different developmental stages of the
vasculature and distinct cell types such as the epidermis, en-
dodermis, and root cap. Further, we found clusters that are
specified by dominant expression patterns possessed by cells
at particular developmental stages. For example, we were
able to identify a cluster for the cells nearest to the stem
cell niche and lateral root initials indicated by the high levels
of PLETHORA 2 (PLT2, AT1G51190) transcripts (cluster 29)
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(Shimotohno et al., 2018) and GATA TRANSCRIPTION
FACTOR 23 (GATA23, AT5G26930) (XPP cluster 13b) (De
Rybel et al., 2010), respectively. Cells neighboring emerging
lateral roots were marked by ORESARA 1 (ORE1,
AT5G39610) transcript (procambium annotated clusters 11
and 19) which is a programmed cell death/autophagy
marker specifically expressed in the cells surrounding the
emerging lateral root (Escamez et al., 2020). Also, we
detected cells undergoing post-meristem differentiation indi-
cated by the used V311 marker line (Cluster 16b)
(Supplemental Figure S11, D).

One interesting aspect was that among the different root
cell types, the root cap (cluster 15) shows significant enrich-
ment of several MapMan functional categories related to sec-
ondary metabolism (Supplemental Figure S12) pinpointing a
particular involvement of the root cap in the interaction with
and protection against the surrounding environment (see
Supplemental Text S6 for details).

Common traits in root and shoot
A closer look at those highly enriched MapMan categories
unveiled specific tissue and/or time of the day gene responses
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Figure 3 Singe-cell transcriptome of A. thaliana above-ground tissue without batch normalization. A, t-SNE projection plot showing 17 main clus-
ters identified from 49,978 pooled cells in Col-0 rosette tissues harvested ED and EN (n = 6 replicates). The cells are the same as shown in panel C,
however, this clustering was performed without batch normalization, that is without using Harmony (see “Materials and methods”). Each dot rep-
resents the transcriptome from one cell. Cells represented by the same colors correspond to the same cluster. Cells identified in different clusters
but belonging to the same tissue types are represented with similar colors. The cluster robustness was scored based on cell co-occurrence in sub-
sampled data 75%–100% (***), 50%–75% (**), 25%–50% (*) (see “Materials and methods”; Supplemental Figure S7). B, Same t-SNE projection plot
as in A, but cells of the same color correspond to the same time point of harvest (ED or EN). C, Fraction of cells belonging to ED or EN for each
cluster.
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A

B

C

Figure 4 Singe-cell transcriptome of A. thaliana roots. A, t-SNE projection plot of 35 main clusters identified from 19,153 cells in Col-0 root tissues
(n = 3 replicates). Each dot represents the transcriptome from one cell. Cells represented by the same colors correspond to the same cluster. Cells
identified in different clusters but belonging to the same tissue types are represented with similar colors. The cluster robustness was scored based
on cell co-occurrence in subsampled data 75%–100% (***), 50%–75% (**), 25%–50% (*) (see “Materials and methods”; Supplemental Figure S7). B,
Schematic representation of the root cell types in Arabidopsis plants. Middle panel represents longitudinal section through the root, whereas the
right panel shows cross section through the differentiation (upper) and meristematic (bottom) zone of the root. C, Dot plot representing tran-
script accumulation of known and non-annotated marker genes for each cluster. The color scale denotes the relative expression (average per cell).
The dot size denotes the relative proportion of cells with expression. Color scale and dot size are scaled to the minimum/maximum expression
level and proportion of cells with expression, respectively, of the transcript within the clusters; for the absolute percentages, see Supplemental
Table S20. SCN, stem cell niche; LRI, lateral root initials; XPP, xylem pole pericyle; PPP, phloem pole pericyle.

868 | PLANT PHYSIOLOGY 2022: 188; 861–878 Apelt et al.

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data


which could be also considered a validation of the experimen-
tal procedure used. For example, the category “chromatin
organization” was highly enriched in the root cluster 3, as
well as in the shoot ED/EN cluster 4, comprising amplifying
cells of RAM and SAM, respectively (Supplemental Figure
S13). Both chromatin organization categories of the histones
H2A and H3 were highly enriched in those cell types. It is
well known that H2A and H3 histones form the nucleosomes
(Zhang et al., 2015) during DNA replication in order to main-
tain the proper chromatin organization. We can hypothesize
that in RAM and SAM, where stem cells reside and greater
DNA synthesis occurs, there is a high demand for histone
synthesis and deposition to avoid developmental defects
(Hashimura and Ueguchi, 2011).

We also investigated potential overlaps in root and shoot
clusters by calculating the Jaccard index, that is, the ratio of
intersection and union, for the markers of all cluster pairs
(Supplemental Figure S14). While most clusters do show mi-
nor overlap, cluster 32 (root) and cluster 13a (pooled ED/
EN) share 82 marker genes (Jaccard-Score 0.31). Both clus-
ters were assigned to cells that undergo division and, thus,
we assumed that those genes might be involved in the regu-
lation of the cell cycle. Indeed, 32 out of these 82 genes can
be found in the most enriched GO category “cell cycle”
(GO:0007049; adj. P-value: 7.22E–26). Here, the uncharacter-
ized gene “AT5G16250” showed the highest FC (i.e. 10.001)
in cluster 32 (root) and was more closely investigated (see
below).

Dividing cell marker AT5G16250
The root and shoot cell cycle clusters are marked by the
AT5G16250 transcript predicted to encode a transmembrane
protein. Thus, to confirm its specific expression, we checked
the AT5G16250 expression at different cell cycle stages using
CycleBase 3.0 (Santos et al., 2015; Supplemental Figure S15).
Indeed, AT5G16250 expression peaked at the G1 phase of
the cell cycle, suggesting that it is involved in the regulation
of the cell cycle. Because of this, we named AT5G16250
MERISTEM CELL CYCLE 1 (MERCY1). To confirm the predic-
tion that MERCY1 is a cell cycle marker involved in the regu-
lation of the cell cycle, we first analyzed the expression of
the gene in planta by RNA in situ hybridization on longitu-
dinal sections through root tip and SAM of wild-type plants
(Supplemental Methods S6 and Figure 5, A and B).

We found a MERCY1-specific signal in the root meriste-
matic zone and the SAM including young leaf primordia.
The signal showed a patchy distribution typical for cell cycle
regulators (Yang et al., 2017). Moreover, RNA in situ hybridi-
zation with cell cycle-specific markers, for example M/G1-
phase marker CYCLIN B1;1 (CYCB1;1, AT4G37490) and S-
phase marker HISTONE H4 (HIS4, AT2G28740) at the SAM
of Col-0 wild-type and mercy1 mutant plants indicate that
knockout of MERCY1 gene affects the progression of the cell
cycle (Supplemental Figure S15). According to our
scRNAseq data, MERCY1 expression was lower at EN than at
ED. Also, it is suggested that expression of cell cycle regula-
tors at the SAM is under control of the circadian clock

(Masri et al., 2015). Indeed, RNA in situ analysis revealed an
increase in the number of MERCY1-expressing cells at the
meristems harvested at ED compared with those collected
at EN (Figure 5, C–E). This observation is in line with our
finding in the pooled clustering without ED/EN normaliza-
tion (Supplemental Tables S16, S17) where expression in di-
viding ED cells is higher than in EN cells.

We next asked whether mercy1 KO mutants
(SALK_031814C) show a growth phenotype (Supplemental
Methods S7). The root analysis revealed that both absolute
root growth as well as relative root growth were significantly
reduced in the mercy1 mutant compared with Col-0 plants
(Figure 5, F and G). Also, the RAM length was significantly
shorter in mercy1 (P5 0.05) seedlings (Figure 5, H). Next,
we made use of a 3D phenotyping system (Apelt et al.,
2015) to monitor shoot growth behavior of plants on soil
(Supplemental Figure S16). However, we did not find any
significant differences between wild-type and mercy1 regard-
ing the 3D rosette area, relative expansion growth rate
(RER), or hyponasty during the vegetative growth phase.
Although the final bolt height of mercy1 plants was substan-
tially shorter compared with Col-0 plants (Figure 5, L), we
found that mercy1 flowered significantly earlier compared
with Col-0 based on the RLN (P5 0.01) and DTF
(P5 0.001) (Figure 5, I and J). We also observed that the
rate of new leaf formation was not affected in mercy1 in re-
lation to wild-type plants (Figure 5, K).

Taken together, while its exact role is unknown our results
indicate that MERCY1 is involved in meristematic cell divi-
sion in a regulatory capacity with pleiotropic effects on flow-
ering time, bolting, and root formation.

Tissue-specific presence of graft-mobile and mono-
versus di-cistronic transcripts
We also addressed the presence of graft-mobile protein
encoding transcripts (Thieme et al., 2015) and their distribu-
tion within the clusters. The mobility and distribution of
transcripts suggest that they are mainly produced in
phloem-associated tissues and allocated via the phloem
from shoot to root and unloaded in the protophloem re-
gion/phloem pericycle root cells (Zhang et al., 2016, Yang
et al., 2019). In line, these graft-mobile transcripts are mainly
detected in the developing phloem (20b) and procambium
(11 and 19) clusters of roots (Supplemental Figure S17).
However, our experimental setup does not allow to distin-
guish between cells that produce and cells that receive a
mobile transcript. Nevertheless, di-cistronic mRNA–tRNA
transcripts are significantly enriched among graft-mobile
mRNAs (Zhang et al., 2016). To address this class of mRNAs
further we identified a total of 1,665 di-cistronic transcripts
(comprised of 3,200 unique genes) of which most were de-
rived from adjacent loci (Thimmapuram et al., 2005) using
our and publicly available RNAseq datasets (see “Materials
and methods”; Supplemental Table S18). Among the clusters
with the highest enrichment of di-cistronic transcripts were
root clusters annotated as procambium (11/14) and
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companion cells (24) and shoot clusters (pooled ED/EN) an-
notated as phloem (12). A total of 10 mRNA–tRNA di-
cistronic transcripts were detected in our single-cell samples
of which three were detected in all nine scRNAseq samples.
One of these is CHOLINE KINASE1 (CK1, AT1G71697) previ-
ously shown to be a graft-mobile transcript depending on
the presence of the di-cistronic tRNA-like sequence (TLS)
(Thieme et al., 2015; Zhang et al., 2016; Figure 6, A). To
confirm these predictions, we validated the presence of
CK1 (non-mobile) versus CK1-TLS (mobile) by accurately
quantifying the two cistronic forms (see “Materials and
methods”).

In the root, we found a significant enrichment of di-
cistronic CK1-TLS transcript compared with mono-cistronic
CK1, in the procambium cluster 16a (P-value 0.031), PPP
cluster 20b (P-value 0.044) and endodermis cluster 31 (P-
value 0.027) (Figure 6, B). On average approximately 5% of
all CK1 transcripts were identified as CK1-TLS (Supplemental
Table S19), whereas this number was twice as high in the
endodermis cluster 31 (approx. 10%) and lower in the non-
root hair cluster 17 (approx. 3%) (Figure 6, C). Similarly, in

the above-ground tissues, CK1-TLS was found significantly
enriched in mesophyll (cluster 0 for both ED and EN), in
epidermis (cluster 23 for ED; clusters 4, 5, 20, and 22 for EN;
P-value 1E–4), and in senescent cells (cluster 8 for ED and
cluster 18 for EN) (Supplemental Figure S18).

To confirm this bioinformatic analysis, we measured and
compared the transcript levels of CK1 and CK1-TLS in the
cell types where the differences were predicted to be high,
that is we selected clusters 17 (non-hair epidermis, CK1
enriched) and 31 (endodermis, CK1-TLS enriched). We used
the endodermis and non-hair cell marker lines described in
Machin et al. (2019) to isolate protoplasts and used FACS to
generate relative pure cell type-specific RNA samples for RT-
qPCR assays using primers specific for CK1 and CK1-TLS
(Figure 6, A; Supplemental Table S1 and Supplemental
Methods S8). As a control, cells from the remaining tissues
(i.e. the non-fluorescent cells) were collected separately. To
avoid a systematic error caused by the difference in size of
the PCR products, we created a standard curve using PCR
templates of CK1 (331 bp) and CK1-TLS (392 bp) in different
ratios and at different concentrations (Supplemental Figure

A B
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I J K L

D

E F G H

Figure 5 Physiological characterization of dividing cell marker AT5G16250 (MERCY1). A–D, RNA in situ hybridization using AT5G16250 as probe
on longitudinal sections through (A) root and (B) SAMs of Col-0 plants harvested at the (C) ED and (D) night (EN). Scale bars equal 100 mm. E,
Number of AT5G16250-positive cells at the SAM of Col-0 plants at the ED and EN (n4 3). F, Absolute root growth, G, Relative root growth, H,
RAM length analyzed from 7 till 14 DAG in Col-0 (n4 50) and mercy1 (n4 50) mutant plants grown on plates. I–J, Flowering time determined
as (I) RLN and (J) DTF. K, LIR. L, Flowering phenotype of Col-0 (n4 20) and mercy1 (n4 20) mutant plants. Error bars indicate SD. Statistical dif-
ference was calculated using Student’s t test (*P5 0.05; **P5 0.01; ***P5 0.001; ns, not significant).
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S19). After this evaluation, we submitted the FACS RNA
samples to RT-qPCR assays (three technical replicates per bi-
ological sample), which confirmed the different ratios of
CK1-TLS:CK1 found by scRNAseq in the two tissues/clusters
(Figure 6, D and Supplemental Figure S20). Note that the
absolute ratios of CK1-TLS:CK1 were different to those found
in the bioinformatic analysis. This deviation seems to be a
result of the bioinformatic approach in which we excluded
reads that did not cover unique CK1-TLS di-cistronic
sequences, which most likely underestimates the true
quantity of CK1-TLS mRNA. Despite this, the relative CK1-
TLS:CK1 ratios were similar to those predicted by the analy-
sis of the scRNAseq dataset, in that CK1-TLS was found to
be enriched compared with CK1 in the endodermis and was
found in smaller quantities than CK1 in the non-hair
epidermis.

Non-annotated transcripts with tissue-specific
expression
The recent scRNAseq data release focus on annotated RNAs
and analyzed their functionality as marker transcripts. This
potentially misses the opportunity to discover rare or
unidentified non-annotated transcripts with a cell type-spe-
cific function. Thus, we re-annotated the Arabidopsis tran-
scriptome to expand the existing annotations to include
9,421 non-annotated transcripts (see “Materials and meth-
ods” for details). Out of these, 9,228 transcripts were pre-
dicted as additional isoforms of the existing genes. The
remaining 193 predicted transcripts were present in previ-
ously non-annotated regions covering 125 non-annotated
genes (Supplemental Table S3). Based on coding potential
(Kang et al., 2017), 45 of these transcripts were predicted as
protein-coding and 148 as non-coding. In this scRNAseq

A

B C

D

Figure 6 Tissue-specific presence of mono- and di-cistronic CK1 transcripts. A, Schematic representation of both CK1 transcripts, that is with and
without tRNAGly in the 30UTR named CK1-TLS and CK1, respectively. Arrows indicate primers (FP, forward primer; RP, reverse primer) used to de-
tect all CK1 transcripts and specifically CK1-TLS transcripts via RT-qPCR (Supplemental Table 1). B, Dot plot of average CK1 expression and per-
centage of cells with expression of all CK1 transcripts, mono-cistronic CK1 and di-cistronic CK1-TLS in root clusters (see Figure 4). Cells with CK1
expression are considered for calculating the average expression. C, Ratio of CK1-TLS compared with all CK1 transcripts in clusters 17, 31, and all
clusters. D, Ratio of CK1-TLS compared with all CK1 transcripts in epidermal cells, endodermal cells, and control cells estimated via FACS and RT-
qPCR with specific primers (see “Materials and methods”). Error bars indicate SD calculated with error propagation from n = 3 biological samples
(each with three technical replicates) for epidermis and endodermis. Control refers to pooled protoplasts without fluorescence signal from all
samples (see Supplemental Figure S20).
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analysis, we found four non-annotated loci (ATNG-18,
ATNG-47, ATNG-98, and ATNG-99) that were also markers
for both root and shoot clusters (Supplemental Tables S10,
S13). From these, ATNG-47 was the main marker transcript
for root PPP; (cluster 20b) and EN/ED shoot (senescent
cells/parenchyma; clusters 2 and 9a) (Figure 7, A and B).
ATNG-47 is an antisense transcript partially overlapping with
the AT4G29780 and AT4G03255 of unknown function
(Figure 7, C). To confirm this bioinformatic prediction, two
cDNAs were produced by using positive and negative
strand-specific ATNG47 RT-primers for cDNA synthesis
(Figure 7, D and Supplemental Methods S8). To confirm
that the detected amplicon was not produced by a genomic
DNA contamination, we used ACTIN2-specific primers
(Figure 7, E). These controls and the strand-specific RT-PCR
assays confirmed the antisense nature and expression of the
ATNG-47 transcript (Figure 7, D). In summary, this reveals
that non-annotated and tissue-specific transcripts can be
identified by scRNAseq that cannot be identified by conven-
tional transcriptomic approaches which are potentially inter-
esting for further studies.

Discussion
To implement Drop-seq as a reliable scRNAseq method, we
had to adopt established root and shoot protoplasting proto-
cols to produce debris-free single-cell suspensions at ED and

EN timepoints. These changes allowed us to successfully pro-
duce high-resolution single-cell transcriptomic maps of nearly
70,000 Arabidopsis cells for (i) roots of 7-d-old seedlings at ED
and for (ii) above-ground tissue of 5-week-old plants at two
distinct times of the day (ED and EN). We produced reference
RNAseq libraries from the respective tissue by using the same
cDNA protocol and RT primer employed for the scRNAseq li-
brary production. We observed a high reproducibility across
replicates (r4 0.9) and a high correlation between scRNAseq
libraries and corresponding reference RNAseq libraries (r
approx. 0.8), which is comparable to recently published data-
sets (Denyer et al., 2019; Shulse et al., 2019). However, we find
a large proportion of DEGs between scRNAseq and reference
RNAseq datasets, which were reproducible across tissues and
time points, and which were also identified in other studies
using protoplasts (Birnbaum et al., 2003; Denyer et al., 2019;
Kim et al., 2021). The fact that the aforementioned indepen-
dent studies also report similarly extensive and overlapping
transcriptomic differences between protoplasted and refer-
ence tissue underlines that this issue should be taken into
consideration when working with scRNAseq. This is
highlighted by the fact that the harvesting time point of
shoot cells (ED or EN) is less distant to each other than the
reference RNAseq to scRNAseq indicating the importance of
creating and analyzing suitable reference libraries.

As proposed by Efroni and Birnbaum (2016), the new
single-cell RNAseq technologies provide a more unbiased

A B C

D F

Figure 7 Non-annotated locus (ATNG-47) with tissue-specific expression. A, Dot plot of expression of ATNG-47 transcript in root (see Figure 4)
and B, rosette (pooled ED/EN) clusters (see Figure 2). The color scale denotes the relative expression (average per cell). The dot size is scaled to
the proportion of cells per cluster with ATNG-47 expression. C, Schematic representation of ATNG-47 transcript located on chromosome 4 on the
negative strand, partially overlapping with AT4G29780 and AT4G03255 on the positive strand. Arrows indicate strand-specific primers (FP, forward
primer; RP, reverse primer) used to detect ATNG-47. D, ATNG-47 amplification (1,050 bp region in exon 3) using negative strand-specific cDNA li-
brary. E, ACTIN2 (ACT2) primers spanning an intron so that cDNA PCR results in a 246 bp band and gDNA results in a 332 bp band. 246 bp band
in the cDNA samples confirms gDNA absence in cDNA libraries.
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approach to the existing single-cell profiling methods, for ex-
ample cell sorting (FACS), that use markers with clear ana-
tomical specificity. In our study, we show that certain cell
types are characterized by markers that do not show a dis-
tinct spatio-temporal expression but are rather related to
developmental stage/cell cycle phase.

An important point is that the full potential of scRNAseq
is still being explored. Recent publications have already
highlighted the value of this method for studying mutant
phenotypes (Ryu et al., 2019), environmental effects like
heat shock (Jean-Baptiste et al., 2019), and mobile RNAs
(Saplaoura and Kragler, 2016). In this study, we address the
effect of the time of the day on the transcriptomes of differ-
ent cell types and further investigate the cell-specific
presence of alternative transcript versions (mono- and di-
cistronic).

Among the various single-cell studies of Arabidopsis, from
similar numbers of cells analyzed, different numbers of clus-
ters have been identified ranging from as few as 8 to as
many as 24 (Zhang et al., 2019) depending on the method
(10� Chromium or Drop-seq) and especially the parame-
ters applied for the downstream analysis. Our approach has
resulted in the separation of 35 clusters from the primary
root representing different developmental stages of cells as
well as some highly specific cell types such as procambium,
endodermis, cortex, hair cells, non-hair cells, xylem and
phloem pericycle cells, and CCs. However, it is important to
mention that our average number of transcripts/genes per
cell are lower than in other published studies due to lower
applied minimum cutoffs to increase the number of cells an-
alyzed (see above). The cell types that were not identified in
our dataset are the QC and columella cells. Our study
addresses the transcription profile of whole above-ground
tissue of Arabidopsis plants grown on soil harvested at two
different times of the day (ED and EN). Kim et al. (2021) fo-
cused on the vascular cells of the leaves and Zhang et al.
(2021) on the shoot apex. Despite the enrichment of vascu-
lar cells reported by Kim et al. (2021), 11 out of 19 clusters
were classified as mesophyll cells. This is in agreement with
our cluster annotations according to which 5 of 16 clusters
of the ED/EN pooled analysis were mesophyll or senescent
cells. Overall, the complexity in the combined dataset (16
clusters) seemed to be lower than in the individual datasets
(ED: 37, EN: 25) represented by a lower number of clusters.
This is a result of merging two scRNAseq datasets whose
global differences are dominated by the time point of har-
vest, which leads to a loss of complexity within tissues. For
example, at ED 10 different clusters are annotated as meso-
phyll cells, while only four at EN and three in the pooled
ED/EN clustering. This is not surprising when considering
that mesophyll cells are photosynthetically active and, thus,
a higher complexity in their transcriptome is expected at
ED. Nevertheless, the cluster robustness analysis revealed
that the clusters in the individual ED and EN clustering are
not as robust as in the combined ED/EN clustering.

Analyzing the enrichment of MapMan functional categories
within the clusters also enabled us to perform deeper func-
tional discoveries, that is we found starch metabolism-re-
lated genes enriched within mesophyll cells. The starch
metabolism has been extensively studied in Arabidopsis
where it has a linear pattern of starch synthesis in the light,
peaking toward the ED and starch degradation in the night
with little starch left at the EN (Stitt and Zeeman, 2012;
Smith and Zeeman, 2020). From published experiments per-
formed on whole Arabidopsis rosettes, transcripts encoding
many of the enzymes involved in starch metabolism were
shown to undergo large diel fluctuations, peaking at the ED
independently if they encode starch synthesis or starch deg-
radation enzymes (Smith et al., 2004; Smith and Zeeman,
2020). Our study using single cells provides details on the
differential transcript enrichment at ED and EN. Our finding
of a higher enrichment of starch biosynthesis transcripts at
EN compared with ED could be interpreted as a diurnal an-
ticipation step of mesophyll cells for the upcoming light pe-
riod that will require starch synthesis enzymes. The greater
enrichment of starch degradation genes at ED compared
with EN is in line with starch degradation that starts work-
ing at ED.

For above-ground tissues, an additional clustering ap-
proach of pooled ED/EN cells without normalizing for the
global ED versus EN differences enabled us to address cell
type-specific transcriptome changes, which is a valuable re-
source for further investigations.

We also showed that scRNAseq can be used to uncover
the function of non-characterized gene/transcripts of which
MERCY1 (AT5G16250) was experimentally confirmed regard-
ing its role in growth and development. MERCY1 was identi-
fied as a cell-cycle-related marker transcript in both shoot
and root based on its specific presence in clusters identified
as dividing cells. It is well-established that plant growth and
development depends on the interplay between meriste-
matic cell division and post-meristem cell expansion (Green,
1976). In line, primary root growth and onset of bolting are
affected but not cell expansion-driven growth of rosettes in
mercy1 mutants.

Clusters with unknown identity were reported for the
root and shoot in our and in most published scRNAseq
datasets. This underlines the fact that knowledge of the cell
types transcriptomic profiles is still incomplete. Some of
such non-annotated clusters might also be a product of
technical or computational artifacts or both, such as the
presence of two different cells in one droplet barcoded by
one bead or RNA leakage during droplet formation. Finally,
a recent review raised the issue that existing scRNAseq
bioinformatic pipelines lack functions to address the large
cell-size variability and whether this can cause bias in the
quantification of transcriptional activity (Shaw et al., 2020).
Irrespective of these potential pitfalls, unknown clusters, as
well as clusters with interesting transcriptomic profiles, can
lead to the identification of new cell types and facilitate the
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in-depth characterization of neglected cell types, respec-
tively. One such particularly interesting example is that
found with cluster 10 of the pooled ED and EN cells (#25 in
the ED and #9 in the EN cells). The presence of this specific
cluster(s) characterized by transcripts encoding proteins in-
volved in plant defense presents an opportunity to further
study the identity and function of this predicted cell type.
On the other hand, it is possible that certain parenchyma
cells differentiate into specialized cells (idioblasts) that se-
crete defense-related proteins like the PRs (pathogenesis-re-
lated proteins) into the apoplast (Uknes et al., 1992). The
study of development and mechanism of differentiation of
such predicted functions of cell type sub-populations will
expand our understanding of the defense mechanism(s) of
plants in a cell type-specific context.

High-quality genome annotations are crucial for extracting
meaningful insights into the biological aspects of the species
of interest. Here, we re-annotated Arabidopsis genome to in-
clude non-annotated isoforms and loci based on transcript-
based evidence, and predicted di-cistronic transcripts at high
resolution. Based on this, we identified a non-annotated
transcript (ATNG-47) preferentially expressed in distinct cell
types suggesting the potential importance of such loci in
the Arabidopsis genome. Furthermore, we exploited the
power of scRNAseq to go beyond the “traditional”
scRNAseq analysis and look at the individual transcripts
from the sequence level. Using this approach, we investi-
gated the distribution of di-cistronic transcripts across the
cell types and separately quantified the mono- and di-
cistronic (CK1-TLS) versions of the CK1 transcript. We exper-
imentally confirmed the enrichment of CK1-TLS within the
endodermis via FACS and RT-qPCR. Beside the endodermis,
the graft-mobile CK1-TLS (Thieme et al., 2015) was also
enriched in PPP, which is in line with the hypothesis that
PPP cells are the primary location of unloading of signaling
molecules (Ross-Elliott et al., 2017; Yang et al., 2019) from
the phloem and may act as a gateway that controls the
transit of mobile RNAs and restricts movement to specific
molecules only.

Conclusions
In conclusion, we have created a high-resolution single-cell
transcriptomic map of Arabidopsis root at ED and above-
ground tissues at ED and EN and identified tissues-specific
markers for both time points. We found that depending on
the time of the day, single-cell transcriptome changes occur
in distinct tissues to variant degree. Interestingly, we ob-
served that the most similar tissue type between root and
above-ground tissue is dividing cells. This observation led us
to investigate a previously uncharacterized marker of that
cluster (MERCY1) and demonstrate its role in meristematic
growth. Furthermore, we identified non-annotated tran-
scripts that seem to serve as tissue-specific markers and ana-
lyzed the differential presence of mono- and di-cistronic
transcripts within tissues.

Materials and methods

Plant material, growth condition, and protoplast
isolation for primary roots
For the root samples, three Arabidopsis (A. thaliana)
estradiol-inducible fluorescent marker lines (Columbia-0,
Col-0 background) with characterized expression patterns
were used to produce scRNAseq libraries of the root using
the Drop-seq protocol. Lines V161 and V171 express H2B-
Venus in the PPP and the XPP under the promoter of
AT5G09760 and AT3G29635, respectively. Line V311
expresses H2B-Venus in differentiated cells under the pro-
moter of TCP DOMAIN PROTEIN 7 (TCP7, AT5G23280)
(Machin et al., 2019). The plants were grown on tissue cul-
tures and the entire root was harvested 7 d after germina-
tion (DAG) and used for protoplast preparation. All three
lines were grown and harvested independently at the same
timepoint (ED) on different days (n = 5 plates with four
rows of vertically grown seedlings). Each line comprises an
independent experiment and were considered replicates
(Supplemental Figure S1; for details, see Supplemental
Methods S1).

Plant material, growth condition, and protoplast
isolation for above-ground tissue
Col-0 seeds were sown on soil (Stender; www.stender.de)
mixed with vermiculite (1:1) soaked with tap water, supple-
mented with boron (1.8 mg L–1) and the fungicide Previcur
(1.5 mL L–1; Bayer; www.bayer.de) and germinated in 12-h
light/dark photoperiod (NDs) at 20�C in controlled environ-
mental chambers (160 lE m–2 s–1). After 1 week, the seed-
lings were transferred to an 8-/16-h light/dark photoperiod
(short days, SDs) at 20�C/16�C for 1 week. Then plants were
transferred into individual pots (five plants per pot) and
grown under ND (12-h light/12-h dark) photoperiod with
22�C/18�C temperature (Percival E-36 L chamber, CLF Plant
Climatics, Wertingen, Germany). Four weeks after transfer,
all above-ground tissue was used for protoplast preparation
(Supplemental Figure S1; for details, see Supplemental
Methods S1). For each timepoint (ED or EN), three biologi-
cal replicates were harvested (n = 40 plants) and submitted
to scRNAseq. Each of the three library pairs ED1/EN1, ED2/
EN2, and ED3/EN3 was harvested within 24 h from the
same batch of plants (Supplemental Figure S1; for details,
see Supplemental Methods S1).

ScRNAseq with Drop-seq
A modified Drop-seq scRNAseq protocol was used based on
the description provided by Macosko et al. (2015) using sin-
gle beads linked with unique barcoded poly-T oligonucleoti-
des that are loaded with individual protoplasts into droplets
(Supplemental Figure S1; for details, see Supplemental
Methods S2). For an overview of the sequenced libraries, see
Supplemental Table S2.
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Reference tissue RNAseq
The reference tissue cDNA libraries were produced from to-
tal RNA extracted from roots (one plate for each genotype)
and above-ground tissue from soil grown plants (20 plants)
harvested at the same time points as for the scRNAseq li-
braries and, to avoid a potential preparation bias introduced
by PCR amplification/tagmentation, the reference tissue
cDNA libraries were prepared in the same way as the
scRNAseq cDNA libraries (Supplemental Methods S3). For
an overview of the sequenced libraries, see Supplemental
Table S2.

RNA in situ hybridization
Root and shoot tissues of 7-d-old wild-type Col-0 plants,
grown in ND conditions, were harvested at the ED. Fixation,
embedding, sectioning, and RNA in situ hybridization were
carried out as previously described (Olas et al., 2021) (for
details, see Supplemental Methods S6).

Growth and morphology analysis
For root growth analysis, sterilized seeds were germinated in
vertical positioned 10% w/v agar 0.5� MS 0.6% w/v sucrose
plates in 16-h light/dark photoperiod (long days, LDs). At 7
DAG, the seedlings were transferred to fresh 10% w/v agar
0.5� MS 0.6% w/v sucrose plates (for details, see
Supplemental Methods S7).

For shoot growth analysis, we used an established 3D phe-
notyping system (Apelt et al., 2015) for imaging size, RER,
and leaf angle (hyponasty). Plants were grown as previously
described (Apelt et al., 2015). The flowering time was de-
fined as “days to flower” (DTF) corresponding to the day on
which the main stem has bolted 0.5 cm, and as “rosette leaf
number” (RLN). The leaf initiation rate (LIR) was determined
by calculating the ratio of the RLN and DTF. At least 20 ge-
netically identical replicate plants were used to determine
the growth behavior and flowering time of each genotype.
Student’s t test was used to test the significance of flowering
time differences.

FACS of root protoplasts
Seedlings of fluorescent marker lines V141 and V101 mark-
ing the endodermis and non-hair cell epidermis, respectively
(Machin et al., 2019), were grown and protoplasts harvested
as described above. Fluorescent cells were sorted using a BD
FACS Aria II machine using a 100-mm nozzle. 15,000
Venus + cells were sorted from each line, and 15,000 unla-
beled cells were also collected as a control. Protoplasts were
sorted into 1� TE buffer with RNAse inhibitor and immedi-
ately frozen in liquid nitrogen.

Total RNA was extracted using phenol:chloroform:isoamyl
alcohol and then pelleted with 5-M LiCl mixed to a final vol-
ume of 2.5 M and linear acrylamide to a final concentration
of 20 mg/mL. cDNA was subsequently made by reverse tran-
scription with Reverse Transcriptase (Promega) using poly-T
primers and used for RT-qPCR.

RT-qPCR of CK1/CK1-TLS and non-annotated
transcript
For details, see Supplemental Methods S8.

Computational analysis
Annotation of Arabidopsis reference genome and alignment

A comprehensive Arabidopsis reference genome annotation
was constructed by updating the Araport11 Arabidopsis ge-
nome annotations (Cheng et al., 2017) with annotations
from RepTAS (Liu et al., 2012) and miRBase (Kozomara
et al., 2019). Further, non-annotated loci and transcripts
were identified using publicly available high-depth RNAseq
datasets from NCBI SRA (SRX853394, SRX853395; Thieme
et al., 2015; DRX014481, DRX014482; Ito et al., 2015;
Supplemental Table S3). The scRNAseq and reference
RNAseq samples were processed using the Drop-seq compu-
tational pipeline (release 2.3.0; https://github.com/broadinsti
tute/Drop-seq/). The final alignment files were used for
quantifying expression of all genes using htseq (version
0.12.4). The raw counts were further normalized using
DESeq2 (for details, see Supplemental Methods S9).

DE, PCA, and enrichment analysis

The DE analysis was performed using DESeq2 with a signifi-
cant threshold (FDR) of 0.05 and jlog2FCj 5 1. The detailed
pairwise comparisons for DE are listed in Supplemental
Table S5. PCA was performed using “prcomp” function in R.
The Pearson’s correlation between Drop-seq and respective
tissue samples was calculated by comparing the replicate-
averaged log2 DESeq normalized expression using “cor” func-
tion in R. The correlation values were plotted using ggplot2.
GO enrichment analysis was performed using a binomial
test and Bonferroni corrected P-value 5 0.05 was consid-
ered significant. GO annotations were obtained from
PANTHER database (Thomas et al., 2003). We downloaded
MapMan4 annotations from Mercator4 (Schwacke et al.,
2019) and performed enrichment test using hypergeometric
test in R with P-value threshold of 0.05.

Clustering, cluster robustness, and marker identification for

single-cell samples

The digital expression matrices obtained from Drop-seq
pipeline were analyzed using Seurat v3.0.2 (Stuart et al.,
2019) and Harmony v0.99.9 (Korsunsky et al., 2018) using
custom parameters. Cluster robustness (0–100%) was scored
for each clustering from 100 random subsets of 80% of the
library reads and describes what proportion cells that previ-
ously formed a cluster are still co-occurring in a single clus-
ter when using subsampled data for clustering while
retaining the variable genes from the original clustering.
Cluster markers were calculated using FindAllMarkers func-
tion of Seurat (fold change 5 0.25, minimum cell percent-
age 5 5%, and adjusted P-value 5 0.05) (for details, see
Supplemental Methods S5).

Tissue- and daytime-specific scRNAseq profiles PLANT PHYSIOLOGY 2022: 188; 861–878 | 875

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://github.com/broadinstitute/Drop-seq/
https://github.com/broadinstitute/Drop-seq/
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab537#supplementary-data


Prediction of di-cistronic transcripts

The alignments from the four samples were used to predict
di-cistronic transcripts. A read was considered to originate
from two genes if the alignment coordinates overlap with
two annotated genes (Araport11 annotations only). A gene
pair was considered to encode a di-cistronic transcript if it
was supported by 5100 reads. These gene pairs were fur-
ther filtered to retain pairs if both genes are protein-coding
and present on the same strand; or at least one gene is
non-coding.

scRNAseq analysis of CK1 and CK1-TLS

The mono-cistronic CK1 (CK1-mono) and di-cistronic CK1
(CK1-TLS) were quantified from the single-cell RNAseq data
with custom-made scripts. A transcript was annotated as
CK1-mono if no reads from transcript overlap the tRNA re-
gion (AT1G71700) and the reads end at 1 bp before the
start of the tRNA, and a transcript was annotated as CK1-
TLS if at least one read from the transcript aligned to the
tRNA region. The dot plots were plotted using ggplot2
package in R. Clusters were considered to be enriched in
CK1-TLS if CK1-TLS was identified as a marker for the cluster
(two-tailed Wilcoxon rank sum test; P-value 5 0.05) and
CK1-mono was not.

Data availability
The sequencing data sets are available at the NCBI
Sequencing Read Archive (SRA), BioProject ID PRJNA742744.

Accession numbers
Sequence data from this article can be found in the
GenBank/EMBL data libraries under accession numbers:
MERCY1 (AT5G16250) and CK1 (AT1G71697).
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