
Connectomic features underlying diverse synaptic connection 
strengths and subcellular computation

Tony X. Liu1,3, Pasha A. Davoudian2,3, Kristyn M. Lizbinski1,3, James M. Jeanne1,4,*

1Department of Neuroscience, Yale University. 333 Cedar Street, New Haven, CT 06510

2MD/PhD Program, Yale School of Medicine. 333 Cedar Street, New Haven, CT 06510

3These authors contributed equally

4Lead contact

SUMMARY

Connectomes generated from electron microscopy images of neural tissue unveil the complex 

morphology of every neuron and the locations of every synapse interconnecting them. These 

wiring diagrams may also enable inference of synaptic and neuronal biophysics, such as the 

functional weights of synaptic connections, but this requires integration with physiological data 

to properly parameterize. Working with a stereotyped olfactory network in the Drosophila brain, 

we make direct comparisons of the anatomy and physiology of diverse neurons and synapses 

with subcellular and subthreshold resolution. We find that synapse density and location jointly 

predict the amplitude of the somatic postsynaptic potential evoked by a single presynaptic spike. 

Biophysical models fit to data predict that electrical compartmentalization allows axon and 

dendrite arbors to balance independent and interacting computations. These findings begin to 

fill the gap between connectivity maps and activity maps, which should enable new hypotheses 

about how network structure constrains network function.
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Liu et al. compare the anatomy and physiology of diverse synaptic connections in the central brain 

of Drosophila, finding that synapse density and location predict unitary postsynaptic potential 

amplitude. Modeling reveals that a neuron’s basic architecture of arbors and cables constrains the 

computations it performs.
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INTRODUCTION

The brain coordinates perception and action using networks of diverse neurons with 

heterogenous synaptic connections1. Understanding how these networks operate requires a 

synthesis of structural and functional information2–5. Theoretical network models can unify 

diverse sources of information into a common framework, but to make the most informed 

computational predictions, modeled neurons and synapses should correspond to real neurons 

and synapses and should obey known biophysical principles6–8. With densely reconstructed 

connectivity maps from electron microscopy (EM) images, real network anatomy can 

now constrain the structure of large network models, improving biological accuracy9–13. 

However, other sources of biophysical diversity, such as variations in synaptic connection 

weights (i.e., the physiological strength between synaptic partners) or subcellular electrical 

compartmentalization are not fully constrained by connectivity maps. Instead, these are 

often treated as free parameters to be optimized or assumed to be homogeneous. These 

unconstrained variables make connectivity maps difficult to link directly to activity maps, 

because different biophysical parameters can produce divergent network function14.

It has been proposed that a small number of anatomical features measurable from a complete 

connectome might be sufficient to predict true synaptic connection weights and to determine 

when axons or dendrites need to be explicitly modeled7. Examining this requires a direct 

comparison of physiology and anatomy across a diverse set of neurons and synapses. 

Compellingly, postsynaptic density size linearly relates to unitary excitatory postsynaptic 

potential (uEPSP) amplitude for a single type of neocortical synapse in mouse15, but scaling 

this to more diverse populations is limited, in part, by the current lack of a full wiring 

diagram of the mouse brain. However, a recent connectome details the diversity of neural 

morphologies and synaptic connections throughout half of the central brain of the adult fruit 

fly, Drosophila melanogaster (the “hemibrain”)16.

Here, we ask how anatomical patterns of connectivity and neuron morphology predict 

physiological connection strengths and subcellular electrical compartmentalization in the 

Drosophila brain. We focus on the lateral horn, an anatomically diverse olfactory network 

(analogous to mammalian cortical amygdala)17–21. In this network, second-order projection 

neurons (PNs) connect to third-order lateral horn neurons (LHNs)22. Because connectivity 

and morphology are stereotyped23,24, we can study the anatomy and physiology of the 

same neurons and connections in different flies. We thus used the hemibrain connectome 

along with a recent dataset of electrical recordings of identified PN-LHN uEPSPs25 to make 

comparisons between anatomy and physiology at the elemental level of single neurons and 

single synaptic connections.

We report three main findings. First, physiological connection weight (i.e., uEPSP 

amplitude) increases linearly with synapse density (the number of synapses per unit 

area of postsynaptic membrane) across a diverse sample of connection types. Second, 

connection weight (measured at the soma) decreases with distance, but primarily from the 

“inter-arbor cable” that connects the axon and dendrite arbors. In contrast, specific synaptic 

location within each arbor has little impact. Subcellular electrical compartmentalization 

can thus be predicted by a neuron’s anatomical arrangement of arbors and cables. Third, 
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biophysical models constrained by anatomical and physiological data predict that LHNs are 

shaped to maximize input gains in each arbor, while still allowing for passive interactions 

between arbors. This highlights a potential functional role for the inter-arbor cable in 

regulating subcellular computation. Together, these findings reveal important links between 

connectivity maps and activity maps, which should enable construction of more biologically 

naturalistic network models.

RESULTS

PN-LHN connections and LHN sizes reflect anatomical diversity of the whole brain

Within the lateral horn, PN axons carrying information from each of ~50 olfactory antennal 

lobe glomeruli converge and diverge onto hundreds of morphologically distinct LHN 

types (one example pair in Figure 1A), providing an anatomical foundation for diverse 

transformations of the incoming PN odor code17–21,23–26. In Drosophila, connections 

between neurons typically consist of multiple synaptic contacts, with each contact of fairly 

similar physical size (we use “synapse” to refer to individual contact sites, and “connection” 

to refer to all the synapses between two neurons)16,27. We focus on uniglomerular 

cholinergic (excitatory) PNs (subsequently referred to simply as “PNs”), which were the 

PN types studied physiologically25.

The hemibrain connectome annotates 100 PNs and 1496 LHNs24, with 17,506 connections 

between them (most of the 149,600 PN-LHN pairs are not connected). The distribution 

of synapse counts per connection spans more than two orders of magnitude (Figure 1B). 

The distribution of LHN surface areas spans about one order of magnitude (Figure 1C). 

Distributions of both PN-LHN synapse counts and LHN surface areas are similar to (but 

somewhat narrower than) distributions for connections and neurons throughout the brain 

(Figure 1B,C).

Cellular morphology identifies PNs and LHNs between datasets

To study anatomy and physiology of the same neurons, we used the hemibrain connectome 

in conjunction with previous current clamp recordings of LHNs during stimulation of PNs25. 

Taking advantage of the stereotyped anatomy of the antennal lobe and lateral horn23,24, we 

identified the same PN and LHN types across these two datasets. PN types were matched by 

the glomerulus innervated by their dendrites, which uniquely and unambiguously identifies 

them28,29. Glomeruli vary in the number of PNs innervating them, but we only considered 

glomeruli with one PN, which allowed us to resolve single uEPSPs in LHN recordings 

(STAR Methods). LHN types were matched by quantitatively comparing biocytin fills with 

neuron morphologies in the hemibrain30 (STAR Methods; Figure 1D, S1; Table S1). In total, 

we matched 12 PNs and 13 LHN types between datasets.

The anatomical properties of this subset were representative of the entire lateral horn, but 

modestly biased towards larger connections and surface areas. Comparing connections from 

this subset of PN-LHN pairs to those from all pairs in the lateral horn shows that our sample 

has modestly higher synapse counts (Figure 1B) and the surface areas of these LHNs are 

slightly larger than surface areas of all LHNs (Figure 1C). In addition, PN-LHN connections 
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of the same type have similar synapse counts (Figure S2A) and LHNs of the same type have 

similar surface areas (Figure S2B), although there is some diversity present.

Unitary PN-LHN synaptic potentials are physiologically diverse

We analyzed LHN membrane voltages measured in response to two-photon optogenetic 

activation of single PNs (Figure 2A)25. Activation of individual PNs produces distinct 

uEPSP waveforms in the LHN (each corresponding to one PN spike; Figure 2B). We 

extracted each uEPSP for each PN-LHN connection within a recording (STAR Methods; 

Figure 2C). Overall, uEPSPs were measurable and reliably detected over multiple LHN 

recordings for 29 unique PN-LHN pairs. No synaptic responses were evident in 106 

pairs, so we considered these to have uEPSP amplitudes of 0 mV. The remaining pairs 

had inconsistent or unquantifiable synaptic responses and were omitted (STAR Methods), 

yielding a population of 135 unique PN-LHN pairs matched to anatomy and with reliable 

estimates of physiology.

Mean uEPSP amplitudes spanned a ~10-fold range (0.4mV to 6.6mV), with distinct and 

characteristic values for different connection types, but with some variability (Figure 2B–D). 

The variability of individual uEPSP waveforms within a single recording (e.g., Figure 2C) 

was consistent across connections (CV 0.35±0.09). This consistency suggests that properties 

of short-term plasticity or stochastic transmitter release are similar across connections. 

Occasional variability of mean uEPSP waveforms for the same PN-LHN connection type 

across recordings may reflect fly-to-fly variability in synapse counts, or differences in 

long-term plasticity or neuromodulatory state. Despite this variability, clear differences 

in waveforms between PN-LHN connection types were still observable (Figure 2D). We 

averaged mean uEPSPs across recordings for each PN-LHN connection type to compare to 

anatomical data from the same connections.

Anatomical diversity linearly predicts physiological diversity of synaptic connections

Next, we compared the anatomical and physiological strengths of PN-LHN connections. 

In the quiescent (ex vivo) condition of our recordings, LHNs likely operate in a passive 

regime, where synaptic potentials are known to reflect the product of synaptic conductance, 

driving force, and membrane resistance31. Because our measured uEPSPs are relatively 

small compared to the synaptic reversal potential (estimated to be ~45 mV above rest; STAR 

Methods), driving force is approximately constant. Therefore, synapse density (synapse 

count normalized by LHN surface area) should predict uEPSP amplitude, because surface 

area is inversely proportional to membrane resistance (assuming spatial uniformity of 

membrane conductances), consistent with recent PN models27. Accordingly, synapse density 

predicted average uEPSP amplitude well (Figure 3A, solid line; r2 = 0.77, p = 1.0 × 10−43). 

Importantly, this correlation persisted even without the largest connections or the pairs with 

both 0 synapses and 0 mV uEPSP amplitudes. Moreover, it agreed with data for connections 

in the antennal lobe and mushroom body (Figure S3). Thus, anatomical features can predict 

average physiological weights for diverse connection types.

Interestingly, one outlier stood out in this analysis: the connection from the VL2a PN onto 

local5 LHNs. This uEPSP was smaller than predicted by its high synapse density (blue point 

Liu et al. Page 4

Curr Biol. Author manuscript; available in PMC 2023 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in Figure 3A). Interestingly, local5 LHNs also received a connection from the VA6 PN, 

which had a similarly high synapse density, but a large uEPSP amplitude (red point in Figure 

3A). The VL2a-local5 uEPSP also had relatively slow kinetics (Figure 2C): the time to the 

peak of the VL2a uEPSP was longer (11.9 ± 1.7 msec) than for the corresponding VA6 

uEPSP (7.1 ± 0.2 msec). However, the uEPSPs between VL2a and a different LHN (“V2”) 

exhibited a short time to peak (7.9 ± 0.3 msec), indicating that slow kinetics cannot be due to 

slower synaptic release from the VL2a PN.

The small amplitude and slow kinetics in the VL2a-local5 connection suggests unusually 

strong cable filtering, which attenuates and delays synaptic potentials32. We thus asked 

whether the VL2a PN targets local5 more distally than the VA6 PN. The neurites of local5, 

like those of most local LHNs, organize into two polarized arbors: one biased towards 

input synapses (dendrite) and one biased towards output synapses (axon)23,24. The arbors of 

local5 extensively intermingle (Figure 3B), but when viewed separately, a segregated pattern 

emerges. VA6 synapses almost exclusively target the dendrite arbor (Figure 3C), while VL2a 

synapses exclusively target the axon arbor (which is more distant from the soma; Figure 

3D,E). Thus, the longer distance to the soma for the VL2a connection predicts greater cable 

filtering and reduced somatic uEPSP amplitude, when compared to the VA6 connection.

Given this role of synaptic distance, we reasoned that it might also impact uEPSP 

amplitudes for other PN-LHN connections. Surprisingly, after regressing out the effect of 

synapse density from uEPSP predictions, the residual variability showed no obvious relation 

to mean synapse distance, other than for the VL2a-local5 connection (Figure 3F). Because 

all other connections in our dataset target LHN dendrites, this points to some aspect of 

arbor identity (axon vs. dendrite), instead of distance alone, as an essential determinant 

of postsynaptic filtering. In light of this, we recomputed the prediction of average uEPSP 

amplitude from synapse density using only the dendritic connections. This yielded a stronger 

correlation (r2 = 0.84; Figure 3A, dashed line). Collectively, these results show that synapse 

density and location both matter for determining somatic uEPSP amplitudes, but that the role 

of location is not a simple linear function of distance.

Passive compartmental models accurately predict diverse uEPSP amplitudes

To better understand how synapse location and LHN morphology impact uEPSP amplitudes, 

we turned to biophysical modeling. First, we built single-compartment models for every 

LHN in our sample by jointly optimizing membrane resistance and capacitance per unit 

area, and conductance per synapse to fit uEPSP amplitudes (STAR Methods; synaptic 

conductance waveform shape was adapted from a prior model33 and not explicitly optimized 

here). These parameters were constrained to be uniform across LHNs, with whole-cell 

properties varying solely due to variability in neuron size. As expected, these models forced 

a compromise between underpredicting dendritic and overpredicting axonal uEPSPs (RMS 

error = 0.95mV; Figure 4A,B). This illustrates the insufficiency of single compartment 

models for neurons with multiple arbors.

We then fit multi-compartment models (with morphology and synapse locations explicitly 

constrained by hemibrain data) by additionally optimizing axial resistance (STAR Methods). 

Again, all parameters were uniform across different LHNs, so models only vary due to 
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morphology and synapse location (the synaptic conductance waveform was identical to that 

in the single-compartment model). These models predicted the amplitude of uEPSPs across 

our dataset with better accuracy (RMS error = 0.68mV; Figure 4C,D). This indicates that 

differences in uEPSP amplitude for connections onto different arbors can be parsimoniously 

explained by differences in passive filtering arising from neuronal morphology, requiring 

neither active conductances nor cell-type or subcellular specificity of passive properties.

Models predict that arbors democratize synaptic efficacies, while inter-arbor cables stratify 
them

We next used multi-compartment models to understand the complex relation between 

anatomical synapse locations and physiological synapse amplitude, focusing exclusively 

on local LHNs because they receive PN input onto both dendrite and axon arbors. Using 

the parameter values determined by the model fits in Figure 4D, we built models for 49 

local LHNs, including local5 (STAR Methods). These models allowed us to “stimulate” 

single synapses and “record” from any neuronal location. Accordingly, we decomposed 

uEPSPs into the constituent potentials evoked by individual synapses, called miniature 

EPSPs (mEPSPs), measured either at the synaptic location or the spike initiation zone (SIZ; 

located near the base of the dendritic arbor33; Figure 5A). We refer to the amplitude of the 

mEPSP at the SIZ as “synaptic efficacy,” and note that voltage at the soma largely tracks 

voltage at the SIZ, but with additional passive filtering.

We first measured mEPSPs at synaptic sites in our models, to ask whether local 

morphological differences yield systematic electrical differences between axon and dendrite 

arbors. In the local5 LHN model, mEPSPs at synaptic sites were diverse, with no major 

differences between arbors (Figure 5B). Because the conductance is the same for all 

synapses in our model, all diversity in mEPSPs must come from variations in local input 

resistance. Therefore, local electrical properties at each synapse are variable, but axons and 

dendrites have similar amounts of variation.

We then measured the same mEPSPs at the SIZ of the local5 LHN. There we saw the 

opposite pattern: mEPSPs were similar for synapses on the same arbor, but different for 

synapses on different arbors (Figure 5B). This suggests subcellular processing by LHNs 

democratizes synaptic efficacies within arbors, but stratifies efficacies (i.e., introduces 

characteristic differences) between arbors.

To better understand the within-arbor democracy, we compared local mEPSP amplitudes 

with the fold attenuation to the SIZ (local amplitude divided by amplitude at the SIZ; 

Figure 5C). This revealed strong linear correlations for synapses within each arbor, but 

different slopes and intercepts for different arbors. Therefore, synapses within an arbor 

generate widely different local depolarizations, but these differences are mostly normalized 

by compensatory voltage attenuation en route to the SIZ (tan points in Figure 5D). Synaptic 

efficacies from the “perfect” democracy implemented by a model with isopotential arbors 

were minimally different from the full model (gray points in Figure 5D), which was 

consistent for synapses across all local LHNs we studied (Figure 5E, STAR Methods).
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In contrast to the democracy of the arbors, the inter-arbor cable stratifies synaptic efficacies. 

This is evident from the fact that the isopotential arbor model retains the differences between 

arbors (Figure 5D,E). Notably, in a model with an isopotential cable, synaptic efficacies took 

on intermediate values, varying smoothly with distance; Figure 5D,F). Therefore, the long 

and thin inter-arbor cable introduces compartmentalization between arbors. Parallel effects 

occur for mEPSP latency (Figure S4). Stratifying synaptic efficacies between arbors but not 

within arbors results from cable theory34. Voltage decays exponentially along the inter-arbor 

cable, mimicking an infinite cable because each arbor acts like a current sink. In contrast, 

voltage decays minimally within arbors, because the sealed ends of neurites direct nearly all 

synaptic current towards the arbor root.

PN connections onto local LHNs mostly target individual arbors

The most straightforward way for subcellular compartmentalization of LHNs to participate 

in transforming the incoming PN odor code is if individual PNs from different glomeruli 

target different arbors. We have shown already that VA6 and VL2a PNs target different 

arbors of local5 LHNs, but it is not clear whether this patterning occurs frequently. 

Strikingly, we found that 72% of connections onto local LHNs (of 5 synapses or larger) 

targeted one arbor nearly exclusively (≥90% of synapses targeting one arbor), much more 

than expected from random targeting (Figure S5A,B). However, systematic targeting of 

PN synapses to sub-arbor structures appeared less pronounced (Figure S5C–F). Thus, 

connections from PNs closely track the compartmentalization of LHNs, largely isolating 

their synapses to either the dendrite or axon arbor, but with less organization within each 

arbor.

Models predict that inter-arbor cables establish independent, robust, and maximal local 
input gain

While the SIZ is of clear importance, individual arbors may also perform local functions. 

For instance, direct excitation of axons may modulate spike-evoked neurotransmitter release 

or drive graded release without spikes35. However, this requires some degree of electrotonic 

independence between arbors, which appears at odds with our observation of inter-arbor 

voltage propagation. How do LHNs strike a balance between independence and interaction 

between arbors?

We first used our compartmental models to investigate each arbor’s local input gain. For 

the same synaptic conductance, an arbor with higher input gain will exhibit a larger local 

depolarization. We thus approximated input gain by the mean mEPSP amplitude across all 

synapses in an arbor (measured at each arbor’s primary branch point). Input gain was larger 

in axon arbors than in dendrite arbors (Figure 6A). This corresponded to differences in arbor 

surface areas (Figure 6B). Accordingly, local arbor membrane resistance almost completely 

predicted the variability in local input gain for both axon and dendrite inputs (r2 = 0.87; 

Figure 6C). Thus, each arbor operates with its own input gain, largely determined by its 

surface area.

Membrane resistances, however, can fluctuate dramatically due to synaptic activity or 

intrinsic plasticity36,37. We therefore wondered whether local arbor input gain is robust 
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to changes in remote membrane resistance. We simulated an average local LHN with a 

simplified “barbell” model: a single compartment for each arbor and a multi-compartment 

cable connecting them (STAR Methods). We then systematically varied the membrane 

resistance of the remote arbor while measuring local mEPSP amplitude. Strikingly, local 

input gain was insensitive to variations in remote arbor membrane resistance (Figure S6).

We next looked more closely at inter-arbor cables. In local LHNs these meander along 

paths that deviate from the shortest (Euclidean) path between arbors (2.8±1.7 times 

longer; Figure 6D; arrow in Figure 3B). Cable length may thus be tuned to perform 

computational functions – such as maintaining independent input gains while allowing 

inter-arbor interactions – rather than simply connecting axons to dendrites.

To test this, we manipulated the inter-arbor cable length in the average barbell model. 

Longer cables increased local arbor input gain (top curves in Figure 6E,F) by impairing the 

other arbor’s ability to siphon off current. However, input gain saturated once the cable was 

long enough to resemble a semi-infinite cable38 (from the perspective of the local arbor). 

Interestingly, the geodesic (true) mean cable length yielded mEPSPs close to the point of 

saturation (dendrite, 97.3±2.0%; axon, 94.7±4.6%), such that further lengthening would 

have vanishing effects on local input gain. Lengthening the inter-arbor cable also decreased 

mEPSP amplitudes measured from the remote arbor. However, these continued to decrease 

after the local mEPSPs saturated (bottom curves in Figure 6E,F).

Collectively, these analyses suggest that the independence of each arbor is established by 

an inter-arbor cable that is long enough to maximize local input gains. However, the cable 

is also short enough to permit passive exchange of information, allowing axonal input to 

contribute to depolarizing the SIZ. Thus, the inter-arbor cable balances independence and 

interaction between arbors, potentially expanding the computational repertoire of single 

neurons.

Predicted functions of compartmentalized neurons

How might independent input gains in each arbor affect how a neuron transforms inputs 

into outputs? While our model did not allow for direct simulation of active properties, we 

used prior measurements of spike threshold and general properties of transmitter release to 

predict how input to each arbor controls output. Revisiting the barbell model of the average 

local LHN, we made functional predictions for three configurations of activation: input only 

to the dendrite arbor, input only to the axon arbor, and input to both arbors together.

First, when inputs arrive only onto the dendrite arbor, the LHN operates in a “feedforward 

spiking drive” mode. With a spike threshold 15mV above rest at the SIZ19,26, strong 

dendritic input (0.03 synapses/μm2) can rapidly evoke spikes, while a weaker input (0.0075 

synapses/μm2) does not (Figure 7A). Varying synapse density and input spike rate shows 

that only the strongest connections evoke spikes on their own; weaker connections would 

require coincident activity of multiple inputs (Figure 7B). Passive propagation to the axon 

arbor strongly attenuates these signals (Figure 7C,D)33.
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Second, when inputs arrive only onto the axon arbor, the LHN operates in a “nonspiking 

axonal activation” mode. Even the strongest physiologically plausible inputs (simultaneous 

activation of all PN inputs to an LHN axon) with high spike rates are insufficient 

to depolarize the SIZ to spike threshold (Figure 7E,F). However, these inputs strongly 

depolarize the axon directly (Figure 7G,H), potentially causing graded (spike-independent) 

transmitter release, which starts at voltages of ~10-15mV above rest in invertebrates35,39–41.

Third, when inputs arrive on both the dendrite and axon, the LHN operates in one of 

several modes. In the simplest case, these inputs may simply integrate. In another case, 

direct depolarization of the axon might alter the amount of neurotransmitter released by 

action potentials, reminiscent of effects in cortical neurons42,43. Finally, the delay introduced 

by propagation along the inter-arbor cable (Figure S4) may enable sequence-selective 

responses. With spike generation occurring near the dendrite arbor, synaptic input sequences 

that activate the axon before the dendrite cause larger depolarizations of the SIZ than 

the opposite sequences (Figure 7I–K). Together, these simulations provide a framework 

for generating explicit hypotheses about how neuronal morphology shapes subcellular 

computation within the context of network-level function.

DISCUSSION

Predicting synaptic function from connectomic data

Our results show that much of the diversity in mean physiological connection weights 

between PNs and LHNs can be explained by anatomical properties measurable in EM 

images. The number of synapses and LHN surface area successfully predict somatic uEPSP 

amplitudes for dendritic connections, but severely underpredict amplitudes for axonal 

connections. However, a more complex model incorporating neural morphology and synapse 

locations accurately predicted the physiology of connections onto both arbors, highlighting 

the insufficiency of neural point models (which ignore morphology). It is perhaps surprising 

that such a strong correspondence occurs with purely passive models, given the plethora of 

voltage-gated ion channels expressed in neurons44. However, the quiescent network state (ex 
vivo preparation) and the minimal stimulation (single spike resolution in single neurons) are 

both favorable conditions for remaining in a passive regime.

We found it striking that the relationship between dendritic synapse density and uEPSP 

amplitude was largely linear, and that connections in the antennal lobe and mushroom 

body were consistent with this relationship. This suggests a conservation of fundamental 

biophysics across neurons and synapses. Notably, the capacitance of neural membrane 

and the resistance of intracellular medium are fairly consistent in different neurons and 

species45. Although membrane resistance is more variable due to differences in ion channel 

expression and activation, the quiescent network state likely quenches many of these 

differences. The size and shape of the synaptic conductance waveform is likely fairly 

uniform across cholinergic synapses in the Drosophila brain16,27, but does vary in a use-

dependent manner46,47. Synapses using different transmitters and receptors will encounter 

different driving forces and will likely have different conductance waveforms. We thus 

anticipate that our predictions of cellular and synaptic function from PN-LHN connections 
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will apply to other cholinergic connections in the fly brain (although some features will 

remain idiosyncratic).

Our results also highlight the importance of comparing structure and function with single 

neuron and single spike resolution. While we found that connectomic data accurately 

predicted uEPSPs evoked by single spikes in single neurons, a recent study (using the 

same data sources) reported lower predictive power for compound EPSP amplitudes evoked 

by multiple spikes in multiple neurons24. Future efforts to link connectivity and physiology 

may thus face challenges if sufficient physiological resolution is not obtained, but our results 

suggest that biophysical models could fill the gap in certain instances. For example, spatial 

and temporal integration across neural populations can be explicitly modeled to match 

commonly used experimental measures, such as voltage imaging from neuropil containing 

multiple cells or cell types.

Arbors and cables in cellular computation

Our results show that individual arbors passively integrate synaptic input democratically. 

This occurs because large local variations in mEPSP amplitude are mostly offset by 

compensatory variations in voltage attenuation. The electrotonic structure of central 

Drosophila neuron arbors may thus be similar to the dendrites of cerebellar Purkinje cells, 

which orchestrate a similar dendritic democracy with passive mechanisms in a heavily 

branched arbor48. This configuration has been attributed to the lack of a central trunk neurite 

(Figure S7)49. Drosophila neurons may therefore rely on branching structure to achieve 

uniform synaptic efficacy without special spatial patterning of ion channel expression or 

synaptic conductances50. In addition, because most PN-LHN connections target a single 

arbor with multiple spatially distributed synapses, much of the residual variability due to 

synapse location will average out for larger connections. This supports the idea that single 

arbors may be fundamental “units” of computation in Drosophila neurons.

Inter-arbor cables strike a balance between interaction and independence between arbors. 

Interaction enables neurons to compare inputs arriving on different arbors. This is especially 

relevant because each arbor receives its own complement of synaptic inputs. Inter-arbor 

cables in local LHNs are also longer than necessary to connect the arbors, enabling 

discrimination of temporal sequences on behaviorally relevant scales of ~10 msec51,52. In 

contrast, independence between arbors can enable some functions to remain arbor-specific. 

For instance, arbor-specific structural plasticity53 or active conductances (e.g., voltage-gated 

potassium channels54,55) could implement different transformations within each arbor prior 

to comparison via the inter-arbor cable. This could enable more complex computations such 

as multiplication56.

The abstraction of intricate morphologies into arbors and cables should prove useful for 

studying other neurons. In flies, a wide range of configurations exist, including neurons 

with one arbor and no cable (some local neurons24,57), neurons with one arbor and one 

cable (Kenyon cells without axonal branching), three arbors with interposed cables (optic 

lobe neurons58,59), and 2-dimensional arrays of dozens of arbors (amacrine neurons60). An 

intriguing possibility is that the arbor and cable configuration largely determines the passive 
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biophysics of these neurons, providing a simple framework for predicting the function of 

diverse neurons.

From connectivity maps to activity maps

The pairing of network connectivity maps with knowledge of neuronal and synaptic 

physiology provides a foundation to formulate hypotheses about activity maps, because 

assumptions about the function of each component can be calibrated7. We take important 

steps in this direction by showing how synapse densities predict uEPSP amplitudes and how 

morphology predicts subcellular computation. Moreover, we demonstrate that the simplified 

barbell model balances biological accuracy with computational tractability. Incorporating 

these results into simulations of large neural networks should yield more precise hypotheses 

about the function of previously unexplored brain circuits.

An important goal for the future will be to incorporate additional sources of knowledge 

to constrain other properties, such as synaptic plasticity, active conductances, and 

neuromodulation. For example, short-term plasticity can correlate with the number of 

presynaptic vesicles or the location of a synapse along the dendrite61,62. Active properties 

of neurons are less likely to be predictable from ultrastructure but could be predicted from 

proteomics and transcriptomics63,64. Neuromodulation can reconfigure network function65, 

for example by altering synaptic strengths, but it is not clear if such changes are visible 

in EM images47,66. High resolution mapping of biochemical processes would thus be a 

valuable companion to a connectome67.

Connectivity maps of increasingly large brain volumes bring new opportunities for 

understanding network organization, but predicting function from structure remains 

famously difficult68. While we have focused here on the function of individual components 

(i.e., neurons and synapses), a central challenge will be identifying how the operation 

of entire networks depends on those components. Although physiological properties of 

synapses and neurons are most easily characterized in quiescent network states (e.g., 

ex vivo), many network operations occur in highly active states (e.g., in vivo)36. The 

combination of connectivity maps with validated models of synaptic and neuronal function 

should help to bridge this gap, by generating testable predictions of how the anatomy and 

physiology of neurons and synapses constrain activity maps during behavior.

STAR★Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, James M. Jeanne 

(james.jeanne@yale.edu).

Materials availability—This study did not generate new unique reagents.
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Data and code availability

• Analyzed physiology and morphology data are included as Supplemental Data 

S1–S4. Other data analyzed by this paper are publicly accessible, as listed in the 

key resources table.

• All NEURON model files, interfacing Python scripts, and MATLAB model files 

have been deposited in Zenodo. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Electrophysiology recordings from adult Drosophila melanogaster were analyzed from 

previously published data. The associated publication reports all relevant details of 

experimental procedures and key resources25.

METHOD DETAILS

Data sources and inclusion—Whole-cell patch-clamp recordings (one recording per 

fly) from brain explant (ex vivo) preparations were analyzed from a previously published 

study of physiological connectivity in the lateral horn25. These data also included skeletons 

of each recorded neuron traced from confocal images of biocytin fills. Detailed anatomy 

data were obtained from the publicly accessible database of traced neurons in the 

“hemibrain” EM connectome (version 1.1)16.

To ensure reliable estimates, we only included LHN types in our analysis if at least two 

neurons of that type were recorded as a part of the physiology dataset25. In addition, 

connections were excluded when they were not detected reliably (we required a connection 

to be detected at least two times across all recordings of that LHN type in Jeanne et al.25) or 

when distinct uEPSPs could not be identified. In two cases (DL5-local2 and VL2p-local5), 

uEPSPs could only be identified in one of two recordings but a connection was clearly 

visible (without distinct uEPSPs) in the other recording, so we included these connections 

using solely the uEPSPs from one recording. We also excluded from all subsequent analysis 

those recordings of PN-LHN connections with fewer than three uEPSP waveform samples. 

Of the 156 unique PN-LHN type connections, 21 were excluded for the reasons listed here, 

yielding 135 connections with reliable and quantifiable physiological responses.

The bilateral LHN type CML2 was omitted from analysis because its contralateral processes 

exited the hemibrain EM volume, so full morphology information was not available. LHN 

type ML4 was omitted because this neuron sometimes exhibited spontaneous (independent 

of photostimulation) synaptic activity, making it impossible to assign specific EPSPs to 

specific PNs. In total, the 13 included LHN types consisted of 54 individual LHN hemibrain 

body IDs. The bodyIds of all matched PNs and LHNs are provided in table S1.

In the process of analyzing the electrophysiology traces, we made several minor adjustments 

from the connections reported in Jeanne et al.25. The VA7l-local6 connection reported in 

that study was found to be misidentified and was corrected to be from glomerulus VA7m 
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here. Connections from DP1m to ML8 and ML9 and from VA2 to L11 did not meet the 

time-averaged depolarization threshold requirement for detection in Jeanne et al.25, but each 

nonetheless exhibited several clear uEPSP waveforms, so we included them. Within the 

set of 13 LHN types, we never observed reliable and measurable connectivity from five 

single-PN glomeruli (VC2, VM4, DM3, VA4, and VA7l), so the PNs innervating these 

glomeruli were excluded from all analyses.

For modeling of the expanded population of local LHNs (figure 5E,F, 6, and 7), we selected 

neurons for analysis by the following procedure. First, we considered only local LHNs 

because they receive inputs from PNs on both axon and dendrite arbors. To identify local 

LHNs, we searched the hemibrain database for neurons with 80% or more of their synaptic 

inputs within the lateral horn neuropil and with 80% or more of their synaptic outputs 

within the lateral horn neuropil. We then visually inspected each of these 215 bodyIds to 

identify neurons with minimally intertwined axon and dendrite arbors (we took this step 

because the intertwining often led to improper automated splitting and merging of neurites 

which required manual correction; see section “manual correction of neuron morphologies” 

below). This yielded 41 bodyIds. Any minor merge or split errors were corrected manually. 

These 41 LHNs were added to 8 of the 10 local LHNs that we had already matched to our 

physiology data (we omitted the two local2 LHN bodyIds from this analysis, since they only 

have one arbor), yielding a total of 49 local LHNs which served as the basis for all analyses 

in figures 5–7.

A complete accounting of the hemibrain bodyIds and physiology data included in each 

figure panel is provided in Table S2.

Matching morphologies between light microscopy and electron microscopy 
data—PNs were matched between the physiology and anatomy datasets based on the 

glomerulus innervated, an unambiguous identifier of uniglomerular cholinergic PN type. We 

focused here on only PNs of glomeruli with a singular uniglomerular cholinergic PN (see 

“Detection and quantification of PN-LHN uEPSPs” for details). In total, 12 different PNs 

elicited measurable uEPSPs in LHNs.

LHN types were matched between the physiology and anatomy datasets solely based on 

morphology by comparing biocytin fills recovered from patch-clamp recordings with traced 

skeletons from the hemibrain connectome. We first applied bridging transformations69 to 

bring the biocytin fills and hemibrain neuron skeletons into the same coordinate space 

(JRC2018F). When necessary, we mirrored biocytin fills across the midline so that all 

neurons appeared on the right side of the template brain (where all hemibrain LHNs 

reside). Due to left-right symmetry23, all biocytin-filled neurons included in this analysis are 

expected to exist on both sides of the brain. We identified all 1496 neurons in the hemibrain 

volume that enter the lateral horn neuropil and quantitatively compared their morphologies 

to the biocytin fills using NBLAST30.

LHN cell types were defined as previously determined25. Morphological matches to EM 

neurons were thus made without regard to cell typing that has been performed in the 

hemibrain connectome. This is important because hemibrain cell types were defined by both 
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morphology and connectivity24. Nonetheless, many of the matching EM neurons for each 

cell type closely followed hemibrain cell-type boundaries (Supplemental Table S1), although 

the correspondence was not always one-to-one.

Owing to the inherently lower resolution of confocal microscopy relative to electron 

microscopy, we employed two strategies to improve comparisons of traced neurons between 

imaging modalities. First, we emphasized long range neurites over dendritic arbors by 

employing the “useAlpha” parameter of the NBLAST function. Second, we pruned the 

shortest processes in the EM neurons (all processes shorter than 5 μm in length).

NBLAST scores for all pairwise comparisons were computed as the mean of “forward” 

and “reverse” scores and were normalized to enable better comparison across diverse 

morphologies30. We then selected the best matching EM neurons (top 2% based on scores) 

for expert visual inspection (blinded to connectivity). We were able to readily rule-in or 

rule-out each of these top-scoring EM neurons as a match to the biocytin fills by directly 

examining similarities and differences of morphology in the common coordinate template 

space. Particular emphasis was placed on the course and contour of primary arbors of 

axonal and dendritic trees as well as the inter-arbor cable, since these were consistently 

present in both the light and electron microscopy volumes. This approach was necessary 

given the differences between light and electron microscopy noted above. The corresponding 

EM neuron bodyIds and NBLAST scores for each cell type in the physiology dataset are 

provided in Table S2. Two-dimensional projections of morphologies are provided in Figure 

S1 and skeletons of all biocytin fills and hemibrain neurons in the same brainspace are 

provided in Supplemental Data S1.

In total, 54 LHNs from the connectome could be matched to 13 LHN types defined 

morphologically from their biocytin fills (each LHN type consisted of multiple neurons; 

Table S1; mean ± s.d. NBLAST score = 0.453±0.066), corresponding to a mean NBLAST 

rank = 8.07 of 1496). We were thus able to identify 156 distinct PN-LHN type pairs in both 

the connectome and the physiology dataset.

Although all matches ranked among the highest NBLAST scores, some scores were still 

relatively low, compared to other studies30. This likely results from two minor artifacts 

in our biocytin morphologies: the occasional loss of the primary neurite (and cell body) 

when retracting the patch pipette at the end of a recording session and distortions arising 

from registering each individual brain to a common template25. In all cases, expert visual 

inspection easily compensated for these artifacts. In addition, restricting the analysis in 

Figure 3A to only those connections from LHN types with mean NBLAST scores greater 

than 0.45 did not appreciably change the magnitude or significance of the correlation. 

Therefore, the main conclusions do not rely on the LHN types with the lowest confidence 

matches between light and electron microscopy.

Manual correction of neuron morphologies—All LHN morphologies were exported 

directly from the hemibrain dataset via the neuprint_read_neurons function (with “heal” set 

to “true”) of the Natverse toolbox69. This produced anatomical models where each neurite 

was defined by many short cylindrical segments, with diameters matched to the EM data. A 
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handful of LHNs (mostly local neurons) had heavily intertwined neurites, and the automated 

morphological extraction often merged or separated neurites incorrectly (as judged by visual 

comparison to the raw EM images using Neuroglancer). To compensate for this, we visually 

inspected all LHN morphologies using NeuTube70, and manually corrected all merge and 

separation errors by direct comparison to the raw EM data. Datafiles (.swc format) of 

all LHN morphologies included in this study (incorporating all manual corrections) are 

provided as Supplemental Data S1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Detection and quantification of PN-LHN uEPSPs—Unitary excitatory postsynaptic 

potentials (uEPSPs) were measured from recordings of LHNs during independent 

photostimulation of each of 39 PN types25. Stimulated PNs analyzed here were exclusively 

of the anterodorsal or lateral lineage and each innervate a single glomerulus. Each 

glomerulus is innervated by a stereotyped set of 1-8 uniglomerular cholinergic PNs16,71 

and most or all PNs from each glomerulus target the same LHNs24–26. Here, we studied only 

the PNs of glomeruli with just one uniglomerular cholinergic PN (i.e., PN types consisting 

of just one neuron each). This is because photostimulation of glomeruli with multiple PNs 

drove regularly-spaced spikes in each PN, but at slightly different times and rates, evoking a 

complex compound EPSP in the LHN25. This made reliable detection of individual distinct 

uEPSPs possible only for glomeruli with one PN. In these cases, regularly spaced uEPSPs 

were clearly discernable.

All uEPSPs were manually identified from the recorded LHN traces. The identity of the 

presynaptic PN was determined by the identity of the stimulated glomerulus in each trace. 

Each experiment included multiple stimulation sites in each glomerulus and all the trials 

corresponding to a given glomerulus were grouped together. Each uEPSP was identified 

by its characteristic asymmetric waveform (fast rise and slow decay) and its start time was 

manually annotated by two expert (unblinded) scorers. To minimize user-specific annotation 

errors, only those uEPSPs annotated by both scorers with less than 3 msec difference in start 

times were included (the start time was taken to be the minimum of the two times, when 

there was a difference).

For each recorded connection, all uEPSP waveforms were averaged to generate each trace 

in Figure 2D. If a connection was identified in a particular recording in Jeanne et al.25, 

but we could not reliably detect uEPSPs, that connection was excluded from computing the 

average, which is why a few PN-LHN pairs (DL5-local2, VL2p-local5, and DA4l-local5) 

have only a single trace in Figure 2D. If a connection was not identified in a particular 

recording in Jeanne et al.25, the uEPSP amplitude was considered to be zero and included in 

the average. To enable comparisons with anatomical measures, we averaged the peak uEPSP 

amplitude for all samples of the same PN and LHN types. To ensure good estimates, we 

only considered those connections which were detected in at least two flies (with the two 

exceptions noted above).

The comparison of uEPSP amplitude and synapse density (Figures 3A and S3) reveal 

several points that lie on the horizontal and vertical axes. These points are likely due 

to methodological constraints in measuring uEPSPs, rather than an indication of silent 
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synapses or indirect connections. The points on the horizontal axes likely occur because of 

baseline recording noise, which prevented us from reliably identifying uEPSPs of amplitude 

less than ~0.2mV. This can make the uEPSPs of very small connections completely 

undetectable (yielding an estimate of 0mV). In other cases, it can introduce a modest 

positive bias to the mean uEPSP amplitudes (if the only detectable uEPSPs are larger than 

the true average). This likely accounts for why many of the small connections have slightly 

larger recorded uEPSPs than predicted as well as why others had uEPSPs of 0mV (i.e., 

points on the horizontal axis in Figure 3A and S3). The points on the vertical axis likely 

occur due to animal-to-animal variability of connection strengths, or from rare off-target 

photostimulation of PNs25. These points were infrequent (4/135; 2.9%) and likely not due 

to indirect connectivity, since PN photostimulation usually did not drive LHN spikes, and 

potential polysynaptic excitatory pathways that could explain these particular points (e.g., 

PN-PN axo-axonal connectivity) do not exist in the hemibrain. In addition, many data points 

(73/135; 54%) had both a uEPSP amplitude of zero and a synapse density of zero (i.e., at the 

origin in Figure 3A). These are to be expected in a relatively sparsely connected network, 

and further suggest that the effects of indirect pathways are unlikely to impact our results.

Mean uEPSP amplitudes and corresponding synapse densities are provided in Table S3.

Anatomical analysis of neurons and synaptic connections—Synapse counts for 

each connection were extracted from the hemibrain EM database using the Natverse 

package69. Surface areas of each neuron were computed for each neuron assuming a 

cylindrical approximation for each segment using the Trees Toolbox72. Surface areas 

computed from a triangular mesh representation of each neuron yielded similar values 

but were modestly larger (7.9% on average). Because NEURON simulates neurons using 

a cylindrical representation, we used the cylindrical approximation for all surface area 

calculations, to maintain consistency. Synapse density was computed as the ratio of synapse 

count to surface area.

Analysis of axon and dendrite targeting was conducted by splitting each neuron’s 

synaptic inputs by arbor identity. The random distribution in Figure S5B was obtained 

by redistributing each connection’s synapses onto axon and dendrite arbors following the 

distribution of all ePN synapses onto that neuron. Shuffling in Figure S5C–F was conducted 

by randomly permuting the synapse labels (i.e. the identity of each presynaptic partner 

neuron) either within each arbor or throughout the entire neuron. This was repeated 1000 

times to obtain 95% confidence intervals.

A modest minority (~24%) of the LHN morphologies had artefactual “pinch points” along 

their inter-arbor cables (short segments where the neurite diameter narrows considerably). 

These accounted for, at most, 2.7% of the length of any inter-arbor cable, and had only a tiny 

impact on electrical excitation spread (mEPSP amplitudes were essentially unchanged after 

eliminating pinch points). We therefore did not correct for these artefacts in our analysis.

Single- and multi-compartment models of LHNs—Single compartment models were 

constructed using Python. The surface area for each model neuron was set to the total 

surface area of the corresponding hemibrain neuron, based on a cylindrical approximation 
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for each segment. Multi-compartment models of LHNs were constructed in the NEURON 

simulation environment73. For these models, corrected neuron morphologies were imported 

into NEURON, where they were divided into short isopotential compartments using the 

maximal available spatial resolution from the morphological SWC file, consistent with the 

d-lambda rule74. Synapse locations were determined from annotations in the hemibrain 

dataset and mapped to the corresponding compartment in the model using a k-nearest 

neighbors algorithm.

For both types of models, specific biophysical properties were jointly optimized to minimize 

the error in peak uEPSP amplitude across all connections (the peak amplitude was the most 

reliable metric for model fitting because the full waveform of each uEPSP was sometimes 

obscured by subsequent uEPSPs, due to stimulation of multiple PN spikes). The free 

parameters for the single compartment neuron model were specific membrane resistance 

and capacitance. The multi-compartment neuron model also included the axial resistance 

as a free parameter. A leave-one-out bootstrap procedure was implemented to validate 

that our parameter values were robust to variations in the set of training connections. 

The best fit values for specific membrane resistance (17.2 kΩ cm2), specific membrane 

capacitance (0.6 μF/cm2), and specific axial resistivity (350 Ω cm), were in very close 

agreement with experimentally constrained values for PNs and visual amacrine cells27,33,60. 

As in those studies, these biophysical parameters were assumed to be uniform within and 

between neurons. However, whole-cell properties vary between modeled neurons due to 

their different sizes. The PN to LHN synaptic conductance waveform shape was modeled 

as a sum of two exponentials (the time constant of rise was 0.2 msec and the time 

constant of decay was 1.1 msec), matching a previous model of the ORN-PN synapse27. 

We did not attempt to optimize the waveform shape, which may explain the modest 

overestimate of predicted EPSP timecourses in Figure 4C. The peak amplitude of the 

synaptic conductance waveform was an additional free parameter (optimized jointly with the 

passive biophysical properties). The best fit value was 0.055 nS, similar to a previous fit27. 

The resting membrane potential was set to −55mV and the cholinergic synaptic reversal 

potential was set to −10 mV75. Importantly, using identical parameter values to those in 

prior models of Drosophila neurons yielded qualitatively similar findings about subcellular 

compartmentalization, supporting the robustness of our models27,33,60.

Voltage measurements from specific compartments of the model were obtained by placing 

a virtual pipette in the appropriate location and recording in current clamp mode. Individual 

mEPSPs were evoked by opening a synaptic conductance (with the waveform determined 

above) at the location of each individual synapse. mEPSPs were recorded either locally (in 

the same compartment as the synapse) or at the SIZ (defined here as the first branch point 

of the dendrite arbor). uEPSPs were evoked by simultaneously opening conductances at all 

synapses corresponding to the presynaptic PN. Input and transfer impedance measurements 

(such as of transfer impedance in Figure S7) were made using the Impedance class in 

NEURON.

Subregions of each LHN (axon arbor, dendrite arbor, inter-arbor cable, and cell body fiber) 

were segmented manually using neuTube. For each arbor, the start node was identified 

manually, and all daughter nodes were considered part of the arbor. In some LHNs, 1-3 
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additional branches that were not downstream of the start node were manually identified 

as part of the arbor. The axon arbor was distinguished from the dendrite arbor by the 

longer cable connection from the cell body fiber junction, a defining characteristic of arbor 

identify in LHNs23. To verify the distinction between axon and dendrite, the ratio of input 

to output synapses was computed to locate the flow centrality of each neuron76. In all cases, 

the identities of axon and dendrite via flow centrality agreed with our manual annotations. 

The inter-arbor cable was defined as the neurite spanning between the start nodes of each 

arbor, excluding any additional arbor branches (as defined above), and the cell body and 

cell body fiber. One neuron type, Local2, did not have an obvious inter-arbor cable, and had 

no obvious polarity of input vs. output synapse locations. We therefore determined that this 

neuron type only has one arbor, and no inter-arbor cable.

Perturbations to the compartmental models (Figure 5D–F) were carried out by adjusting the 

axial resistivity of specific compartments to make certain parts of the neuron isopotential. 

Because NEURON does not allow an axial resistivity of 0, it was set to a very small positive 

value (0.001 Ω cm). Simulations of neurons with isopotential subregions were carried out 

using Crank-Nicholson integration with fixed timestep (0.06 msec).

Barbell model simulation—The barbell model is a simplified isopotential arbor model 

and was implemented in MATLAB. All sub-arbor shape information was abstracted away, 

retaining only the size of each arbor, and the length and mean diameter of the inter-arbor 

cable. The inter-arbor cable was simulated as a series of 1 μm long compartments with 

diameter matching the true mean diameter, and each arbor was simulated as a single 

compartment. The surface area of the cell body and cell body fiber was added to the 

dendrite arbor, since these structures are nearby. The SIZ was therefore isopotential with the 

dendrite compartment. The total surface area was nearly identical to the full model (with the 

only differences coming from the fixed-diameter approximation for the inter-arbor cable). 

In addition, all core biophysical parameters (Rm, Ri, Cm, and Gsyn) were unchanged from 

the best fit values obtained for the full models. Numerical integration was performed using 

the backward Euler method74 with a fixed timestep of 0.01ms. The range of simulated PN 

spike rates used in Figure 7 (0-200Hz) approximated the known dynamic range of these 

neurons77. The abstraction of the barbell model was also useful because it could be used to 

simulate an “average” LHN (Figures 6E,F, and all of Figure 7). To do this, a single LHN was 

modeled with axon arbor size, dendrite arbor size, and inter-arbor cable size all equal to their 

average values across the population of LHNs under consideration.

Statistics—Central tendencies are reported as means, and dispersions are reported as 

standard deviations, except for figure S5, where dispersions are reported as 95% confidence 

intervals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Comparison of anatomy and physiology of synaptic connections in 

Drosophila

• Unitary postsynaptic potentials are well-predicted by synapse density and 

location

• Synaptic efficacy is similar for locations within an arbor, but not between 

arbors

• Cables allow arbors to operate with both independent and interacting 

computations
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Figure 1. Matching diverse LHNs between light and electron microscopy datasets.
(A) Morphology of a single PN-LHN connection. The PN’s axon arbor targets the lateral 

horn, where it forms multiple synapses (red points) onto an LHN’s dendrite arbor.

(B) Distribution of the number of synapses per connection for a representative sample of 

connections across the hemibrain (random sample of 214,245 connections, gray), for all 

17,506 PN-LHN connections (dashed line), and for the 135 PN-LHN connections matched 

to physiology data (solid line)
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(C) Distribution of the total membrane surface area for a representative sample of neurons 

across the hemibrain (random sample of 1000 neurons, gray), for all 1496 LHNs (dashed 

line), and for the 54 LHNs matched to physiology data (black line).

(D) Example matching morphologies. Black: biocytin fill (physiology dataset). Red: EM 

morphology (anatomy dataset). LHN names follow a prior study25 with corresponding 

hemibrain names provided below24. Note that matching morphologies do not always 

align with hemibrain cell type boundaries. Some types (e.g., V2) correspond to multiple 

hemibrain types; others do not correspond to all bodyIds of a given hemibrain type.

See also Figure S1, S2, Table S1, S2, and Data S1.
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Figure 2. PN-LHN connections have diverse physiological weights
(A) Schematic of experimental configuration. PN dendrites are photostimulated during 

patch-clamp recording from single LHNs.

(B) Example trace recorded from an LHN during PN stimulation (red bar). Blue arrowheads 

denote single uEPSPs corresponding to single PN spikes. The increasing uEPSP sizes likely 

reflect modest short-term facilitation of this connection.

(C) Overlaid traces (gray) of all individual uEPSPs (aligned by start time) detected from 

individual recordings of four different PN-LHN connections. Each black trace is the mean of 

all uEPSPs from one recording of one connection type.

(D) Mean uEPSP traces for all identified connections. Multiple recordings (from different 

flies) of the same connection type are overlaid. Variability between mean uEPSP amplitudes 

for different connection types is greater than for repeated recordings within the same types 

(ANOVA, F = 8.8, p = 3.3 × 10−13). All LHN type correspondences with hemibrain type 

names and bodyIds are provided in Table S2.

See also Data S2 and Table S2.
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Figure 3. Anatomical diversity predicts physiological diversity of PN-LHN connections
(A) Scatter plot of uEPSP amplitude vs. synapse density for all connections in our sample. 

Each point is the average value for all samples per connection type. Red and blue points 

correspond to the VA6 and VL2a connections onto local5. Note that many points are 

overlaid at the origin, corresponding to connections with no synapses detected in the 

hemibrain and no uEPSPs detected in physiology. Solid line is linear fit including the 

axo-axonic VL2a-local5 connection; dashed line excludes this connection.

(B) Morphology of a local5 neuron (hemibrain type AV2m1), with all VA6 and 

VL2a synapse locations labeled. Arrow identifies the inter-arbor cable, which follows a 

meandering path to connect the two intermingled arbors.

(C) As in (B) but showing just the dendrite arbor. Almost all the VA6 synapses are formed 

onto this part of the neuron.

(D) As in (B) but showing just the axon arbor. All of the VL2a synapses are formed onto this 

part of the neuron.

(E) Dendrogram showing the branching structure of the same local5 neuron as in (D)-(F). 

Almost all of the synapses onto the axon arbor are more distant from the soma than the 
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synapses onto the dendrite arbor, which is due primarily to the inter-arbor cable (identified 

by arrow).

(F) Residual error in uEPSP amplitude from synapse density prediction, showing no linear 

correlation with mean distance of synapses from the soma. uEPSP amplitudes of dendritic 

inputs are thus not strongly dependent on distance. Each point is the average across all 

samples per connection type.

See also Figure S3 and Table S2 and S3.
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Figure 4. Multi-compartment models accurately predict uEPSP amplitudes better than single 
compartment models
(A) A single compartment (point) model (schematized at left) fit to all PN-LHN uEPSPs in 

our sample (dashed lines) produces somatic uEPSP waveforms (solid lines) that underpredict 

true uEPSP amplitudes for axo-dendritic connections and overpredicts the axo-axonic 

connection.

(B) Peak somatic uEPSP amplitudes for all connections in our sample (with detectable 

uEPSPs) compared to predictions from the single compartment models. Note the blue point 

(corresponding to the VL2a-local5 connection) is well below the unity line, while most other 

points (including small amplitude connections) are above the line. Each point is the average 

across all samples per connection type.

(C) As in (A) but for multi-compartment models. The optimized model fits axo-dendritic 

connections as well as the axo-axonic connection.

(D) As in (B) but for the multi-compartment model.

See also Table S2.
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Figure 5. Arbors democratize and cables stratify synaptic efficacy
(A) Schematic of arbors, cables, and spike initiation zone (SIZ) in local LHNs.

(B) Top: traces of simulated mEPSPs measured at each synapse (red, dendritic; blue, axonal) 

onto a local5 LHN (same example as Figure 3). Local mEPSPs are large with similar 

amounts of variability between arbors. Bottom: traces of simulated mEPSPs measured at the 

SIZ (note different voltage scale). Differences in mEPSPs are apparent between arbors.

(C) Local mEPSP amplitudes relate linearly to their voltage attenuation en route to the 

SIZ. Within each arbor, synapses with larger local depolarizations also face proportionally 

larger attenuation. This proportionality is different for each arbor. Red points are dendritic 

mEPSPs, blue points are axonal mEPSPs.

(D) mEPSP amplitudes for all ePN synapses onto the same local5 LHN (hemibrain type 

AV2m1), as a function of distance from the SIZ (tan). The inter-arbor cable introduces a 

discontinuity in this relationship: while the most proximal axonal synapses are nearly the 

same distance from the SIZ as the most distal dendritic synapses (~60 μm), they evoke 

strikingly smaller mEPSP amplitudes. Grey points are the same measurements, but for a 

model with isopotential arbors. Black points are for a model with an isopotential inter-arbor 

cable.
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(E) mEPSP amplitudes simulated with the full model vs. the isopotential arbor model for 

all synapses across all local LHNs in our sample. The isopotential arbor model was a good 

predictor of the mEPSPs in the full model (r2 = 0.87).

(F) mEPSP amplitudes simulated with the full model vs. the isopotential cable model for 

all synapses across all local LHNs in our sample. The isopotential cable model introduces 

systematic biases in mEPSP amplitudes, making it a less good predictor of mEPSPs in the 

full model (r2 = 0.47).

See also Table S2, Figure S4 and Data S3.
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Figure 6. Inter-arbor cable lengths balance independence of and interaction between arbors
(A) The local arbor input gain (measured as mean mEPSP amplitude at the first branch point 

of each arbor across all synapses on that arbor) is larger in axons than dendrites (i.e., the 

same size synaptic conductance depolarizes the axon more than the dendrite). Each point 

denotes one local LHN (error bars denote S.D.).

(B) The surface area of axon arbors is smaller than dendrite arbors. Each point denotes one 

local LHN.

(C) Input gain (mean local mEPSP amplitude) can be predicted by the local arbor input 

resistance, for both axon and dendrite inputs. Consequently, each arbor is minimally affected 

by distant current sinks, such as the other arbor. The shared slope comes from the shared 

specific membrane resistance.

(D) Geodesic distance (path length) of local LHN inter-arbor cables is longer than the 

Euclidean distance (straight line path) between arbors. Each point denotes one local LHN.

(E,F) Input gain (local arbor mEPSP amplitude) in the barbell (simplified isopotential arbor) 

model of an average local LHN depends strongly on the length of the inter-arbor cable. The 

true (geodesic) length of the cable balances maximizing local input gain while minimizing 

signal loss between arbors.
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See also Table S2, Figure S5 and S6 and Data S4.
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Figure 7. Predicted functions of compartmentalized neurons
(A,B) Input to the dendrite arbor alone can readily drive spikes in local LHNs. (A) In 

the average local LHN, a strong connection (0.03 synapses/μm2, black trace) driven at 

100Hz evokes EPSPs that depolarize the SIZ above spike threshold (−40mV). A weaker 

connection (0.0075 synapses/μm2, gray trace) does not reach spike threshold. (B) Peak 

voltages (encoded by color) obtained for dendritic stimulation for a range of synapse 

densities and input spike rates. Black line in the plot corresponds to the spike threshold 

of −40mV. The black and gray circles correspond to the black and gray traces in (A), 

respectively.

(C,D) As in (A-B), but with recording in the axon arbor.

(E-H) Input to the axon arbor alone cannot drive spikes, but substantially depolarizes the 

axon. Panels are as in (A-D), but with stimulation to the axon arbor.

(I-K) Temporal delays along the inter-arbor cable create selective responses to different 

input sequences. (I,J) A spike impinging on the axon before a spike impinging on the 

dendrite yields a larger peak depolarization at the SIZ than the opposite sequence. (K) Spike 

packets can depolarize the SIZ of an LHN past spike threshold in one sequence, but not the 
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other. In each panel, the connection onto the axon is stronger than the connection onto the 

dendrite, to compensate for attenuation.

See also Table S2 and Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Hemibrain connectome, v1.1 Scheffer et al.16 Neuprint.janelia.org

Matched and corrected LHN morphologies This paper and Scheffer et al.16 Data S1

Analyzed physiology data This paper and Jeanne et al.25 Data S2

mEPSP simulation data This paper Data S3

Subcellular anatomical details of LHLNs This paper and Scheffer et al.16 Data S4

Software and algorithms

MATLAB R2020a Mathworks http://mathworks.com

Python 3.7.0 Python Software Foundation http://python.org

R Studio 1.2.5033 RStudio, Inc. http://www.rstudio.org

Natverse Bates et al.69 http://natverse.org

NEURON 7.7.2 Hines and Carnevale70 http://neuron.yale.edu/neuron

Code to identify LHNs between biocytin fills and hemibrain skeletons This paper 10.5281/zenodo.5711439

NEURON model files This paper 10.5281/zenodo.5716323

Barbell model files This paper 10.5281/zenodo.5716321
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