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Abstract

The weighted ensemble (WE) family of methods is one of several statistical mechanics-based path 

sampling strategies that can provide estimates of key observables (rate constants and pathways) 

using a fraction of the time required by direct simulation methods such as molecular dynamics 

or discrete-state stochastic algorithms. WE methods oversee numerous parallel trajectories using 

intermittent overhead operations at fixed time intervals, enabling facile interoperability with any 

dynamics engine. Here, we report on the major upgrades to the WESTPA software package, an 

open-source, high-performance framework that implements both basic and recently developed 

WE methods. These upgrades offer substantial improvements over traditional WE methods. The 

key features of the new WESTPA 2.0 software enhance the efficiency and ease of use: an 

adaptive binning scheme for more efficient surmounting of large free energy barriers, streamlined 

handling of large simulation data sets, exponentially improved analysis of kinetics, and developer-

friendly tools for creating new WE methods, including a Python API and resampler module for 

implementing both binned and “binless” WE strategies.

Graphical Abstract
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1. INTRODUCTION

The field of molecular dynamics (MD) simulations of biomolecules arguably is following 

a trajectory that is typical of mathematical modeling efforts: as scientific knowledge 

grows, models grow ever more complex and ambitious, rendering them challenging for 

computation. While early MD simulations focused on single-domain small proteins,1 

modern simulations have attacked ever larger complexes2,3 and even entire virus 

particles.4–7 This trend belies the fact that record-setting small-protein simulations in 

terms of total simulation time remain limited to the millisecond scale on special-purpose 

resources8 and to <100 μs on typical university clusters. These limitations have motivated 

the development of numerous approaches to accelerate sampling, among which are 

rigorous path sampling approaches capable of providing unbiased kinetic and mechanistic 

observables.9–18

Our focus is the weighted ensemble (WE) path sampling approach,17,19 which has helped 

transform what is feasible for molecular simulations in the generation of pathways for 

long-timescale processes (>μs) with rigorous kinetics. Among these simulations are notable 

applications, including atomically detailed simulations of protein folding,20 coupled protein 

folding and binding,21 protein–protein binding,22 protein–ligand unbinding,23 and the large-

scale opening of the SARS-CoV-2 spike protein.24 The latter is a significant milestone— 

both in the system size (half a million atoms) and timescale (seconds).24 Instrumental to 

the success of the above applications have been advances in not only WE methods but also 

software.24

Here, we present the next generation (version 2.0) of the most cited, open-source WE 

software called WESTPA (WE Simulation Toolkit with Parallelization and Analysis).25 

WESTPA 2.0 is designed to further enhance the efficiency of WE simulations with high-

performance algorithms for the following: (i) further enhanced sampling via restarting 

from reweighted trajectories, adaptive binning, and/or binless strategies, (ii) more efficient 

handling of large simulation data sets, and (iii) analysis tools for the estimation of first 

passage time (FPT) distributions and for more efficient estimation of rate constants. Similar 

to its predecessor, WESTPA 2.0 is a highly scalable, portable, and interoperable Python 

package that embodies the full range of the WE’s capabilities, including a rigorous theory 

for any type of stochastic dynamics (e.g., MD and Monte Carlo simulations) that is agnostic 

to the model resolution.26 In comparison to other open-source WE packages such as 

accelerated weighted ensemble with a “Work Queue” distributed-computing framework 

(AWE-WQ)27 and a weighted ensemble python (wepy) tool,28 WESTPA is unique in its 

(i) high scalability with nearly perfect scaling out to thousands of CPU cores24 and GPUs 

and (ii) demonstrated ability to interface with a variety of dynamics engines and model 

resolutions, including atomistic,22 coarse-grained,29 whole-cell,30 and nonspatial system 

models.31,32

After a brief overview of the WE strategy (Section 2), we describe the organization of 

WESTPA 2.0 (Section 3) and new analysis tools that further expand the capabilities of the 

software package (Section 4). Together, these features greatly facilitate the execution and 

analysis of WE simulations of even larger systems and/or slower timescales.
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2. OVERVIEW OF THE WE PATH SAMPLING STRATEGY

The WE strategy enhances the sampling of rare events (e.g., protein folding, protein 

binding, and chemical reactions) by orchestrating the periodic resampling of multiple, 

parallel trajectories at fixed time intervals τ (Figure 1).17 The statistically rigorous 

resampling scheme maintains an even coverage of the configurational space by replicating 

(“splitting”) trajectories that have made transitions to newly visited regions and potentially 

terminating (“merging”) trajectories that have overpopulated previously visited regions. The 

configurational space is typically defined by a progress coordinate that is divided into 

bins where an even coverage of this space is defined as a constant number of trajectories 

occupying each bin; alternatively, trajectories may be grouped by a desired feature for 

“binless” resampling schemes.33 Importantly, trajectories are assigned statistical weights 

that are rigorously tracked during resampling; when trajectories are replicated in a given 

bin, the weights are split among child trajectories and when trajectories are terminated in a 

probabilistic fashion, the weights are merged with a continued trajectory of that bin. This 

rigorous tracking ensures that no bias is introduced into the ensemble dynamics, enabling 

direct estimates of rate constants.26

WE simulations can be run under equilibrium or non-equilibrium steady-state conditions. To 

maintain nonequilibrium steady-state conditions, trajectories that reach the target state are 

“recycled” back to the initial state, retaining the same statistical weight.34 The advantage 

of equilibrium WE simulations over steady-state WE simulations is that the target state 

need not be strictly defined in advance since no recycling of trajectories at the target state 

is applied.35 On the other hand, steady-state WE simulations have been more efficient 

in yielding successful pathways and estimates of rate constants. Equilibrium observables 

can be estimated from either equilibrium WE simulations or the combination of two 

nonequilibrium steady-state WE simulations in the opposite directions when the historical 

information is taken into account.35

3. ORGANIZATION OF WESTPA 2.0

Below, we present the organization of WESTPA 2.0, beginning with code reorganization 

to facilitate software development (Section 3.1) and then proceeding to a description of 

a Python application programming interface (API) for setting up, running, and analyzing 

WE simulations (Section 3.2); a minimal adaptive binning (MAB) mapper (Section 3.3); a 

generalized resampler module that enables the implementation of both binned and binless 

schemes (Section 3.4); and an HDF5 framework for more efficient handling of large 

simulation data sets (Section 3.5).

3.1. Code Reorganization to Facilitate Software Development.

The WESTPA 2.0 software is designed to facilitate the maintenance and further development 

of the software according to the established and emerging best practices for Python 

development and packaging. The code has been consolidated and reorganized to better 

indicate the role of each module (Figure 2). The software can now be installed as a 

standard Python package using pip or by running setup.py. The package will continue to 

be available through Conda via conda-forge, which streamlines the installation process by 
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enabling WESTPA and all software dependencies to be installed at the same time. We 

have implemented automated GitHub Actions for continuous integration testing and code 

quality checks using the Black Python code formatter as a precommit hook, alongside 

flake8 for nonstyle linting. Templates are provided for GitHub issues and pull requests. 

Both the user’s and developer’s guides are available on the GitHub wiki along with the 

Sphinx documentation of key functions with autogenerated docstrings. Further support will 

continue to be provided through WESTPA users’ and developers’ email lists hosted on 

Google Groups (linked on https://westpa.github.io).

3.2. Python API for Setting up, Running, and Analysis of WE Simulations.

To simplify the process of setting up and running WE simulations, WESTPA 2.0 features a 

Python API that enables the user to execute the relevant commands within a single Python 

script instead of invoking a series of commandline tools, as previously done in WESTPA 

1.0 (Figure 3A). This also provides tools for third-party developers to build and develop 

WESTPA-based applications and plugins, for example, the integration of WESTPA into the 

cloud-based computing platform, OpenEye Scientific’s Orion,38,39 or the historyaugmented 

Markov state model (haMSM) restarting plugin (Section 4.2), which uses the results of a 

WESTPA simulation to perform a steady-state analysis then restart the simulation based on 

the results of that analysis.

Figure 3B provides an example of how to programmatically call the WESTPA 2.0 API 

from the Orion cloud platform, which could in principle be any Python script within any 

supercomputing or personal computing environment. First, a developer can write any custom 

simulation or work manager of their choice by subclassing or completely rewriting core 

WESTPA components (top panel). Second, a workflow can be constructed by invoking 

a simple set of WESTPA 2.0 Python commands to perform any WE simulation (bottom 

panel). Typically, a user of the WESTPA 2.0 Python API only needs a handful of API 

endpoints to perform a complicated simulation protocol. As an example of the power of 

the simplicity of the Python API, we demonstrate how a workflow can be constructed from 

the defined workflow kernels (Figure 3C) and show the GPU performance over wall-clock 

time (in Coordinated Universal Time; UTC) from a drug-like molecule in a membrane 

permeability simulation (Figure 3D). Using the internal API, a user’s simulation can request 

large amounts of computational resources per iteration. In this case, thousands of GPUs are 

requested per WE iteration for a simulation of butanol crossing a natural membrane mimetic 

system (https://github.com/westpa/westpa2_tutorials).40

To facilitate the development of custom analysis workflows in cases where more flexibility 

is required than that of the existing w_ipa analysis tool,36 WESTPA 2.0 includes the new 

westpa.analysis Python API. This API provides a high-level view of the data contained in 

the main WESTPA HDF5 file (west.h5) and facilitates retrieval of trajectory data, reducing 

the overhead of writing custom analysis code in Python and performing quick, interactive 

analysis of individual trajectories (or walkers). The westpa.analysis API is built on three 

core data types: run, iteration, and walker. A run is a sequence of iterations; an iteration is 

a collection of walkers. Key instance data can be accessed via attributes and methods. For 

example, a walker has attributes such as the statistical weight (weight), progress coordinate 
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values (pcoords), starting conformation (parent), and child trajectories after replication 

(children) as well as a method, trace, to trace its history (as a pure Python alternative to 

the w_trace tool). The API also provides facilities for retrieving and concatenating trajectory 

segments. These include support for (i) type-aware concatenation of trajectory segments 

represented by NumPy arrays or MDTraj trajectories, (ii) use of multiple threads to 

potentially increase performance when segment retrieval is an I/O bound operation, and (iii) 

display of progress bars. Finally, the API provides a convenience function, time_average, for 

computing the time average of an observable over a sequence of iterations (e.g., all or part of 

a run).

3.3. MAB Mapper.

To automate the placement of bins along a chosen progress coordinate during 

WE simulation, we have implemented the MAB scheme42 as an option in the 

westpa.core.binning module. The MAB scheme positions a specified number of bins along 

a progress coordinate after each resampling interval τ by (1) tagging the positions of the 

trailing and leading trajectories along the progress coordinate and evenly placing a specified 

number of bins between these positions and (2) tagging “bottleneck” trajectories positioned 

on the steepest probability gradients and assigning these trajectories to their own bins 

(Figure 4A,B). Despite its simplicity, the MAB scheme requires less computing time than 

manual, fixed binning schemes in surmounting large free energy barriers, resulting in more 

efficient conformational sampling and estimation of rate constants.42 To apply the MAB 

scheme, users specify the MABBinMapper option along with accompanying parameters 

such as the number of bins in the west.cfg file (Figure 4C).

Figure 4D illustrates the effectiveness of the MAB scheme in enhancing the efficiency of 

simulating the membrane permeability of a drug-like molecule (tacrine). Relative to a fixed 

binning scheme, the MAB scheme results in an earlier flux of tacrine through a model 

cellular membrane bilayer (~5 vs ~7 ns), and this flux increases more quickly, achieving 

values that are 2 orders of magnitude higher for the duration of the test.

The MAB scheme provides a general framework for the user creation of more complex 

adaptive binning schemes.42 Users can now specify nested binning schemes in the west.cfg 

file (Figure 4E). To run WESTPA simulations under nonequilibrium steady-state conditions 

(i.e., with the “recycling” of trajectories that reach the target state) with the MAB scheme, 

users can nest a MABBinMapper inside of a RecursiveBinMapper bin and specify a target 

state as the outer bins. Multiple individual MABBinMappers can be created and placed at 

different locations of the outer bins using a recursive scheme, offering further flexibility in 

the creation of advanced binning schemes.

3.4. Generalized Resampler Module that Enables Binless Schemes.

In the original (default) WE resampling scheme, trajectories are split and merged based 

on a predefined set of bins.17 In WESTPA 2.0, we introduce a generalized resampler 

module that enables the users to implement both binned and “binless” resampling schemes, 

providing the flexibility to resample trajectories based on a property of interest by defining 

a grouping function. While grouping on the state last visited (e.g., initial or target state) 
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was previously possible using the binning machinery in WESTPA 1.0,43 our new resampler 

module provides a more general framework for creating binless schemes by defining a 

group/reward function of interest; such schemes enable the use of nonlinear progress 

coordinates that may be identified by machine learning techniques. Following others,44 the 

resampler module includes options for (i) specifying a minimum threshold for trajectory 

weights to avoid running trajectories with inconsequentially low weights and (ii) specifying 

a maximum threshold for trajectory weights to avoid a single large-weight trajectory from 

dominating the sampling, increasing the number of uncorrelated successful events that reach 

the target state.

As illustrated in Figure 5, the implementation of a binless scheme requires two 

modifications to the default WESTPA simulation: (i) a user-provided group module 

containing the methods needed to process the resampling property of interest for each 

trajectory walker, and (ii) updates to the west.cfg file specifying the resampling method in 

the group_function keyword and the attribute in the group_arguments keyword.

We provide two examples of implementing binless schemes in the westpa-2.0-

restruct branch of the WESTPA_Tutorials GitHub repository (https://github.com/westpa/

westpa_tutorials/tree/westpa-2.0-restruct).37 The basic_nacl_group_by_history example 

illustrates the grouping of the trajectory based on its “history”, that is, a shared parent 

N WE iterations back. The parameter N is specified in the keyword hist_length under 

the group_arguments keyword in the west.cfg file. This WESTPA configuration file also 

specifies the name of the grouping function method, group.walkers_by_history, in the 

group_function keyword. In the basic_nacl_group_by_color example, trajectory walkers are 

tagged based on “color” according to the state last visited. Only walkers that have the 

same color are merged, thereby increasing the sampling of pathways in both directions.State 

definitions are declared within the group_arguments keyword in the west.cfg file.

3.5. HDF5 Framework for More Efficient Handling of Large Simulation Data Sets.

One major challenge of running WE simulations has been the management of the resulting 

large data sets, which can amount to tens of terabytes over millions of trajectory files. 

To address this challenge, we have developed a framework for storing the trajectory data 

in a highly compressed and portable HDF5 file format. The format is derived from the 

HDFReporter class implemented in the MDTraj analysis suite45 and maintains compatibility 

with NGLView,46 an iPython/Jupyter widget for the interactive viewing of molecular 

structures and trajectories. A single HDF5 file is generated per WE iteration, which includes 

a link to each trajectory file stored in the main WESTPA data file (west.h5). Thus, the 

new HDF5 framework in WESTPA 2.0 enables users to restart a WE simulation from 

a single HDF5 file rather than millions of trajectory files and simplifies data sharing as 

well as analysis. The dramatic reduction in the number of trajectory files also eliminates a 

potentially large overhead from the file system that results from the storage of numerous 

small files. For example, a 53% overhead has been observed for a 7.5-GB data set 

of 103,260 trajectory files generated from NTL9 protein folding simulations (Figure 9), 

occupying 11.5 GB of actual disk storage on a Lustre file system.
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To test the effectiveness of the HDF5 framework in reducing the amount of data storage 

required for WE simulations, we applied the framework to a set of three independent 

WE simulations of Na+/Cl– association and one WE simulation involving p53 peptide 

conformational sampling (Figure 6A,B). Our results revealed 27 and 85% average reduction 

in the total size of trajectory files generated during the Na+/Cl– association and p53 peptide 

simulations, respectively, relative to that obtained using WESTPA 1.0. Given a fixed number 

of bins, the sizes of per-iteration HDF5 files were also shown to converge as the simulation 

progresses (Figure 6C,D), suggesting that the storage of trajectory data by iteration not 

only facilitates the management of the data but also yields files of roughly equal sizes. The 

difference in the reduction efficiency that we observed between the Na+/Cl– and p53 peptide 

systems can be attributed to differences in the simulation configurations including the format 

of the output trajectories, restart files, and other factors such as the verbosity of logging.

Our tests revealed that the additional steps introduced by the HDF5 framework for managing 

the trajectory coordinate and restart files did not have any significant impact on the 

WESTPA runtime (Figure 6E), which is normalized by the number of trajectory segments 

per WE iteration given that the evolution of bin occupancies by trajectories can vary among 

different runs due to the stochastic nature of the MD simulations (after 60 iterations, the 

WESTPA 1.0 run occupied six more bins than the WESTPA 2.0/HDF5 run). This variation 

in the bin occupancy is unlikely to be affected by the HDF5 framework since it simply 

manages the trajectory and restart files and does not alter how the system is simulated. The 

differences in bin occupancies/total number of trajectories may also partially contribute to 

the large reduction in the per-iteration file sizes for the HDF5 run observed in Figure 6D for 

the p53 peptide. However, the majority of this file size reduction results from efficient HDF5 

data compression of trajectory coordinate, restart, and log files. Finally, the trajectory data 

saved in the HDF5 files can be extracted and analyzed easily using MDTraj in combination 

with our new analysis framework presented in Section 3.2 (Figure 6F).

4. ANALYSIS TOOLS

WESTPA 2.0 features new analysis tools for estimating rate constants more efficiently using 

the distribution of “barrier crossing” times (Section 4.1), accelerating the convergence using 

a haMSM to reweight trajectories (Section 4.2) and estimating the distribution of FPTs 

(Section 4.3).

4.1. RED Scheme for Rate Constant Estimation.

To more efficiently estimate the rate constants from WE simulations, we have implemented 

the rates from event durations (RED) scheme as an analysis tool called w_red in the 

WESTPA 2.0 software. The RED scheme exploits the transient ramp-up portion of a 

WE simulation by incorporating the probability distribution of event durations (or “barrier 

crossing” times) from a WE simulation as part of a correction factor (Figure 7A).48 The 

correction factor accounts for the systematic error that results from the statistical bias 

toward the observation of events with short durations and reweights the event duration 

distribution accordingly. When applied to an atomistic WE simulation of a protein–protein 
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binding process, the RED scheme is >25% more efficient than the original WE scheme17 in 

estimating the association rate constant (Figure 7B).48

The code for estimating the rate constants using the RED scheme takes as an input the 

assign.h5 files and direct.h5 files generated by the w_ipa analysis tool. Users then specify 

in the analysis section of the west.cfg file that analysis scheme w_red should analyze 

along with the initial/final states and the number of frames per iteration. Executing w_red 

from the command line will output the corrected flux estimates as a new data set called 

red_flux_evolution to the users’ existing direct.h5 file (Figure 7C). The RED rate constant 

estimates can then be accessed through the Python h5py module and plotted versus time 

to assess the convergence of the estimates. To estimate the uncertainties in observables 

calculated from a small number of trials (i.e., the number of independent WE simulations), 

we recommend using the Bayesian bootstrap approach.17,49 If it is not feasible to run 

multiple independent simulations with a certain system due to either the system size or the 

timescale of the process of interest, a user can apply a Monte Carlo bootstrapping approach 

to a single simulation’s RED rate constant estimate.

4.2. haMSM Restarting Plugin.

haMSMs provide a powerful tool for the estimation of stationary distributions and rate 

constants from transient, unconverged WE data.50 Thus, the approach has a similar 

motivation to the RED scheme.48 In-haMSM analysis, instead of discretizing trajectories 

via the WE bins used by WESTPA, as in the WESS and WEED reweighting plugins for a 

non-equilibrium steady state and equilibrium state, respectively,34,35 a much finer and more 

numerous set of “microbins” is employed to calculate the steady-state properties with a 

higher accuracy. These estimates, in turn, can be used to start new WE simulations from 

a steady-state estimate, accelerating the convergence of the simulation.49 The new plugin 

provides a streamlined implementation of the restarting protocol that runs automatically as 

part of a WESTPA simulation, a capability which did not previously exist.

The msm_we package provides a set of analysis tools for using typical WESTPA HDF5 

output files, augmented with atomic coordinates, to construct an haMSM. A nearly typical 

MSM model-building procedure52 is used (Figure 8): WE trajectories are discretized into 

clusters (microbins) and transitions among microbins are analyzed. However, instead of 

reconstructing entire trajectories, the msm_we analysis computes the flux matrix by taking 

each weighted parent/child segment pair, extracting and discretizing one frame from each, 

and measuring the flux between them—that is, the weight is transferred.

The haMSM restarting plugin in WESTPA 2.0 makes use of the analysis tools provided 

by msm_we to incorporate this functionality directly into WESTPA. It manages running 

a number of independent simulations, initialized from some starting configuration, and 

augments their output HDF5 with the necessary atomic coordinates. Data from all 

independent runs are gathered and used to build a single haMSM. Stationary probability 

distributions and rate constants are estimated from this haMSM.

This plugin can be used to start a set of new WE simulation runs, initialized closer to the 

steady state (Figure 9). The haMSM and the WE trajectory data are used to build a library 
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of structures and their associated steady-state weights. These are used to initiate a new set 

of independent WE runs, which should start closer to the steady state and thus converge 

more quickly. The process can be repeated iteratively, as shown in Figure 9A. The result 

of this restarting procedure is shown in Figure 9B. For challenging systems, the quality of 

the haMSM will greatly affect the quality of the steady-state estimate. A further report is 

forthcoming on strategies for building high-quality haMSMs.

To use this plugin, users must specify a function that ingests coordinate data and featurizes 

the data. Dimensionality reduction may be performed on this featurized data. An effective 

choice of featurization provides a more granular structural description of the system without 

including a large number of irrelevant coordinates that add noise without adding useful 

information. For example, a limited subset of the full atoms such as only α-carbons 

or even a strided selection of the α-carbons, may be sufficient to capture the important 

structural information. Choosing the featurization based on rotation-invariant distances, such 

as pairwise atomic distances instead of atomic positions, can also help capture the structural 

fluctuations without sensitivity to large-scale motion of the entire system.

To validate the convergence of the restarted simulations, a number of independent replicates 

of the restarting protocol should be performed. These replicates should demonstrate both the 

stability in flux estimates across restarts and relatively constant-in-time direct fluxes within 

the restarts. If limited to a single replicate, the agreement between the haMSM flux estimate 

and the direct flux should also be validated.

4.3. Estimating FPT Distributions.

FPTs and their mean values (MFPTs) are key kinetics quantities to characterize many 

stochastic processes (from a macrostate to another) in chemistry and biophysics such as 

chemical reactions, ligand binding and unbinding, protein folding, and diffusion processes 

of small molecules within crowded environments. WE simulations, via the Hill relation, 

provide unbiased estimates of the MFPT directly once the steady state is reached34 or 

indirectly via non-Markovian haMSM analysis,35 but the mathematically rigorous estimation 

of the FPT distribution is not available and has been a challenge for WE simulation. Suárez 

and coworkers, however, have shown that the FPT distributions estimated from haMSM 

models provide semiquantitative agreement with unbiased reference distributions in different 

systems.54 Details on building haMSMs are described above in Section 4.2, and more 

information can be found in the refs 35 and 54.

Here, we extend and strengthen the earlier FPT distribution analysis from WE data. The 

original code for calculating the FPT distribution was published on a separate GitHub 

repository (https://github.com/ZuckermanLab/NMpathAnalysis).55 Recently, we reorganized 

and refactored the code in class hierarchical structures: a base class (MatrixFPT) for 

calculating MFPT and FPT distributions using a general transition matrix as an input 

parameter and two derived classes (MarkovFPT and NonMarkovFPT) using transition 

matrices from Markovian analysis and non-Markovian analysis, respectively, as mentioned 

in the haMSM in Section 4.2. The updated code has been merged into the msm_we package 

described in Section 4.2 along with some updates on building a transition matrix from 

classic MD simulation trajectories.
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The new code enables the robust estimation of the FPT distribution. Figure 9C shows the 

non-Markovian estimation of the FPT distribution of transitions between macrostates A and 

B from the WE simulation of NTL9 protein folding.

5. SUMMARY

WESTPA is an open-source, highly scalable, interoperable software package for applying 

the WE strategy, which greatly increases the efficiency of simulating rare events (e.g., 

protein folding and protein binding) while maintaining rigorous kinetics. The latest 

WESTPA release (version 2.0) is a substantial upgrade from the original software with 

high-performance algorithms enabling the simulation of ever more complex systems and 

processes and implementing new analysis tools. WESTPA 2.0 has also been reorganized into 

a more standard Python package to facilitate the code development of new WE algorithms, 

including binless strategies. With these features available in the WESTPA toolbox, the 

WE community is well-poised to take advantage of the latest strategies for tackling major 

challenges in rare-event sampling, including the identification of slow coordinates using 

machine learning techniques,56,57 and the interfacing of the WE strategy with other software 

involving complementary rare-event sampling strategies (e.g., OpenPathSampling,58,59 

SAFFIRE,60 and ScMile61) and analysis tools (e.g., LOOS,62,63 MDAnalysis,64,65 and 

PyEmma66). WESTPA has also been interfaced with OpenEye Scientific’s Orion platform39 

on the Amazon Web Services cloud computing facility. We hope that the above new features 

of WESTPA will greatly facilitate the efforts by the scientific community to tackle grand 

challenges in the simulation of rare events in a variety of fields, including the molecular 

sciences and systems biology.
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Figure 1. 
Basic WE protocol. As illustrated for the simulation of a protein–protein binding process, 

a two-dimensional progress coordinate is divided into bins with the goal of occupying 

each bin with a target number of four trajectories. Four equally weighted trajectories are 

initiated from the unbound state and subjected to a resampling procedure at periodic time 

intervals τ for the following: (i) to enrich for success, trajectories that make transitions 

to less-visited bins are replicated to generate a target of four trajectories in these bins, 

splitting the weights evenly among the child trajectories (green spheres) and (ii) to save 

computing time, the lowest-weight trajectories in bins that have exceeded four trajectories 

are terminated, merging their weights with those of higher-weight trajectories in these bins 

(purple spheres). Spheres are sized according to their statistical weights.
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Figure 2. 
Reorganization of WESTPA 1.0 to WESTPA 2.0. In version 2.0, WESTPA is installed 

using Python and relies on only a single environment variable such that commands can 

be called directly through Python. To reflect these changes, we have updated our original 

suite of WESTPA tutorials for version 2.0 (https://github.com/westpa/westpa_tutorials/tree/

westpa-2.0-restruct).36,37
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Figure 3. 
Comparison of workflows for setting up and running WE simulations using WESTPA 1.0 

and 2.0, a demonstration of using the Python API for WESTPA 2.0, and GPU performance 

of the updated API within a cloud computing environment. (A) The Python API in WESTPA 

2.0 enables a user to fully define, initialize, and run a WESTPA simulation from within a 

single Python script (right panel), without needing to invoke command line utilities required 

in WESTPA 1.0 (left panel). For backward compatibility, all original functionality provided 

in version 1.0 for invoking WESTPA (e.g., w_init and w_run tools) via shell scripts remains 

available in WESTPA 2.0. (B) Example of defining a custom simulation manager with 

the WESTPA 2.0 API (top panel) and using the newly defined simulation manager and 

WESTPA 2.0 API to programmatically control and run a WE simulation (bottom panel). 

Here, the WESTSimulationManager class sends work to the WESTSegmentRunner class, 

which unpacks and runs the scripts specified from the WESTPA config file (west.cfg). 

(C) Example workflow diagram from the Orion user interface using the Python classes 

constructed from the internal WESTPA APIs presented in Figure 3B. Here, a kernel 

(Initialize WESTPA Simulation) initializes both the WESTSimulationManager (Manage 

WESTPA Segments) and the WESTSimulationRunner (Run WESTPA Segments) kernels 

from Figure 3B, which are connected in a cycle to manage splitting and merging. Finally, all 

data are exported through a Post Process and Dataset Writer kernel for final data processing 

and storage. (D) Performance of the WESTPA 2.0 API using the WESTSimulationRunner 

class from Figure 3B within an Amazon Web Services environment using a combination 

of numerous g4dn instances as a function of the wall clock time in Universal Coordinated 

Time (UTC) units. Here, the per-iteration scaling reaches thousands of GPUs in just under 

a few hours for a test system of butanol crossing a neat 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) membrane bilayer using the WESTPA 2.0 API with the OpenMM 

7.5 MD engine.41
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Figure 4. 
The MAB scheme is more efficient in surmounting free energy barriers than manual 

fixed binning schemes. (A) Bin positions and trajectories after replication using the MAB 

scheme vs a manual binning scheme with the same positions of trajectories (blue circles, 

sized according to statistical weights) along a chosen progress coordinate and a target of 

two trajectories per bin. The MAB scheme adaptively positions bins along the progress 

coordinate by placing equally spaced bins (in this case, three bins, as indicated by solid 

vertical lines) between the positions of the trailing and leading trajectories along with 

separate bins (boxes) for these trajectories and a third trajectory in a bottleneck region 

(pink) along the free energy barrier. (B) Enlarged “bottle” diagrams highlighting the 

bottleneck region (pink) along with the relative positions and weights of trajectories for 

the MAB and manual binning schemes in panel (A). In contrast to the manual binning 

scheme where trajectories may stall in a bottleneck region, the MAB scheme automatically 

detects trajectories in this region, replicating these trajectories to enrich for success in 

surmounting the barrier. (C) MAB scheme options in the westpa.core.binning module and 

the corresponding user-defined options in the west.cfg file. (D) Flux of a drug-like molecule 

(tacrine) permeating through a neat POPC membrane as a function of the molecular time 

using fixed binning (blue) or adaptive binning (MAB scheme) (red). Solid lines represent 

mean fluxes, and the shaded regions represent 95% confidence intervals. The molecular time 

is defined as Nτ, where N is the number of WE iterations and τ is the fixed time interval 

(100 ps) of each WE iteration. Simulations were run using WESTPA 2.0 and OpenMM 7.5 

MD engine.41 (E) Schematic of a simple recursive binning case in which closely spaced 

inner bins are “nested” within a wider outer bin.
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Figure 5. 
Flowchart for implementing binless resampling schemes in WESTPA 2.0. The 

implementation involves grouping trajectories by feature (using the group_function keyword 

defined in the group module) before splitting and merging. The functionality for positioning 

bins along a chosen progress coordinate remains available in WESTPA 2.0.
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Figure 6. 
Demonstration of the usage of the HDF5 framework for two example systems. (A) Na+/Cl– 

association simulation where Na+ (yellow sphere) and Cl– (green sphere) ions were solvated 

in explicit water (blue transparent surface). The distance between the two ions serves as the 

progress coordinate. (B) Conformational sampling of a p53 peptide (residues 17–29) in a 

generalized Born implicit solvent using a progress coordinate consisting of the heavy-atom 

root mean square deviation (rmsd) of the peptide from its MDM2-bound conformation.21 

The molecular surface of the p53 peptide is rendered as a transparent surface, with both 

the secondary (blue ribbon) and atomic structures overlaid. (C) Comparison of file sizes 

of per-iteration HDF5 files for the Na+/Cl– association simulation as a function of the WE 

iteration using WESTPA 1.0 and 2.0 with the HDF5 framework. The result was obtained 

from three independent simulations where the solid curves show the mean file sizes, while 

the light bands show the standard deviations. (D) Same comparison as panel (C) for a 

single simulation of the p53 peptide; hence, no error bars are shown. (E) Comparison of 

wall-clock runtimes normalized by the number of trajectory segments per WE iteration using 

WESTPA 1.0 and 2.0 with the HDF5 framework option turned on. (F) Time evolution of the 
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heavy-atom rmsd of the p53 peptide from its MDM2-bound conformation using trajectories 

obtained using WESTPA’s analysis tools. Colors represent rmsds obtained from different 

iterations. WESTPA simulations of Na+/Cl– association and the p53 peptide were run using 

the OpenMM 7.5 MD engine.41
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Figure 7. 
The RED scheme for more efficient rate constant estimation. (A) Schematic illustrating the 

RED scheme, which incorporates the distribution of event durations as part of a correction 

factor for rate constant estimates that account for the statistical bias toward the observation 

of events with short durations. (B) Application of the original and RED schemes to estimate 

the associate rate constant of a protein–protein binding process involving the barnase and 

barstar proteins as a function of the molecular time in a WE simulation. The molecular time 

is defined as Nτ, where N is the number of WE iterations and τ is the fixed time interval 

(20 ps) of each WE iteration. Simulations were previously run using WESTPA 1.0 with the 

GROMACS 4.6.7 MD engine.47 (C) Schematic illustrating how users can generate a data 

set for calculating the RED scheme correction factor from the simulation data stored in the 

analysis HDF5 files and apply the correction factor to the rate constant estimate using the 

new w_red tool.
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Figure 8. 
Workflow for constructing an haMSM from trajectories. First, the atomistic trajectories are 

featurized and discretized. The flux matrix is then computed by computing fluxes between 

discrete states. The flux matrix is row-normalized into a transition matrix. Estimates of 

steady-state populations and rate constants are obtained from the analysis of the transition 

matrix.51
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Figure 9. 
Application of the haMSM restarting plugin to the ms folding process of the NTL9 protein. 

(A) Diagram of the haMSM restarting plugin’s functionality. (B) Example of the restarting 

plugin functionality in the accelerated convergence of NTL9 folding rate constants from a 

WESTPA 2.0 simulation using the AMBER 16 MD engine.53 haMSM estimates at restarting 

points are shown as dots, WE direct fluxes are shown as red lines, and the 95% credibility 

region from the direct WE is shown in gray. (C) Distribution of the FPTs for NTL9 folding 

from the haMSM built at the final restart of the simulation in Figure 9B. The weighted 

average of the blue FPT distribution is shown in black dashed lines, and the MFPT estimate 

from the haMSM’s steady-state estimate is shown in green.51
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