
Gene expression

scShaper: an ensemble method for fast and accurate

linear trajectory inference from single-cell RNA-seq data

Johannes Smolander 1, Sini Junttila 1, Mikko S. Venäläinen1 and

Laura L. Elo1,2,*

1Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland and 2Institute of

Biomedicine, University of Turku, 20520 Turku, Finland

*To whom correspondence should be addressed.

Associate Editor: Anthony Mathelier

Received on May 4, 2021; revised on November 30, 2021; editorial decision on December 2, 2021; accepted on December 3, 2021

Abstract

Motivation: Computational models are needed to infer a representation of the cells, i.e. a trajectory, from single-cell
RNA-sequencing data that model cell differentiation during a dynamic process. Although many trajectory inference
methods exist, their performance varies greatly depending on the dataset and hence there is a need to establish
more accurate, better generalizable methods.

Results: We introduce scShaper, a new trajectory inference method that enables accurate linear trajectory inference.
The ensemble approach of scShaper generates a continuous smooth pseudotime based on a set of discrete pseudo-
times. We demonstrate that scShaper is able to infer accurate trajectories for a variety of trigonometric trajectories,
including many for which the commonly used principal curves method fails. A comprehensive benchmarking with
state-of-the-art methods revealed that scShaper achieved superior accuracy of the cell ordering and, in particular,
the differentially expressed genes. Moreover, scShaper is a fast method with few hyperparameters, making it a
promising alternative to the principal curves method for linear pseudotemporal ordering.

Availability and implementation: scShaper is available as an R package at https://github.com/elolab/scshaper. The
test data are available at https://doi.org/10.5281/zenodo.5734488.

Contact: laura.elo@utu.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) is a powerful technology
for studying dynamical processes of cells in tissues (Tanay and
Regev, 2017). Computational models, known as trajectory inference
methods, are needed to infer a representation of the cells, i.e. a tra-
jectory, that models the real phases at which the cells are developing
during the process. Trajectory inference methods have been devel-
oped to address the limitations of clustering to provide a representa-
tion that models the differentiation order of the cell types (clusters)
at single-cell level, while also estimating the topology of the differen-
tiation process. Trajectory inference methods have recently been
particularly helpful in deciphering cell differentiation processes,
such as human B cell maturation, innate lymphoid cell development
and brown adipose tissue myeloid cell differentiation (Fiancette
et al., 2021; Gallerand et al., 2021; King et al., 2021).

A typical trajectory inference workflow includes three main
steps: (i) preprocessing that includes quality control to remove lowly

expressed genes and poor-quality cells, normalization and dimen-
sionality reduction; (ii) topology inference that typically involves
clustering and building a graph based on the clustering, such as a
minimum spanning tree (MST); and (iii) generation of a pseudotime
for each lineage of the trajectory, i.e. a set of continuous values rang-
ing from 0 to 1 that measures the progression of the cells along the
lineage (Deconinck et al., 2021). While many methods have been
developed for trajectory inference (Saelens et al., 2019), recent
works have mainly attempted to improve the topology inference
(Cao et al., 2019; Todorov et al., 2020). The more recently devel-
oped methods include, for instance, TinGa, which uses a growing
neural gas (GNG) model to build more complex trajectories like dis-
connected graphs, and Palantir, which models the trajectory prob-
abilistically using a Markov process (Setty et al., 2019; Todorov
et al., 2020). Moreover, there exists a new category of methods that
use mRNA splicing information in addition to the gene expression
counts, called RNA velocity methods, to improve the performance
of trajectory inference (Bergen et al., 2020; La Manno et al., 2018).

VC The Author(s) 2021. Published by Oxford University Press. 1328

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(5), 2022, 1328–1335

https://doi.org/10.1093/bioinformatics/btab831

Advance Access Publication Date: 9 December 2021

Original Paper

https://orcid.org/0000-0003-3872-9668
https://orcid.org/0000-0003-3754-5584
https://github.com/elolab/scshaper
https://doi.org/10.5281/zenodo.5734488
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/


As topology inference is very challenging, users often need to try sev-
eral different tools to find a suitable topology. However, in many
cases a simple linear model can be sufficient, and therefore more ac-
curate linear trajectory inference methods are still needed as well.

Linear trajectory inference is strictly limited to the linear top-
ology that does not allow branching or cycles. For estimating the
pseudotime, the most common method currently is the principal
curves method, and it was recently shown that the current best lin-
ear trajectory inference methods use the principal curves method
(Saelens et al., 2019), including SCORPIUS and Embeddr (Campbell
et al., 2015; Cannoodt et al., 2016). Slingshot (Street et al., 2018),
which was ranked as the best tree-based method in a recent com-
parison study, also utilizes the principal curves method (Saelens
et al., 2019). The principal curve is a smooth 1D curve that passes
through the middle of a p-dimensional dataset (Hastie and Stuetzle,
1989). The algorithm starts from a prior curve, which is by default
set to the first principal component, and then proceeds to iteratively
project the samples using a smoothing function so that the samples
pass through the middle of the dataset. However, it is known that
the regular principal curves algorithm can perform poorly with
more complex trajectories, such as spiral trajectories (Ozertem and
Erdogmus, 2011), and for this reason, some scRNA-seq trajectory
inference analysis methods have attempted to address this limitation
using other initializers than the first principal component.
SCORPIUS (Cannoodt et al., 2016), which was ranked as the best
linear trajectory inference method in the recent comparison study,
begins by first clustering the dataset using the k-means algorithm
and then infers the shortest path through the clustering and uses this
as prior in the principal curves method. However, this approach
raises several issues, such as how to select the number of clusters k
and the sensitivity of the shortest path to the clustering. Moreover, it
is not guaranteed that the iterative smoothing of the principal curves
algorithm converges to a final curve that correlates well with the
shortest path.

To address these limitations, we introduce scShaper, a new tra-
jectory inference method that enables accurate linear trajectory in-
ference from scRNA-seq data using an ensemble approach that
combines multiple pseudotime solutions into a single more accurate
ensemble solution. scShaper is based on graph theory and solves the
shortest Hamiltonian path of a clustering, utilizing a greedy algo-
rithm to permute clusterings computed using the k-means method to
obtain a set of discrete pseudotimes. In contrast to other methods
that rely on a single clustering, scShaper clusters the dataset multiple
times using a range of different k values and combines the resulting
discrete pseudotimes into a solution, which is less sensitive to the
number of clusters. scShaper also excludes pseudotimes that are con-
sidered uncorrelated and aims to build the solution based on the
largest subset of mutually correlating pseudotimes, effectively miti-
gating the instability issue of the single clustering-based approaches.

To demonstrate the benefits of scShaper, we repeated the same
benchmarking as in the recent study, which compared 60 different
scRNA-seq trajectory inference tools in a comprehensive manner
(Saelens et al., 2019). From the tools that were in the comparison,
we considered four top-performing linear methods (SCORPIUS,
Elpilinear, Embeddr, Component 1) and the best-performing tree
method (Slingshot). We also considered one recently developed
method (TinGa), which has its unique approach based on a GNG
model. The results suggested that scShaper was the best method for
linear trajectory inference in terms of the overall performance that
measures accuracies of cell ordering and differentially expressed fea-
tures. In particular, there was a considerable improvement in the ac-
curacy of the differentially expressed features, suggesting that
scShaper is able to infer trajectories that more accurately account for
different cell subpopulations. Moreover, we compared scShaper
with the regular principal curves method under the same preprocess-
ing steps using the same benchmarking and found that the perform-
ance of scShaper was again statistically significantly better,
suggesting that the performance boost is not only attributable to the
different preprocessing steps of the trajectory inference methods, but
the differences in the pseudotime inference. Conveniently, the run
time of scShaper was also comparable with the other methods.

Finally, we demonstrate that scShaper is also able to infer accurate
trajectories for a set of different trigonometric trajectories, most of
which were too complex for the regular principal curves algorithm,
suggesting scShaper could become a well-generalizable alternative to
the principal curves method for inferring linear paths through data-
sets. By replacing the principal curves algorithm with scShaper in
inferring linear paths through the different lineages of non-linear tra-
jectories (Deconinck et al., 2021), this could facilitate development
of more accurate non-linear trajectory inference methods.

2 Materials and methods

2.1 Linear trajectory inference algorithm of scShaper
In the following, we describe the four steps of the linear trajectory
inference algorithm of scShaper that starts with preprocessed data.

1. Discrete pseudotime estimation using shortest Hamiltonian
path permuted clustering. As the basis of scShaper, we first describe
an unsupervised clustering and graph theory-based algorithm that
can be used to relabel clustering so that the numeric cluster labels
correlate with the path through the middle of the data (Fig. 1a–d).
After clustering, the labels are initially random without any depend-
ency between the labels and neighborhoods of the clusters (Fig. 1a).
Here, we refer to such a relabeled clustering that correlates with the
path as the discrete pseudotime (Fig. 1d). To generate a discrete
pseudotime, we need to find the permutation of the clustering that
minimizes the distances between the cluster centroids of the adjacent
clusters (Fig. 1b and c). From a mathematical standpoint, this is a
graph theory problem, in which the clusters are the vertices and the
connections between the clusters are the edges weighted by the dis-
tances between the clusters, and we seek the shortest path that visits
each vertex exactly once. This kind of path, in which each vertex is
visited only once, is called a Hamiltonian path, and the problem can
be described as finding the shortest Hamiltonian path. However,
finding the shortest Hamiltonian path is known to be NP-hard, and
hence a greedy algorithm is necessary to achieve a high computa-
tional performance with large numbers of clusters. In the following,
we describe a pseudocode (Algorithm 1) for our greedy algorithm,
which is essentially Kruskal’s algorithm for finding the minimum
spanning tree (MST) of a graph. The difference is that a
Hamiltonian path has slightly stricter limitations than MST, since
the maximum degree of a vertex, i.e. the maximum number of adja-
cent edges, is two. Therefore, the problem can also be characterized
as a degree-constrained MST problem. As in Kruskal’s algorithm,
the greedy algorithm adds edges into the graph by starting from the
shortest distance and discards connections that form cycles, but also
connections that exceed the degree constraint.

Algorithm 1 A greedy algorithm for finding a solution to the

shortest Hamiltonian path problem

Input: A connected weighted graph G ¼ ðVG;EGÞ with k ver-

tices and the edge weights D ¼ ðdijÞ, where dij is the

Euclidean distance between the centroids of clusters i and j.

Output: A graph S ¼ ðVG;ESÞ that provides a greedy solution

to the shortest Hamiltonian path problem.

1: Initialization: Sort the edges of G ¼ ðVG;EGÞ by their

weights into ascending order. The total number of edges in G

is N ¼ ðk2 � kÞ=2 after removing inverse edges and self-con-

nections. Let e1 be the edge with the smallest weight and set

ES ¼ fe1g.
2: for (i in range(2, N)):

3: if adding edge ei to graph S¼ðVG;ESÞ keeps degreeðSÞ � 2

and forms no cycles to S:

4: add ei to S

5: if jESj ¼ k� 1:

6: return S

scShaper: ensemble method for fast and accurate linear trajectory inference 1329



After finding a solution to the shortest Hamiltonian path prob-
lem, we obtain a permutation that finds the path through the cluster
centroids (Fig. 1c). Next, the discrete pseudotime (Fig. 1d) is
obtained by renaming the original cluster labels (Fig. 1a) to the
permutation that rearranges the optimal permutation into ascending
or descending order.

Although the approach can be applied to any clustering algo-
rithm to find a discrete pseudotime, we chose k-means due to its
high computational efficiency and algorithmic simplicity. In our
scShaper R package, we use the k-means implementation from the
stats R package.

2. Estimate discrete pseudotime for a range of k values. A single
discrete pseudotime that is constrained to a single number of clusters
(k) is not particularly useful for scRNA-seq trajectory inference.
Instead, we would like to have a continuous pseudotime that corre-
lates with the path through the middle of the input data. Additional
issues that might arise from using a single pseudotime are that the
solution can be sensitive to the stochasticity of the k-means cluster-
ing and limiting the maximum degree of the graph to two means
that the globally most optimal shortest path is not necessarily found
using the greedy algorithm, which can consequently lead to a sub-
optimal discrete pseudotime. To address these limitations, we esti-
mate the discrete pseudotime using a range of different k values
(Fig. 1e), k 2 ½kmin; . . . ; kmax�, where kmin and kmax are the lower
and upper limits of the number of clusters k, respectively. An ensem-
ble solution is created based on these clusterings, resulting in a con-
tinuous and more robust solution than a single discrete solution.
Here, we always use kmin ¼ 2 and shall constrain kmax in Section
3.1.

3. Principal component analysis. After finding a set of discrete
pseudotimes for a range of different k values, scShaper uses PCA to
aggregate the discrete pseudotimes into an ensemble (Fig. 1f and g).
We calculate the first two principal components with prior feature
standardization and determine the pseudotimes that contribute
more to the first principal component than the second component
based on the variable loadings. In this case, the variable loadings are

the eigenvectors of PCA in a square matrix, which can be interpreted
as measuring how much each variable contributes to the principal
components. The objective is to find the largest set of pseudotimes
that are mutually correlated and exclude pseudotimes that are
uncorrelated with them. The next step is to average the selected
pseudotimes to generate a crude initial pseudotime. The discrete
pseudotimes are min-max scaled and ordered in the same direction
using the signs of the PCA loadings, after which the pseudotime val-
ues for each cell are averaged. We found that this approach provided
generally better performance than using the first principal compo-
nent directly as the ensemble (see Section 3.1). To perform PCA, we
use the prcomp function from the stats R package.

4. Local regression smoothing. As the final step, we apply local
regression (LOESS) using the stats R package to smooth the crude
average pseudotime, where the average pseudotime and its ranking
are the response and predictor variables of the model, respectively.
LOESS has two important parameters: ‘span’ that controls the de-
gree of the smoothing (default 0.75) and ‘degree’ that determines the
degree of the polynomials (default 2). We left the polynomial degree
to its default, but investigated how the span parameter affected the
performance in Section 3.1.

2.2 Preprocessing before trajectory inference
As with all scRNA-seq trajectory inference methods, several prepro-
cessing steps are required before the actual trajectory inference with
scShaper, including normalization and dimensionality reduction by
feature selection, which are typically left for the user to decide. Since
the benchmarking datasets (Section 2.5) were already partially pre-
processed by the authors of the comparison study, including filtering
outlier cells, normalization and feature selection, the only remaining
step in this study was the dimensionality reduction. PCA followed
by t-distributed stochastic neighbour embedding (t-SNE) (van der
Maaten et al., 2008) is among the most common dimensionality re-
duction workflows in scRNA-seq data analysis, and we therefore
selected that as the default dimensionality reduction method. To

Fig. 1. Schematic of the linear trajectory inference method of scShaper. (a) The data points are clustered using the k-means algorithm into k clusters. (b) A distance matrix is

calculated between the cluster centroids. (c) Sort the clusters by solving the shortest Hamiltonian path problem using a greedy algorithm. (d) To create a discrete pseudotime,

rename the original cluster labels to the permutation which rearranges the optimal permutation into ascending or descending order. (e) Repeat steps a–d for k values from 2 to

100 to obtain a set of discrete pseudotimes. The subplot visualizes a correlation matrix of the discrete pseudotimes. Red, yellow and blue colours denote high positive, low and

high negative correlation, respectively. (f) Perform principal component analysis (PCA) to determine the largest subset of linearly correlating pseudotimes. (g) Schematic of the

process that generates a continuous pseudotime from the discrete pseudotimes, which includes finding the pseudotimes that have the highest loadings with respect to the first

principal component, averaging the selected pseudotimes and finally applying local regression (LOESS) to smooth the pseudotime. (h) Comparison of the ground truth and esti-

mated continuous pseudotimes for the spiral trajectory

1330 J.Smolander et al.



perform combined PCA and t-SNE analysis, we used the Rtsne pack-
age with default parameters, including 50 principal components and
the perplexity value of 30, with the exception of a 3D instead of a
2D output.

2.3 Additional steps after trajectory inference
After trajectory inference, the trajectory is usually visualized as a
straight line through a two-dimensional visualization generated by a
non-linear dimensionality reduction method, such as t-SNE, UMAP
or multidimensional scaling (MDS). The user is typically also inter-
ested in investigating differential expression along the trajectory.
Conveniently, the dyno R package (Saelens et al., 2019) offers all
these functions and supports integration with any trajectory infer-
ence method. We provide the scShaper R package together with a vi-
gnette, which integrates scShaper with commonly performed
preprocessing steps (Section 2.2) and dyno to perform a full-scale
trajectory inference analysis.

2.4 Simulation of trigonometric trajectories
We simulated several trigonometric trajectories, which are summar-
ized in Supplementary Table S1, to constrain the parameters of
scShaper (Section 3.1), including 2D spirals, quadratically growing
2D spirals, 3D spirals, quadratically growing 3D spirals and sine
waves. Using the trigonometric trajectory functions and a sequence
of t values with increments of 0.01, we, generated datasets with
1157 to 1785 samples. In addition, we simulated several trajectories
with each function by adding a varying amount of Gaussian
noise into the variables by adjusting the standard deviation of
the Gaussian distribution from 0.05 to 0.95. After adding the noise,
the exact ground truth pseudotime becomes unknown, but the
t variable still provides a good approximation of the ground truth.
The analysis of these trajectories provides a means to constrain the
parameters of scShaper in a manner that is not biased towards the
scRNA-seq benchmarking.

2.5 Benchmarking
To benchmark scShaper for trajectory inference of scRNA-seq data
against current state-of-the-art methods, we used a framework from
a recent comparison study (Saelens et al., 2019), which bench-
marked over 60 different methods using a wide array of different
datasets, both simulated and real, and 17 different performance
metrics.

The benchmarking data included in total 69 linear datasets, of
which 39 were real and 30 were simulated datasets. The real data-
sets included gold and silver datasets. For the gold datasets, the dis-
crete pseudotime is known, i.e. the different cell types and the order
in which they differentiate. The silver standard datasets include con-
tinuous pseudotimes, which were inferred using scRNA-seq trajec-
tory inference methods by the authors of the original studies. The
simulated datasets were simulated using four different simulators:
dyntoy (Saelens et al., 2019), dyngen (Saelens et al., 2019),
PROSSTT (Papadopoulos et al., 2019) and Splatter (Zappia et al.,
2017) and provided the most accurate ground truth.

Of the 12 linear trajectory inference methods that were bench-
marked in the comparison study (Saelens et al., 2019), we selected
four linear methods for our comparisons. SCORPIUS (Cannoodt
et al., 2016), Component 1 and Embeddr (Campbell et al., 2015)
were the three most highly ranked methods, whereas the fourth
selected method, ElPiGraph Linear (Elpilinear) (Albergante et al.,
2020), is the only method that uses some form of ensemble learning,
although much different compared with the approach of scShaper.
SCORPIUS and Embeddr use the principal curves method in the ac-
tual pseudotemporal ordering step, but they differ in their approach
to dimensionality reduction: SCORPIUS uses MDS, whereas
Embeddr uses Laplacian eigenmaps. Component 1 is the simplest al-
gorithm, which only computes the first principal component and
uses it directly as the pseudotime. ElPiGraph Linear is an extension
of ElPiGraph, which is limited to linear trajectories. ElPiGraph has
its own considerably more unique approach based on elastic princi-
pal graphs, which resembles the principal curves method, but also

allows branching to model more complex topologies. ElPiGraph
also utilizes ensemble learning to build a more accurate consensus
solution based on multiple principal graphs, making it hence a good
method to compare with scShaper.

We also considered two non-linear trajectory inference methods:
Slingshot and TinGa (Street et al., 2018; Todorov et al., 2020).
Slingshot can infer tree-shaped trajectories, whereas TinGa can also
infer disconnected trajectories and cycles. Therefore, both methods
can also find linear trajectories, and the shape of the trajectory is
estimated automatically by both methods. Slingshot was ranked as
the best tree-based trajectory inference method in the comparison
study (Saelens et al., 2019), and it has become widely used since
then. It estimates a tree-shaped topology using MST, which is fit to
a Gaussian mixture model clustering, followed by simultaneous fit-
ting of multiple principal curves for the different lineages of the tree.
TinGa is a more recently introduced method based on a growing
neural gas model (Fritzke, 1995), for which the authors showed
improved generalizability compared to Slingshot.

To measure the overall performance of the methods, we followed
the dynbenchmark benchmarking framework of the previous com-
parison study, which used the geometric mean of four metrics that
measure (i) the accuracy of cell ordering (cordist), (ii) the accuracy
of the differentially expressed features (wcor), (iii) the accuracy of
the topology inference (HIM) and (iv) the accuracy of the branching
points (F1_branches), of which the last two are always constant
with value 1 (perfect) in linear trajectory inference. Therefore, in lin-
ear trajectory inference the overall performance was determined by
cor_dist and wcor so that low scores in either metric were penalized
by the geometric mean. Here, cordist quantifies the similarity be-
tween the known and predicted trajectories in terms of correlation
of pairwise distances between the two trajectories, and wcor quanti-
fies the agreement between the differentially expressed features
obtained using the known and the predicted trajectories. The results
for all the 17 performance metrics are provided in Supplementary
Figures S4–S6, and the metrics are briefly described in
Supplementary Table S2. More detailed descriptions of the measures
are given in the documentation of dynbenchmark (https://github.
com/dynverse/dynbenchmark).

To determine whether the observed performance boost for
scShaper was statistically significant, we used the Wilcoxon signed-
rank test from the stats R package. The related benchmarking code is
available online at https://github.com/elolab/scShaper-benchmarking.

2.6 Software and hardware for measuring run time
The run times of the five benchmarked methods were measured on a
laptop with Ubuntu 16.04 LTS operating system, 2-core 2.30 GHz
Intel(R) Core (TM) i5-6200U processor and 8 GB DDR4 of RAM.
As data, we used three datasets with 1000, 5000 and 10000 cells,
each with 1000 features, simulated using the dyntoy tool.

3 Results

3.1 Constraining parameters of scShaper
To constrain the parameters of scShaper, we considered 50 different
datasets that were simulated from five different trigonometric func-
tions with varying levels of Gaussian noise added into the variables
(Section 2.4). We ran scShaper with different parameter configura-
tions and calculated the root mean squared error (RMSE) and the
Pearson correlation coefficient between the approximative ground
truth and estimated pseudotime for each dataset.

The results suggest that the two k-means clustering related
parameters, the maximum number of clusters (Figs. 2a and d) and
the number of random sets in k-means (Figs. 2b and e) had signifi-
cant effects on the performance of scShaper. scShaper performed
better with a higher maximum k value, which is intuitive consider-
ing this adds more information into the ensemble set. However, as
increasing the upper limit of the k-value also increases the run time
(Supplementary Fig. S1), we concluded that k¼100 would be a
good trade-off between the run time and the performance. The num-
ber of k-means initializations had an inverse effect on the

scShaper: ensemble method for fast and accurate linear trajectory inference 1331

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://github.com/dynverse/dynbenchmark
https://github.com/dynverse/dynbenchmark
https://github.com/elolab/scShaper-benchmarking
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data


performance, where one initialization outperformed hundred initial-
izations. This occurs due to the fact that increasing the number of
initializations increases the robustness of the clustering. However,
our algorithm benefits from less robust clustering, because this way
we obtain more dissimilar discrete pseudotimes, which subsequently
provides more information about the relative positions of the cells in
the trajectory. Since using a smaller value also helps to minimize
the run time of scShaper, we set the default value of the number of
k-means initializations to 1.

The third and final parameter, span, controls the degree of
smoothing in LOESS, where a higher value smooths the curve more.
Unlike with the two k-means related parameters, the differences be-
tween the performances obtained using different span values were
relatively small (Fig. 2c and f). Because the analysis suggested that a
lower degree of smoothing was, in general, better, we set the default
value of span to 0.1.

Since the modified Kruskal’s algorithm for finding the shortest
Hamiltonian path is greedy, it is not necessarily able to find the glo-
bally most optimal solution, unlike the Kruskal’s algorithm for
MSTs. This makes the algorithm somewhat sensitive to the input se-
quence of the clusters (vertices). Therefore, we investigated robust-
ness of the ensemble method using 1000 different random
initializations so that the random shuffling of the cells before ana-
lysis and the clustering results of k-means vary. We used the default
parameters selected above and a 3D spiral as the dataset. The correl-
ation values visualized in Supplementary Figure S2 had only minor
variation, showing that scShaper performs robustly.

In addition, we investigated two different approaches for
aggregating the discrete pseudotimes into the ensemble pseudo-
time: (i) by comparing the PCA loadings of the first two principal
components to select features that correlate more with the first
principal component and (ii) using the first principal component
directly. The feature selection approach provided better perform-
ance in 86% of the datasets when measured by the Pearson correl-
ation (Supplementary Fig. S3).

3.2 Benchmarking using scRNA-seq data
We benchmarked scShaper against four linear scRNA-seq trajectory
inference methods, SCORPIUS, Component 1, Embeddr, ElPiGraph

Linear (Elpilinear) and two non-linear methods, Slingshot and
TinGa, using the current best practices (Section 2.5). Figure 3 visual-
izes the main results of the benchmarking across all the real and simu-
lated datasets. The results suggested that the cell ordering (cordist) of
scShaper was at least as accurate as that of the four other methods
(Fig. 3a; P < 0:05 compared with Component 1, Elpilinear, TinGa
and SCORPIUS; P ¼ 0:1 compared to Embeddr and Slingshot). The
second correlation metric (wcor), measuring the accuracy of the dif-
ferentially expressed features, was consistently higher for scShaper
than for the other methods (Fig. 3b; P < 0:01 compared with all
other methods). As in the original comparison study, we calculated
the geometric mean of these two metrics to determine the overall
score (Fig. 3c). The results suggested again that scShaper was the
best method ðP < 0:05 compared with all other methods).

Next, we grouped the overall scores by the type of the data, i.e.
which simulator was used or if the data were real. According to
these results (Fig. 3d), scShaper showed superior performance for
three of the simulators (dyngen, dyntoy, prosstt) and also yielded
the highest average performance for the real datasets. For dyngen,
dyntoy and real datasets, the margins between the medians of
SCORPIUS and scShaper were small, but compared to SCORPIUS,
scShaper had noticeably fewer datasets with low performance. The
datasets simulated using splatter were a clear exception in the sense
that there were several datasets, which none of the methods were
able to model accurately. The performance of scShaper for splatter
datasets was moderate, whereas SCORPIUS and TinGa exhibited in-
ferior performance. The two non-linear methods (Slingshot and
TinGa) did not outperform scShaper with any of the data types, but
their performance was generally better or similar compared to the
other linear methods.

The whole comparison using the dynbenchmark framework
included in total 17 benchmarking metrics, the remaining of which
are visualized in Supplementary Figures S4–S6. Notably, investiga-
tion of the Hamming-Ipsen-Mikhailov (HIM) similarity of the topol-
ogies and the branch assignments (F1_branches) indicated that the
non-linear methods failed to predict the correct topology and the
branch assignment of the cells was inaccurate for many of the data-
sets (Supplementary Figs. S4 and S5). TinGa was generally more
affected by this issue than Slingshot. Most of the metrics had similar
rankings between the methods and different types of simulated or

Fig. 2. Analysis of simulated trigonometric trajectories to constrain the three hyperparameters of scShaper. (a, d) The maximum number of clusters for which the discrete pseu-

dotime was calculated using the k-means algorithm, the minimum being 2. (b, e) The number of k-means initializations. (c, f) The span parameter that controls the degree of

smoothing in Local Polynomial Regression Fitting (LOESS). y-axis in the subplots a–c and d–f signify the root mean squared error (RMSE) and the Pearson correlation coeffi-

cient, respectively, calculated for all the datasets (Section 2.4) between the ground truth and inferred pseudotimes

1332 J.Smolander et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data


real data as in the comparison of the overall scores (Fig. 3).
However, the F1_milestones metric that measures the accuracy of
milestone assignment using clustering comparison (in this case, the
trajectory has two milestones: the start and end points) suggested
scShaper as the best method also for the Splatter simulated data
(Supplementary Fig. S4), although it was moderate when measured
by the accuracy of cell ordering (cordist). This suggests that scShaper
performs significantly better than the other methods when trans-
forming the trajectories to discrete pseudotimes. The trajectories of
scShaper were also better predictable using a random forest regres-
sion model than a linear regression model when measured by the
normalized mean squared error (rf_nmse; Supplementary Fig. S6).

3.3 Comparison of the principal curves method and

scShaper
The principal curves algorithm is a widely used method in scRNA-
seq trajectory inference and it is commonly applied at the final phase
of trajectory inference to generate a continuous pseudotime. Since
the performance differences observed in the benchmarking could be
partially attributable to the different preprocessing steps, we investi-
gated how the performances of principal curve method and scShaper
compare when using the same preprocessing steps (Section 2.2). In
this comparison, we used the implementation of the principal curves
algorithm from the princurve R package, which is used by several
popular trajectory inference methods, such as Slingshot and
SCORPIUS. We performed the same benchmarking as in Section 3.2
and the results suggested (Fig. 4a) that scShaper was better in terms
of the overall score, as well as in terms of the accuracies of the cell
ordering and the differentially expressed features (P < 0:05).

Next, we considered two datasets from the earlier benchmarking
(Fig. 3) that were particularly challenging (prosstt_linear_3 and
prosstt_linear_6) and visualized the estimated trajectories using the
dynplot R package (Fig. 4b). For both datasets scShaper was able to
generate trajectories that had almost perfect cell ordering accuracies
(Fig. 3d), whereas the trajectories predicted by the principal curve
method were highly inaccurate.

Finally, we investigated how accurately the two methods were
able to predict the path through the middle of each of the simu-
lated trigonometric trajectories, which included 2D and 3D spi-
rals and the sine wave (Section 2.4). While both methods were
able to accurately predict the path through the sine wave, only
scShaper predicted accurately the ordering of the spiral trajecto-
ries (Supplementary Fig. S7).

3.4 Run time
The run time of scShaper mostly depends on three factors. First, it
depends on the range of the k values used to estimate the discrete
pseudotime. Our analysis shows (Supplementary Fig. S1) that the
fast Rcpp implementation of the greedy algorithm in the scShaper R
package can permute 99 distance matrices with k values from 2 to
100 in roughly 2.5 s. When the upper limit of the k values was
increased to 200, the average run time was almost 1 minute. Second,
the run time depends on the size of the dataset, i.e. how many fea-
tures and cells it contains. Figure 5 visualizes the results of a run
time comparison for the five benchmarked methods, where the dyn-
toy tool was used to simulate 1000, 5000 and 10 000 cells with
1000 features. The run times of the seven methods were on a largely
similar scale, being at most a few minutes. For scShaper, the analysis
took 19 s and 120 s with 1000 and 5000 cells, respectively.
However, some of the methods had a relatively high memory re-
quirement. Embeddr, SCORPIUS and Elpilinear had a memory fail-
ure with 10 000 cells on a laptop with 8 GB of RAM. For the largest
dataset with 10 000 cells, the run time of scShaper was about 4 min,
which is considerably faster than Slingshot, but slower than TinGa
and Component 1. Finally, the run time also depends on the effi-
ciency of the dimensionality reduction. Dimensionality reduction
using PCA and t-SNE was clearly the slowest step of the scShaper’s
workflow with all three datasets.

4 Discussion

The current state-of-the-art trajectory inference methods, such as
SCORPIUS and Slingshot, perform a single clustering, which is then
used as the basis for inferring the topology of the trajectory using
greedy graph theory algorithms, such as Kruskal’s algorithm.
However, there are several issues with this approach that can deteri-
orate the performance. Greedy algorithms can sometimes only find
a local optimum, which is not necessarily the most optimal solution
that accurately models the path through the real process. The clus-
tering algorithms themselves, such as k-means, are stochastic, and
the estimation of the number of clusters is known to be very chal-
lenging (Kiselev et al., 2017). All these issues make trajectory model-
ling a challenging task, which can be sensitive to small fluctuations
in the input data and the model parameters. In addition, the princi-
pal curves algorithm, which is commonly used in the final step to
smooth each lineage of the trajectory, can significantly alter the path

Fig. 3. Benchmarking results for scRNA-seq data. (a) Accuracy of the cell ordering (cordist). (b) Accuracy of the differentially expressed features (wcor). (c) The overall score

based on the geometric mean of the two previous metrics. (d) The overall scores grouped by data type, where dyngen, dyntoy, prosstt and splatter are simulators and real

denotes real data

scShaper: ensemble method for fast and accurate linear trajectory inference 1333

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab831#supplementary-data


given as prior information and oversimplify the trajectory by
bypassing many important milestones (Todorov et al., 2020).

In this article, we introduced scShaper, a novel linear trajectory
inference method that utilizes an ensemble learning approach
that combines multiple discrete pseudotimes derived from multiple
clusterings. Ensemble methods are machine learning methods that
combine multiple solutions to build a model that performs better
than the individual models. They have already been widely adapted
in scRNA-seq data analysis, especially in consensus clustering
and cell-type classification (Lieberman et al., 2018; Smolander
et al., 2020). However, so far there have been few attempts to apply
the principle of ensemble learning to trajectory inference, although
the same challenges are present there as well (Albergante et al.,
2020).

The ensemble approach of scShaper combines multiple discrete
pseudotimes derived from multiple clusterings using different num-
bers of clusters to build a more accurate trajectory. Instead of speci-
fying a single number of clusters, the user only needs to select a
range of cluster numbers (default from 2 to 100). For each cluster-
ing, we estimate a discrete pseudotime using a greedy algorithm that
is a modification of Kruskal’s algorithm for finding MSTs. scShaper
applies PCA to find subsets of mutually correlating pseudotimes,

and an ensemble solution is built based on the largest subset of mu-
tually correlating pseudotimes. Finally, we use LOESS to perform
smoothing and generate the final continuous smooth pseudotime.
scShaper mitigates the shortcomings of the current state-of-the-art
methods, e.g. SCORPIUS, that use a single clustering as the basis for
building the trajectory, making it less sensitive to the stochasticity of
the clustering and the greediness of the graph theory algorithms that
find the shortest path through the clustering.

We repeated the same comprehensive comparison of scRNA-seq
trajectory inference methods that was recently published, which
involved a wide array of different performance metrics and datasets
of real and simulated origin (Saelens et al., 2019). The comparison
showed that scShaper achieved superior accuracy for differentially
expressed genes, while still maintaining accurate cell ordering.
Indeed, the overall performance score of scShaper was best for most
of the simulators and the real data. This suggests that scShaper is
able to maintain a high cell ordering accuracy and model more ac-
curately subpopulations that are bypassed by other methods. The
performance of scShaper was also better than that of the two non-
linear trajectory inference methods (TinGa, Slingshot), suggesting
that methods that have been designed for specific topologies can
outperform methods that have been designed to work with arbitrary
topologies. Therefore, the generalizability of trajectory inference
methods needs to be still improved.

Another significant part of this work included comparing the
principal curves method and the pseudotemporal ordering algorithm
of scShaper. Since the principal curves algorithm has become so
widely utilized in scRNA-seq trajectory inference, we compared it
with scShaper under the same preprocessing steps. The results
showed that scShaper outperformed the principal curves algorithm
in terms of all three metrics that were used in the evaluation.
Moreover, scShaper achieved excellent accuracy for different trig-
onometric trajectories, including spiral functions, which the princi-
pal curves method failed to accurately model. Since many of the
benchmarked methods utilize the principal curves algorithm, this
strongly suggests that the performance boost of scShaper is not at-
tributable to the differences in the dimensionality reduction, but to
the differences in the pseudotemporal ordering.

The benefits of scShaper compared with the principal curves al-
gorithm suggest that it can facilitate development of more accurate
non-linear trajectory inference methods. By replacing the principal

Fig. 4. Comparison of the principal curve method (princurve) and scShaper for linear trajectory inference of scRNA-seq data. (a) The same benchmarking as in Section 3.2. (b)

Trajectory visualizations of two simulated datasets, prosstt_linear_3 and prosstt_linear_6, from the comparison study. The colouring in each plot denotes the estimated pseu-

dotime by the method. In all visualizations the trajectory line estimated using the dynplot R package is an approximation of the estimated pseudotime, and therefore the trajec-

tory line bypasses some of the small subpopulations with fewer cells. In all the analyses we used the same dimensionality reduction workflow (Section 2.2) with both methods

Fig. 5. Run time comparison for the five benchmarked methods. With 10 000 cells,

SCORPIUS, Embeddr and Elpilinear were unable to complete the analysis without

memory failure on a laptop with 8 GB of RAM

1334 J.Smolander et al.



curves algorithm with scShaper in the lineage smoothing step
(Deconinck et al., 2021), this could improve the accuracy of differ-
entially expressed genes compared with methods like Slingshot. This

would require a simple modification to the aggregation of scShaper
to select the discrete pseudotimes that have a high correlation with

the lineages. Another issue would be how to handle the branching
points, which could be done in a similar way as Slingshot constructs
average curves from multiple principal curves.

scShaper is a relatively simple algorithm with few hyperpara-
meters. The most important parameter is the range of different k
values, i.e. the number of clusters in k-means clustering, for which
the discrete pseudotimes are estimated. Adjusting the range may be

necessary, if the trajectories significantly exceed the complexity of
the trajectories considered in this work. This can for example hap-
pen when we add considerably more rounds to the spiral trajectories

(Section 2.4). The run time of scShaper largely depends on the range
of k values (Section 2.6). For a set of clusterings, where k ranges
from 2 to 100, the shortest path estimation lasted only 2 s, but when

the upper limit was increased to 200, the analysis was noticeably
longer (� 1 min). It should also be noted that the algorithm cannot

automatically infer the correct direction of the trajectory, which is a
common limitation among trajectory inference methods. This
requires the user to define the starting point, for example, based on

gene markers. The flipping can be easily performed by subtracting
the pseudotime values element-wise from 1.

To conclude, scShaper is a new fast and accurate method for lin-
ear trajectory inference from single-cell RNA-seq data. Our com-

parison showed that it outperformed current state-of-the-art
methods (SCORPIUS, Embeddr, Slingshot) that utilize the principal
curves method and also three other accurate methods (ElPiGraph

Linear, Component 1, TinGa). We observed a particularly large im-
provement in the accuracy of the differentially expressed genes,

which we hypothesized to be related to the over-smoothing behav-
iour of the principal curves algorithm, making the principal curves
algorithm to bypass some of the trajectory milestones. Further ana-

lysis suggested that the performance boost of scShaper is indeed not
attributable to the dimensionality reduction, but the ensemble ap-
proach for generating the continuous pseudotime. scShaper can be

downloaded as a user-friendly R package at https://github.com/elo
lab/scshaper.

Acknowledgement

The authors thank the Elo lab for fruitful discussions and comments on the

manuscript.

Funding

This work was supported by the European Research Council ERC [677943],

European Union’s Horizon 2020 research and innovation programme

[955321], Academy of Finland [296801, 310561, 314443, 329278, 335434

and 335611] and Sigrid Juselius Foundation during the conduct of the study

to L.L.E.; and the Academy of Finland [322123] to M.S.V. This work was

also supported by University of Turku Graduate School (UTUGS), Biocenter

Finland, and ELIXIR Finland.

Conflict of Interest: none declared.

Data Availability

scShaper is available as an R package at https://github.com/elolab/

scshaper. The submitted software version and test data are available at

https://doi.org/10.5281/zenodo.5734488. The benchmarking related code

is available at https://github.com/elolab/scshaper-benchmarking.

References

Albergante,L. et al. (2020) Robust and scalable learning of complex intrinsic

dataset geometry via ElPiGraph. Entropy, 22, 296.

Bergen,V. et al. (2020) Generalizing RNA velocity to transient cell states

through dynamical modeling. Nat. Biotechnol., 38, 1408–1414.

Campbell,K. et al. (2015) Laplacian eigenmaps and principal curves for high

resolution pseudotemporal ordering of single-cell RNA-seq profiles.

bioRxiv, 027219.

Cannoodt,R. et al. (2016) SCORPIUS improves trajectory inference and iden-

tifies novel modules in dendritic cell development. bioRxiv, 079509.

Cao,J. et al. (2019) The single-cell transcriptional landscape of mammalian or-

ganogenesis. Nature, 566, 496–502.

Deconinck,L. et al. (2021) Recent advances in trajectory inference from

single-cell omics data. Curr. Opin. Syst. Biol., 27, 100344.

Fiancette,R. et al. (2021) Reciprocal transcription factor networks govern

tissue-resident ILC3 subset function and identity. Nat. Immunol., 20, 1–11.

Fritzke,B. (1995) A growing neural gas network learns topologies. Adv.

Neural Inform. Process. Syst., 7, 625–632.

Gallerand,A. et al. (2021) Brown adipose tissue monocytes support tissue ex-

pansion. Nat. Commun., 12, 5255.

Hastie,T. and Stuetzle,W. (1989) Principal curves. J. Am. Stat. Assoc., 84,

502–516.

King,H.W. et al. (2021) Single-cell analysis of human B cell maturation pre-

dicts how antibody class switching shapes selection dynamics. Sci.

Immunol., 6, eabe6291.

Kiselev,V.Y. et al. (2017) SC3: consensus clustering of single-cell RNA-seq

data. Nat. Methods, 14, 483–486.

La Manno,G. et al. (2018) RNA velocity of single cells. Nature, 560,

494–498.

Lieberman,Y. et al. (2018) CaSTLe – classification of single cells by transfer

learning: harnessing the power of publicly available single cell RNA

sequencing experiments to annotate new experiments. PLoS One, 13,

e0205499.

van der Maaten,L., et al. (2008) Visualizing data using t-SNE. J. Mach. Learn.

Res., 9, 2579–2605.

Ozertem,U. and Erdogmus,D. (2011) Locally defined principal curves and sur-

faces. J. Mach. Learn. Res., 12, 1249–1286.

Papadopoulos,N. et al. (2019) PROSSTT: probabilistic simulation of

single-cell RNA-seq data for complex differentiation processes.

Bioinformatics, 35, 3517–3519.

Saelens,W. et al. (2019) A comparison of single-cell trajectory inference meth-

ods. Nat. Biotechnol., 37, 547–554.

Setty,M. et al. (2019) Characterization of cell fate probabilities in single-cell

data with Palantir. Nat. Biotechnol., 37, 451–460.

Smolander,J. et al. (2020) ILoReg: a tool for high-resolution cell population

identification from single-cell RNA-seq data. Bioinformatics, 37,

1107–1114.

Street,K. et al. (2018) Slingshot: cell lineage and pseudotime inference for

single-cell transcriptomics. BMC Genomics, 19, 477.

Tanay,A. and Regev,A. (2017) Scaling single-cell genomics from phenomen-

ology to mechanism. Nature, 541, 331–338.

Todorov,H. et al. (2020) TinGa: fast and flexible trajectory inference with

Growing Neural Gas. Bioinformatics, 36, i66–i74.

Zappia,L. et al. (2017) Splatter: simulation of single-cell RNA sequencing

data. Genome Biol., 18, 174.

scShaper: ensemble method for fast and accurate linear trajectory inference 1335

https://github.com/elolab/scshaper
https://github.com/elolab/scshaper
https://github.com/elolab/scshaper
https://github.com/elolab/scshaper
https://doi.org/10.5281/zenodo.5734488
https://github.com/elolab/scshaper-benchmarking

