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Inhibition of mitoNEET attenuates LPS-induced inflammation
and oxidative stress
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MitoNEET (mitochondrial protein containing Asn–Glu–Glu–Thr (NEET) sequence) is a 2Fe–2S cluster-containing integral membrane
protein that resides in the mitochondrial outer membrane and participates in a redox-sensitive signaling and Fe–S cluster transfer.
Thus, mitoNEET is a key regulator of mitochondrial oxidative capacity and iron homeostasis. Moreover, mitochondrial dysfunction
and oxidative stress play critical roles in inflammatory diseases such as sepsis. Increased iron levels mediated by mitochondrial
dysfunction lead to oxidative damage and generation of reactive oxygen species (ROS). Increasing evidence suggests that targeting
mitoNEET to reverse mitochondrial dysfunction deserves further investigation. However, the role of mitoNEET in inflammatory
diseases is unknown. Here, we investigated the mechanism of action and function of mitoNEET during lipopolysaccharide (LPS)-
induced inflammatory responses in vitro and in vivo. Levels of mitoNEET protein increased during microbial or LPS-induced sepsis.
Pharmacological inhibition of mitoNEET using mitoNEET ligand-1 (NL-1) decreased the levels of pro-inflammatory cytokines such as
IL-1β, IL-6, and TNF-α in animal models of sepsis, as well as LPS-induced inflammatory responses by macrophages in vitro. Inhibition
of mitoNEET using NL-1 or mitoNEET shRNA abrogated LPS-induced ROS formation and mitochondrial dysfunction. Furthermore,
mitochondrial iron accumulation led to generation of LPS-induced ROS, a process blocked by NL-1 or shRNA. Taken together, these
data suggest that mitoNEET could be a key therapeutic molecule that targets mitochondrial dysfunction during inflammatory
diseases and sepsis.
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INTRODUCTION
Inflammation is critical for healing, but uncontrolled and
dysregulated inflammation can increase the risk of developing
various diseases [1]. Sepsis, caused mainly by bacterial infection, is
a highly inflammatory disorder that, in severe cases, can cause
organ dysfunction and death [2]. The link between sepsis-
associated organ failure and mitochondrial dysfunction is increas-
ing interest to researchers [3]. Sepsis-induced mitochondrial
dysfunction mediates hyperinflammation through cellular meta-
bolic disorders, insufficient energy production, and oxidative
stress; as such, it plays a key role in the development of sepsis-
related multiorgan failure [4–6]. Mitochondria, dynamic organelles
that serve as the power house of the cell, are a major source of
reactive oxygen species (ROS); they are also the site where iron is
transformed into its bioactive form [7–10]. Increased mitochon-
drial iron accumulation due to pro-inflammatory signaling
promotes oxidative damage by catalyzing generation of ROS
and causing mitochondrial dysfunction [9, 11]. These processes
develop into a vicious inflammatory cycle [12]. Therefore, the
mitochondrial iron level must be strictly regulated to avoid iron-
mediated damage and maintain mitochondrial function. Several
studies demonstrate that targeting mitochondrial iron accumula-
tion using iron chelators has the potential to improve the
prognosis of sepsis [8, 13, 14].

The mitochondrial protein mitoNEET containing
Asn–Glu–Glu–Thr (NEET) sequence (also referred to as CDGSH
(C–X–C–X2–(S/T)–X3–P–X–C–D–G–(S/A/T)–H) iron sulfur domain 1
(CISD1)) is a 2Fe–2S cluster-containing, redox-sensitive protein
that resides on the outer mitochondrial membrane; as such, it is a
powerful regulator of mitochondrial iron content [15–17]. Only
when the mitoNEET [2Fe–2S] clusters are oxidized do they
transfer [2Fe–2S] clusters to apo-proteins and electrons from
FMNH2 (reduced 1,5-dihydro form of flavin mononucleotide) to
oxygen or ubiquinone in mitochondria [18–20]. Therefore,
mitoNEET exerts marked effects on cellular and systemic
metabolic homeostasis by acting as a powerful regulator of
mitochondrial iron content. Early studies showed that mitoNEET
plays a key role in regulating cellular energy use, lipid
metabolism, and cancer cell proliferation and tumor formation
[21–23]. Recent studies on the effects of redox regulation by
mitoNEET demonstrate that mice overexpressing mitoNEET
exhibit reduced ROS generation by mitochondria; however,
oxidative phosphorylation and electron transport are significantly
upregulated in the absence of mitoNEET [6, 24]. This is associated
with generation of ROS by mitochondria, along with mitochon-
drial dysfunction [25]. Thus, mitoNEET is involved in a variety of
human pathologies, including cystic fibrosis, diabetes, muscle
atrophy, and neurodegeneration [25–27].
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Initially, mitoNEET was identified as a mitochondrial target of
thiazolidinediones such as pioglitazone and rosiglitazone, a
peroxisome proliferator-activated receptor gamma (PPAR-γ) ago-
nist, a class of medicines used to treat type-2 diabetes [28, 29].
Thiazolidinediones show antioxidative and anti-inflammatory
activity in different disease models, including sepsis [30–32].
Overproduction of ROS during sepsis is thought to be a central
part of the disease process [6, 33]. However, the role of mitoNEET
in sepsis is unknown. Here, we have used a mitoNEET ligand (NL-
1), modified TZD as a weaker affinity for PPARγ [15, 28, 34] and
show that inhibiting expression or activity of mitoNEET reduces
inflammation and oxidative stress during inflammatory responses
and sepsis.

RESULTS
Inflammatory stimuli induce expression of mitoNEET during
sepsis
Mitochondrial damage or dysfunction is the major cause of the
multiple organ failure during sepsis [33]. Prior studies show that
mitoNEET, an outer mitochondrial membrane protein, plays an
important role in regulating mitochondrial function, especially

oxidative capacity [25, 31, 35]. In this study, we hypothesized that
mitoNEET plays a role in inflammation and oxidative stress during
sepsis. To identify the role of mitoNEET during sepsis, we assayed
expression of mitoNEET after induction of sepsis. Wild-type mice
on a pure C57BL/6 genetic background were subjected to cecal
ligation and puncture (CLP) to induce polymicrobial peritonitis,
bacteremia, and sepsis. We then examined expression of
mitoNEET mRNA and protein in the spleen 48 h later (Fig. 1A, B).
Expression of mitoNEET mRNA and protein increased significantly
(by 4.3-fold (Fig. 1A) and 4.1-fold (Fig. 1B), respectively) in mice
with CLP-induced sepsis compared with sham mice (n= 4 per
group). In addition, expression of mitoNEET mRNA and protein
increased by 2.2-fold (Fig. 1C) and 3.4-fold (Fig. 1D), respectively, in
mice with Escherichia coli (Gram-stain negative)-induced sepsis
compared with sham mice (n= 4 per group). These data suggest
that mitoNEET plays a critical role in sepsis caused by Gram-
negative bacteria. To investigate the significance of mitoNEET
induction by Gram-negative bacteria, we assessed its mRNA and
protein levels in the spleen after induction of lipopolysaccharide
(LPS)-mediated sepsis. LPS is a common pathogenic component of
the outer membrane of Gram-negative bacteria. We harvested
total RNA and protein from the spleen at 6, 12, 24, 48, and 72 h
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Fig. 1 Expression of mitoNEET mRNA and protein increases during microbial sepsis. Total RNA and protein were extracted from the spleen
48 h after sham or CLP surgery, and fibrin clot-induced microbial sepsis was triggered by E. coli or S. aureus bacteria (1 × 108 CFU). Expression of
mitoNEET mRNA (A, C) and protein (B, D) levels was assessed by quantitative real-time RT-PCR or western blotting. *P < 0.05 for sham vs. CLP
or fibrin clot-induced microbial sepsis. C57BL/6 mice were injected with LPS (20mg/kg) or vehicle, and total RNA and protein were extracted
from the spleen 6, 12, 24, 48, and 72 h after administration of vehicle or LPS (100 ng/mL). Total protein was extracted from BMDMs 3, 6, 12, and
24 h after administration of vehicle or LPS (100 ng/mL). Expression of mitoNEET mRNA (E) and protein (F, G) was assessed by quantitative real-
time RT-PCR or western blotting. Total protein was extracted from BMDMs 6 h after administration of vehicle or LPS (100 ng/mL) plus a
signaling inhibitor (5 µM BAY11-7082, 10 µM SP600125, 10 µM SB203580, 10 µM U0126, 10 µM LY2940002, or 20mM NAC). Expression of
mitoNEET protein was assessed by western blotting (H). All data are expressed as the mean ± SD from three independent experiments. *P <
0.05 for vehicle vs. LPS treatment.
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after LPS injection. We found that mitoNEET mRNA levels began to
increase by 6 h after LPS injection, and marked induction of
mitoNEET was evident at 24 h (compared with vehicle) (Fig. 1E);
protein levels increased at 48 h (Fig. 1F). Furthermore, expression
of mitoNEET protein in bone marrow-derived macrophages
(BMDMs) increased in the presence of LPS compared with vehicle
(Fig. 1G). To identify the signaling pathway involved in regulating
mitoNEET expression in LPS-stimulated macrophages, we used
specific inhibitors Bay 11-7085 (an NF-kB inhibitor), SP600125 (a
JNK MAP kinase inhibitor), SB203580 (a p38 MAP kinase inhibitor),
U0126 (a mitogen-activated protein kinase kinase 1/2 (MEK1/2)
inhibitor), LY294002 (a PI3 kinase inhibitor), and NAC (N-acetyl-L-
cysteine, cytosolic ROS scavenger, A7250). BMDMs were treated
with these kinase inhibitors in the presence of LPS, and levels of
mitoNEET protein were assessed 6 h later. Bay 11-7085 blocked
LPS-induced mitoNEET expression (Fig. 1H); however, the other
inhibitors had no effect. These data suggest that mitoNEET may
have a critical role in inflammation during sepsis, and that the LPS-
induced NF-kB signaling pathway is involved in induction of
mitoNEET expression under inflammatory conditions.

Inhibition of mitoNEET reduces inflammatory responses
during LPS stimulation of macrophages
Macrophages play critical roles in various inflammatory diseases
through release of inflammatory mediators and cytokines such as
IL-1β, IL-6, and TNFα. To investigate the role of mitoNEET during
inflammatory responses, we analyzed LPS-stimulated expression
of cytokines and mediators by RAW264.7 cells in the presence or
absence of a mitoNEET inhibitor, mitoNEET Ligand-1 (NL-1), which
was derived from glitazones [28] (Fig. 2). We found that NL-1
reduced expression of mRNA encoding pro-inflammatory cyto-
kines IL-1β, IL-6, and TNFα, and of mRNA encoding inflammatory
mediators iNOS and COX2, in cells exposed to LPS for 12 h (Fig.
2A–E). This decrease was not seen in control cells (treated with LPS
alone). In addition, IL-1β, IL-6, TNFα, iNOS, and COX2 protein levels
decreased in the presence of NL-1 (Fig. 2F–I).
To investigate whether LPS-induced expression of mitoNEET

alters inflammatory responses, we generated mitoNEET shRNA or
control shRNA-expressing cells. Real-time PCR and western blot
analyses were performed to assess expression of mitoNEET mRNA

and protein, respectively (Fig. 3A, B). Expression of mRNA
encoding IL-1β, IL-6, TNFα, iNOS, and COX2 decreased in mitoNEET
shRNA-expressing cells compared with control shRNA-expressing
cells (Fig. 3C–G). This was also the case for protein expression (Fig.
3H–K). These data indicate that LPS-stimulated expression of
mitoNEET is involved in inflammatory responses by macrophages
via release of pro-inflammatory cytokines and mediators.
To assess the effect of mitoNEET inhibition during LPS-induced

sepsis, we injected NL-1 intraperitoneally into wild-type C57BL/6
mice 12 h prior to injection of LPS. Blood was collected from the
right atrium 48 h after LPS injection, and the concentration of IL-6
and TNFα in serum was measured. Control mice received vehicle
alone. The levels of IL-6 and TNFα fell markedly in the presence of
NL-1 (Fig. 4A, B). Liver- and spleen-mediated immune responses
are responsible for clearing bacteria and toxins, but they can also
cause inflammation and organ damage [36, 37]. We found that NL-
1 reduced expression of mRNA encoding iNOS (Fig. 4C) and COX2
(Fig. 4D) in the spleen and liver of mice with LPS-induced sepsis.
Taken together, these data demonstrate that mitoNEET is a key
regulator of inflammatory responses during LPS-induced sepsis.

Inhibition of mitoNEET attenuates LPS-induced oxidative
stress and mitochondrial dysfunction
Inflammatory processes induce oxidative stress and alter mito-
chondrial function [12]. When cells are under oxidative stress,
mitoNEET acts as a redox-sensitive protein to induce transfer of
the [2Fe–2S] cluster in mitochondria and plays a role in production
of ROS [25]. Therefore, we analyzed whether inhibiting mitoNEET
protects RAW264.7 cells from LPS-induced oxidative stress and
mitochondrial dysfunction. Cells were treated with LPS in the
presence or absence of NL-1 for 24 h. Next, total ROS and
superoxide were assayed by flow cytometry using a ROS/Super-
oxide Detection kit. LPS-induced total ROS and superoxide fell in
the presence of NL-1 (Fig. 5A, B). Furthermore, to investigate
whether downregulation of mitoNEET regulates oxidative stress,
we stimulated control shRNA- or mitoNEET shRNA-expressing
RAW264.7 cells for 12 h with LPS (1 µg/mL), and measured total
ROS and superoxide levels by flow cytometry. Total ROS and
superoxide levels fell in LPS-treated cells expressing mitoNEET
shRNA (Fig. 5C, D). In addition, confocal microscopy clearly
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demonstrated that NL-1 or mitoNEET shRNA suppressed LPS-
induced cytosolic ROS when compared with LPS alone (Fig. 5E, F).
Treatment of cells with the iron chelator DFO (deferoxamine) in
the presence of LPS showed results comparable to those observed
after mitoNEET inhibition by NL-1 or mitoNEET shRNA (Fig. 5E, F).
To verify whether inhibition of mitoNEET regulates mitochondrial
dysfunction, we examined the mitochondrial membrane potential
(MMP), a hallmark of mitochondrial dysfunction. Cells were treated
NL-1 in the presence or absence of LPS, and the loss of MMP was
measured by flow cytometry using MitoProbe JC-1. Inhibition of
mitoNEET rescued LPS-induced depolarization of the mitochon-
drial membrane (Fig. 6A). LPS-induced loss of MMP was also
rescued by mitoNEET shRNA (Fig. 6B). To verify the effects of NL-1
on the MMP, we stained LPS-stimulated RAW264.7 cells with
mitochondrial probes MitoTracker Red CMXRos, DiOC6(3), or
TMRM (tetramethylrhodamine, methyl ester) in the presence or
absence of NL-1. TMRM staining is used widely to monitor MMP.
The MMP in LPS-treated cells fell but was rescued by NL-1
(Fig. 6C). DFO showed similar effects. To verify that inhibition of
mitoNEET decreases the mitochondrial iron content, we stained
mitochondrial iron using the mitochondrial probes Mitochondrial
Marker Deep Red and Mito-ferroGreen by, which allow visualiza-
tion of ferrous ion (Fe2+) by confocal microscopy. We found that
NL-1 depleted mitochondrial Fe2+ in the presence of LPS. Similar
results were obtained using DFO (Fig. 6D). Taken together, these

data suggest that inhibiting mitoNEET in RAW264.7 cells reduces
mitochondrial iron content, thereby preventing oxidative stress
and mitochondrial dysfunction during LPS-induced inflammation.
Oxidant-induced injury during inflammatory processes such as

sepsis induces organ failure [10]. To confirm the anti-inflammatory
effects of NL-1 during LPS-induced oxidative stress, we examined
expression of HO-1 (heme oxygenase-1), SOD2 (superoxide
dismutase 2), and SOD1 (superoxide dismutase 1) mRNA and
protein in LPS-stimulated RAW264.7 cells in the presence or
absence of NL-1 (Fig. 7A–D). NL-1 increased expression of HO-1
and SOD2 mRNA and protein, but not that of SOD1 mRNA and
protein. Consistent with this, HO-1 and SOD2 mRNA and protein
levels in cells expressing mitoNEET shRNA were higher than those
in control shRNA-expressing cells (Fig. 7E–H). These results
demonstrate that NL-1 or mitoNEET shRNA may attenuate
oxidative-induced organ injury during LPS-induced inflammation
by upregulating expression of antioxidant-defense genes.

DISCUSSION
Sepsis is one of the most serious causes of mortality worldwide.
There is increasing evidence that oxidative stress plays a major role
in organ dysfunction by driving excessive inflammation [13, 38, 39].
Inflammation-induced ROS production promotes dysfunction of
mitochondria, a major site of ROS production, thereby activating
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oxidative stress and generating a self-feeding cycle [11, 40]. Thus, a
therapeutic strategy targeting mitochondrial dysfunction has the
potential to break this vicious cycle and prevent progression of
oxidative stress and sepsis [13]. Recent studies suggest that iron is
an essential component of cellular processes such as mitochondrial
energy metabolism; however, mitochondrial iron overload is a major
cause of mitochondrial damage and ROS [13, 41, 42]. In this study,
we demonstrated that inhibiting mitoNEET, a mitochondrial iron
regulator, has a protective effect against inflammatory responses
during sepsis. MitoNEET, a mitochondrial protein, plays a key role in
energy metabolism, iron regulation, and production of ROS by
mitochondria [19, 43]. Our data show that inflammatory stimuli, such
as LPS, which induce mitochondrial oxidative damage, trigger
production of mitoNEET mRNA and protein in various animal
models of and in BMDMs (Fig. 1). Furthermore, the LPS-induced NF-
kB signaling pathway is involved in induction of mitoNEET
expression during inflammatory conditions (Fig. 1H). These data
suggest that mitoNEET could play a key role in energy metabolism
as well as in inflammation. Interestingly, expression of inflammatory
mediators IL-1β, IL-6, TNFα, iNOS, and COX2 decreased in the
presence of a mitoNEET inhibitor, NL-1, or upon expression of
mitoNEET shRNA, even in the LPS-induced sepsis model (Figs. 2, 3,
and 4). MitoNEET was first identified as a redox-sensitive
mitochondrial target of the thiazolidinedione (TZD) pioglitazone
[28, 29]. Earlier studies observed that overexpression of mitoNEET
inhibits mitochondrial iron transport to the matric and reduces ROS-
mediated damage [21]. This led to a reduction in the MMP and
accumulation of ROS in mouse adipocytes [22]. Conversely, we
found that ROS levels, MMP, and iron content were reduced in the
presence of NL-1 or mitoNEET shRNA under inflammatory condi-
tions (Figs. 5 and 6). Furthermore, expression of the antioxidant
enzyme HO-1 and the mitochondrial MnSOD isoform SOD2 was

enhanced in the presence of NL-1 or mitoNEET shRNA after LPS
administration; however, expression of SOD1, a major cytoplasmic
antioxidant enzyme, was not enhanced. The reason for these
different results could be because mitoNEET acts differently
according to the redox conditions in a cell. The biophysical
properties of mitoNEET involve electron and Fe–S cluster transfer
[17, 44, 45]. In a reducing environment, mitoNEET is incapable of
[2Fe–2S] cluster transfer; thus accumulation of iron in the
mitochondria is abrogated by accelerating loss of the [2Fe–2S]
cluster [46]. However, only when cells are under oxidative stress
does mitoNEET [2Fe–2S] transfer [2Fe–2S] clusters to apoproteins,
and electrons from NADH to oxygen or ubiquinone, in mitochondria
[18, 19, 25]. In an oxidizing environment, mitoNEET contributes to
oxidative stress and production of superoxide radicals (O2

•−) by
transferring iron to the mitochondrial matrix and electrons to
oxygen through oxidation of NADH (the electron donor). Recent
publications demonstrated that pioglitazone stabilizes the 2Fe–2S
cluster and inhibits iron transfer from mitoNEET to mitochondria.
Pioglitazone, which shows strong preferential binding to mitoNEET
in the oxidized state, may therefore act to alleviate stress caused by
Fe overload [25]. These data suggest that iron regulation via
targeting of mitoNEET rescues ROS production and mitochondrial
dysfunction in the oxidized state [41, 47, 48]. Therefore, our results
demonstrate that mitoNEET is a possible therapeutic molecule for
mitochondrial dysfunction during inflammatory diseases and sepsis.

MATERIALS AND METHODS
Cell culture and reagents
RAW264.7 cells were cultured in Dulbecco Modified Eagle Medium (Life
Technologies, Grand Island, NY, USA), 5% fetal bovine serum, 100 units/mL
penicillin, and 100mg/mL streptomycin under an atmosphere of 95% air and
5% CO2 at 37 °C. Bone marrow-derived macrophages (BMDMs) from C57BL/6
mice were isolated and differentiated as described previously [49]. Briefly, bone
marrow cells (3 × 107 cells) were cultured in macrophage-differentiation
medium with GM-CSF at 37 °C for 7 days. The adherent macrophages were
detached from culture dishes by treatment with 5% EDTA in PBS, followed by
scraping with a sterile cell scraper. The resuspended cells were then directly
seeded on cell culture plates for other experiments.
mitoNEET inhibitor, NL-1, was purchased from (Merck Millipore, Billerica,

MA, USA, 475825). Deferoxamine mesylate salt (DFO) was purchased from
(Sigma-Aldrich, St Louis, MO, D9533). Lipopolysaccharides from Escherichia
coli O26:B6, γ-irradiated, BioXtra, suitable for cell culture (Sigma-Aldrich, St
Louis, MO, L2654).

Animal experiments
Animal care and use for all experiments were approved from the animal
facilities at University of Ulsan (SWC-14-012). C57BL/6 mice were
purchased from ORIENT BIO Inc (Busan, Korea). CLP-induced polymicrobial
sepsis and fibrin clot experiment were performed as previously described
[50]. Using sterile conditions, the fibrin clot containing E. coli or S. aureus
(1 × 108 CFU) was placed within the peritoneal cavity of C57BL/6 mice.
Lipopolysaccharides from E. coli 0127:B8—purified by phenol extraction
were purchased from (Sigma-Aldrich, St Louis, MO, L3129) for LPS-induced
sepsis. mitoNEET inhibitor, NL-1 (20mg/kg), was administrated to C57BL/6
mice 12 h before LPS (20mg/kg) injection (pre-administration).

Western immunoblotting and enzyme-linked immunosorbent
assay
Total protein isolation and Western blotting were performed as described
previously [ref]. The blots were incubated with antibody an anti-CISD1
(1:2000) (Protein Tech, 16006-1-AP), an anti-β-actin (1:5000) (Sigma-Aldrich,
St Louis, MO, A5441), an anti-phospho-IkBα (1:1000) (Santa Cruz
Biotechnology, sc-8404), an anti-IkBα (1:1000) (Santa Cruz Biotechnology,
sc-847) and an anti-COX2 (1:1000) (Cayman chemical, 160106), an anti-
iNOS (1:1000) (Santa Cruz Biotechnology, sc-650) and an anti-HO-1 (1:3000)
(Enzo Life Sciences, ADI-SPA-896), an anti-SOD2 (1:3000) (Santa Cruz
Biotechnology, sc-30080), an anti-SOD1 (1:1000) (Santa Cruz Biotechnol-
ogy, sc-11407) and anti-NLRP3/NALP3 (1:1000) (Adipogen, AG-20B-0014-
C100), an-anti-P2X7R (1:3000) (Alomone Labs, APR-004) in TBST overnight
at room temperature. The blots were incubated with an anti-secondary
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Fig. 4 Expression of inflammatory mediators triggered by LPS-
induced sepsis was diminished in the presence of a mitoNEET
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LPS (20mg/kg), or LPS plus NL-1 (20mg/kg). Blood was collected
from the right atrium 48 h later, and IL-6 and TNFα levels in serum
were measured (A and B). Total RNA was harvested from the spleen
and liver. Expression of mRNA encoding iNOS and COX2 was
assessed in the spleen or liver (C and D) by quantitative real-time RT-
PCR. For all real-time PCR analyses, β-actin was used as a control for
normalization. All data are expressed as the mean ± SD from three
independent experiments. *P < 0.05 for LPS vs. LPS plus NL-1
treatment.
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antibody (1:5000) in TBST, immunoblots were detected by SuperSignal®

West Pico Chemiluminescent Substrate (Pierce) and visualized after
exposure to X-ray film.
Mouse IL-1β (R&D systems, Minneapolis, MN, USA, DY401), IL-6 (R&D

systems, Minneapolis, MN, USA, DY406), and TNFα (R&D systems, Minneapolis,
MN, USA, DY410) were measured from cell culture supernatant of BMDMs and
RAW264.7 cells using enzyme-linked immunosorbent assay (ELISA).

Quantitative real-time reverse transcription–polymerase chain
reaction (qRT-PCR)
Total RNA was isolated TRIzol reagent (Invitrogen, Life technologies,
Carlsbad, CA), Reverse transcription was performed using SuperScript™ III
First-Strand Synthesis System (Invitrogen, Carlsbad, CA). Real-time quanti-
tative PCR was conducted using iQ SYBR Green Supermix (Bio-Rad,
Hercules, CA). Triplicate samples per condition were analyzed on an
Applied Biosystems StepOnePlusTM Real-Time PCR System using absolute
quantification settings. The primers sequences were as follows: mouse
mitoNEET (forward: 5′-CAA GGC TAT GGT GAA TCT TCA G-3′ and reverse:
5′-GTG CCA TTC TAC GTA AAT CAG-3′), mouse β-actin (forward: 5′-GAT CTG
GCA CCA CAC CTT CT-3′ and reverse: 5′-GGG GTG TTG AAG GTC TCA AA-3′).
Mouse IL-1β (forward: 5′-TTG ACG GAC CCC AAA AGA TG-3′ and reverse: 5′-
AGA AGG TGC TCA TGT CCT CA-3′), mouse IL-6 (forward: 5′-GAG GAT ACC
ACT CCC AAC AGA CC-3′ and reverse: 5′-AAG TGC ATC ATC GTT GTT CAT
ACA-3′), mouse TNFα (forward: 5′- GCC TCT TCT CAT TCC TGC TTG-3′ and
reverse: 5′-CTG ATG AGA GGG AGG CCA TT-3′), mouse IL-6 (forward: 5′-

GAG GAT ACC ACT CCC AAC AGA CC-3′ and reverse: 5′- AAG TGC ATC ATC
GTT GTT CAT ACA-3′), and mouse COX2 (forward: 5′-CAA GGG AGT CTG
GAA CAT TG-3′ and reverse: 5′-ACC CAG GTC CTC GCT TAT GA-3′), mouse
iNOS (forward: 5′-AAC GGA GAA CGT TGG ATT TG-3′ and reverse: 5′-CAG
CAC AAG GGG TTT TCT TC-3′), mouse HO-1 (forward: 5′-CGC CTT CCT GCT
CAA CAT T-3′ and reverse: 5′-TGT GTT CCT CTG TCA GCA TCA C-3′), mouse
SOD2 (forward: 5′- ATG GTG GGG GAC ATA TT-3′ and reverse: 5′-GAA CCT
TGG ACT CCC ACA GA -3′). Amplification of cDNA started with 10min at
95 °C, followed by 40 cycles of 15 s at 95 °C and 1min at 60 °C.

Construction of mitoNEET shRNA-expressing cells
The mitoNEET shRNA and the nonspecific control shRNA (Sigma-Aldrich, St
Louis, MO) were transfected into RAW264.7 cells using transfection reagents
(Promega, Madison, WI, USA) according to the manufacturer’s protocol. The
sequences of mouse mitoNEET shRNA were as follows: 5′-CCG GCG TAG GAC
CTC TGA TCA TCA ACT CGA GTT GAT GAT CAG AGG TCC TAC GTT TTT TG-3′.
The expression of mitoNEET and β-actin in stable cells was measured.

Flow cytometry for total reactive oxygen species (ROS) and
superoxide measurement
Cells were treated with vehicle, LPS, LPS plus NL-1, or LPS plus DFO
(desferoxamine). Total ROS and superoxide were detected using ROS-ID®

total ROS/Superoxide Detection kit (Enzo Life Sciences, Farmingdale, NY,
USA, ENZ-51010) according to the protocol of the manufacturer.
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Fig. 5 LPS-induced reactive oxygen species and mitochondrial dysfunction are attenuated by inhibition of mitoNEET. RAW264.7 cells
expressing control shRNA or mitoNEET shRNA were treated with vehicle, LPS (1 µg/mL), or LPS plus NL-1 (20 µM) for 24 h. Total reactive oxygen
species (ROS) and superoxide anions were assayed by flow cytometry using a ROS/Superoxide Detection kit (A–D). All data shown are
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†P < 0.05 indicates significant decrease compared with control siRNA. RAW264.7 cells expressing control shRNA or mitoNEET shRNA were
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Measurements were performed on a FACS Calibur (Becton Dickinson, San
Jose, CA, USA) flow cytometer.

Flow cytometry for mitochondrial membrane potential
measurements
To measure the mitochondrial membrane potential, cells were stained
using the MitoProbe JC-1 staining kits (MitoProbe™ JC-1 Assay Kit for Flow
Cytometry, Thermo Fisher Scientific, Carlsbad, CA, USA, M34152) according
to the protocol of the manufacturer. Measurements were performed on a
FACSCalibur (Becton Dickinson, San Jose, CA, USA) flow cytometer (Ex=
488 nm and Em= 590 nm for JC-1 aggregates; Ex= 488 nm and Em=
529 nm for JC-1 monomers). Histogram of the percent of JC-1 red/green
ratio calculated the relative ratio of red (JC-1 polymer) against green (JC-1
monomer) fluorescence.

Confocal microscopy
RAW264.7 cells were seeded at 1 × 105 cells per well on coverslips in 24-
well plates and treated with reagents. After reagent treatment, media was
removed by washing with PBS and cells were incubated with serum free
media containing 5 µM Cell ROX red (CellROX® Deep Red Reagent for
oxidative stress detection, Invitrogen, Life Technologies, Carlsbad, CA,
C10422) or 200 nM Mitotracker red CMXRos (Invitrogen, Life Technologies,
Carlsbad, CA, M7512) and 500 nM TMRM (tetramethylrhodamine, methyl
ester, Perchlorate, Invitrogen, Life Technologies, Carlsbad, CA, T668) or
100 nM Mitotracker red (Mitochondrial marker deep red, Invitrogen, Life
Technologies, Carlsbad, CA, M22426) and 5 µM Mito-FerroGreen (Dojindo
Laboratories, Kumamoto, Japan, M489) for 30min at 37 °C in the dark.
Then, cells fixed for 20min in 4% formaldehyde, rinsed 3 times in PBS. A
nuclear counterstaining was made with a solution of 1 µg/mL Hoechst
33258 stain for 5 min and mounting on a slide Fluorescence Mounting
Medium (DAKO North America Inc, Carpinteria, CA, United States, S3023).
Olympus FV1000 MPE microscope was used to acquire images.

Statistical analysis
All results were confirmed in at least three independent experiments; data
from one representative experiment are shown. Quantitative data are
shown as means ± standard deviation and significance of statistical
analysis was determined with two-tailed, unpaired Student’s t-test. P-
values <0.05 were considered significant.

DATA AVAILABILITY
All data needed to evaluate the conclusions in the paper are present in the paper.
Additional data related to this paper may be requested from the corresponding
author.
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