Table 2.
Overall Performance analysis for the proposed brain tumour diagnosis model over diverse meta heuristic-based approaches
| Measures | PSO-CNN-EC [35] | GWO-CNN-EC [36] | WOA-CNN-EC [26] | DHOA-CNN-EC [27] | ACV-DHOA-CNN-EC |
|---|---|---|---|---|---|
| “Accuracy” | 0.94862 | 0.94466 | 0.95652 | 0.94862 | 0.96443 |
| “Sensitivity” | 0.9749 | 0.97083 | 0.97917 | 0.96694 | 0.98354 |
| “Specificity” | 0.5 | 0.46154 | 0.53846 | 0.54545 | 0.5 |
| “Precision” | 0.97083 | 0.97083 | 0.9751 | 0.97908 | 0.97951 |
| “FPR” | 0.5 | 0.53846 | 0.46154 | 0.45455 | 0.5 |
| “FNR” | 0.025105 | 0.029167 | 0.020833 | 0.033058 | 0.016461 |
| “NPV” | 0.5 | 0.46154 | 0.53846 | 0.54545 | 0.5 |
| “FDR” | 0.029167 | 0.029167 | 0.024896 | 0.020921 | 0.020492 |
| “F1-Score” | 0.97286 | 0.97083 | 0.97713 | 0.97297 | 0.98152 |
| “MCC” | 0.49179 | 0.43237 | 0.53765 | 0.45703 | 0.50865 |