Table 3.
Overall Performance analysis for the proposed brain tumour diagnosis model over diverse classifies
| Measures | DT [37] | SVM [38] | NN [39] | DNN [34] | CNN [31] | Autoencoder [33] | ACV-DHOA-CNN-EC |
|---|---|---|---|---|---|---|---|
| “Accuracy” | 0.94071 | 0.95257 | 0.94862 | 0.94466 | 0.94071 | 0.94071 | 0.96443 |
| “Sensitivity” | 0.96281 | 0.97908 | 0.96708 | 0.97095 | 0.95885 | 0.9668 | 0.98354 |
| “Specificity” | 0.45455 | 0.5 | 0.5 | 0.41667 | 0.5 | 0.41667 | 0.5 |
| “Precision” | 0.9749 | 0.97095 | 0.97917 | 0.97095 | 0.97899 | 0.97083 | 0.97951 |
| “FPR” | 0.54545 | 0.5 | 0.5 | 0.58333 | 0.5 | 0.58333 | 0.5 |
| “FNR” | 0.03719 | 0.020921 | 0.032922 | 0.029046 | 0.041152 | 0.033195 | 0.016461 |
| “NPV” | 0.45455 | 0.5 | 0.5 | 0.41667 | 0.5 | 0.41667 | 0.5 |
| “FDR” | 0.025105 | 0.029046 | 0.020833 | 0.029046 | 0.021008 | 0.029167 | 0.020492 |
| “F1-Score” | 0.96881 | 0.975 | 0.97308 | 0.97095 | 0.96881 | 0.96881 | 0.98152 |
| “MCC” | 0.37226 | 0.51531 | 0.41221 | 0.38762 | 0.37856 | 0.36919 | 0.50865 |