Table 4.
Overall performance analysis of the proposed ACV-DHOA-CNN-EC over classifier
| Methods | RELM [2] | CNNBCN [4] | CapNet [5] | DAE-JOA [7] | Proposed ACV-DHOA-CNN-EC |
|---|---|---|---|---|---|
| Accuracy | 0.92885 | 0.90909 | 0.90514 | 0.92885 | 0.95257 |
| Sensitivity | 0.95 | 0.92917 | 0.92531 | 0.95378 | 0.97119 |
| Specificity | 0.53846 | 0.53846 | 0.5 | 0.53333 | 0.5 |
| Precision | 0.97436 | 0.9738 | 0.9738 | 0.97009 | 0.97925 |
| FPR | 0.46154 | 0.46154 | 0.5 | 0.46667 | 0.5 |
| FNR | 0.05 | 0.070833 | 0.074689 | 0.046218 | 0.028807 |
| NPV | 0.53846 | 0.53846 | 0.5 | 0.53333 | 0.5 |
| FDR | 0.025641 | 0.026201 | 0.026201 | 0.029915 | 0.020747 |
| F1-Score | 0.96203 | 0.95096 | 0.94894 | 0.96186 | 0.97521 |
| MCC | 0.40919 | 0.35233 | 0.30852 | 0.4365 | 0.43192 |