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A new fingerprinting technique with the potential for rapid identification of bacteria was developed by
combining proton magnetic resonance spectroscopy (1H MRS) with multivariate statistical analysis. This
resulted in an objective identification strategy for common clinical isolates belonging to the bacterial species
Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pneumoniae, Streptococcus
pyogenes, Streptococcus agalactiae, and the Streptococcus milleri group. Duplicate cultures of 104 different isolates
were examined one or more times using 1H MRS. A total of 312 cultures were examined. An optimized classifier
was developed using a bootstrapping process and a seven-group linear discriminant analysis to provide ob-
jective classification of the spectra. Identification of isolates was based on consistent high-probability classi-
fication of spectra from duplicate cultures and achieved 92% agreement with conventional methods of iden-
tification. Fewer than 1% of isolates were identified incorrectly. Identification of the remaining 7% of isolates
was defined as indeterminate.

In both clinical and industrial laboratories, methods for
identification of microorganisms have historically been based
on multiple phenotypic characters, including morphological
features and a range of biochemical reactions. These tests are
often time-consuming and/or relatively expensive in their ap-
plication, and some are imprecise. Recently, alternative meth-
ods have been investigated in an attempt to develop a single,
rapid method for characterization and identification of micro-
organisms. These have included Fourier transform infrared
spectroscopy (11, 14), pyrolysis mass spectrometry (12), elec-
trospray ionization mass spectrometry (7), UV resonance Ra-
man spectroscopy (15), and protein electrophoresis (16).
While reports of these techniques suggest the possibility of
rapid and reliable identification of some groups of microor-
ganisms, most have been tested with small data sets. With the
exception of Fourier transform infrared spectroscopy, they are
destructive techniques which analyze cellular decomposition
products. All have the limitation that they do not directly yield
information about the biochemistry of the intact viable organ-
ism.

In contrast, magnetic resonance spectroscopy (MRS) of vi-
able cells can provide information on a large range of metab-
olites. Biological applications of MRS most commonly exploit
the noninvasive nature of the technique to study aspects of
cellular biochemistry in living systems (6). However, not all
applications of MRS require or include identification of the

metabolites contributing to the MR spectrum. Pattern recog-
nition techniques, which detect gross spectral characteristics
associated with a priori-defined classes (such as pathological
conditions), have been successfully applied to MRS of both
tissues and body fluids. Accurate and reliable classifiers based
on multivariate analyses of 1H MR spectroscopic data have
been developed and validated for objective diagnosis of thyroid
(21), ovarian (22), prostate (9), breast (13), and brain (20)
tumors. In some pathologies, MRS is able to detect malignancy
before morphological manifestations are visible by light mi-
croscopy (17).

A one-dimensional 1H MR spectrum of a bacterial cell sus-
pension provides an overview of hydrogen-containing com-
pounds that are tumbling rapidly on the MR timescale. Con-
sequently, the 1H MR spectrum will be more representative of
the physiology of the cell (metabolite pools) than of its struc-
ture (comprising immobile components such as the cell wall).
While many different bacterial groups may express and utilize
essentially identical metabolic pathways, it might reasonably be
expected that differing levels of enzyme expression and activity
in different groups would give rise to distinctly different levels
of particular metabolites when dissimilar groups are grown in
similar environments. We therefore proposed that significantly
different metabolite pool sizes would be detected as differences
between the 1H MR spectra of the different bacterial groups.
This was suggested in a previous study comparing selected
bacterial 1H MR spectra (5); however, the small number of
isolates examined and the qualitative identification methods
described in that study did not permit automation or quanti-
tative comparison of the species groups.

We show here that it is possible, using simple linear discrimi-
nant analysis (LDA) on 312 cultures of 104 different isolates, to
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make reliable automated identifications of bacteria on the ba-
sis of their 1H MR spectra.

MATERIALS AND METHODS

Storage and culture of bacteria. Isolates were obtained from the collection of
the Centre for Infectious Diseases and Microbiology Laboratory Services, Insti-
tute of Clinical Pathology and Medical Research, Sydney, Australia and the
American Type Culture Collection, or were recent clinical isolates from the
clinical identification laboratory of the Centre for Infectious Diseases and Mi-
crobiology Laboratory Services. Stored isolates were suspended in 10% glycerol
in nutrient broth at 270°C. Horse blood agar (HBA) was prepared by addition
of sterile horse blood to autoclaved blood agar base (Oxoid, Basingstoke, United
Kingdom or Amyl Media, Sydney, Australia). Isolates retrieved from storage
were subcultured onto 5% horse blood agar and incubated in 5% CO2 for 18 to
24 h at 37°C. New isolates and isolates subcultured on HBA after storage were
streaked onto duplicate HBA plates, incubated at 37°C for 18 to 24 h, and then
stored at ambient temperature (20 to 30°C) for 3 to 9 h before being subjected
to spectroscopy.

To test for short-term method variability, we examined duplicate cultures of all
isolates. To test for long-term culture and method variability, we recultured a
number of isolates up to six times over an 8-month period. Included in the
analysis were spectra of three isolates of Enterococcus gallinarum and three
isolates of E. casseliflavus, which are closely related to E. faecalis (10) (Table 1).
The number of distinct isolates examined from each species group and the
number of times the isolate was recultured and reexamined can be determined
from Table 1.

Conventional identification of bacteria. Staphylococcus aureus was identified
on the basis of positive coagulase (using rabbit or human plasma) and DNase
tests. Staphylococcus epidermidis was identified using the API ID32 staph test
(BioMérieux, Marcy l’Etoile, France). Streptococcus and Enterococcus species
were identified by conventional methods, i.e., optochin sensitivity (Streptococcus
pneumoniae), salt tolerance and bile-esculin positivity (Enterococcus spp.), latex
agglutination (Streptococcus agalactiae), and by the API ID32 strep test (Bio-
Mérieux). All tests were carried out as specified by the manufacturers. In general,
isolates were identified only once, upon receipt in the microbiology laboratory
and prior to storage. Some isolates retrieved from storage were reidentified by
conventional tests.

1H MRS. Bacterial colonies (2 to 200 mg [wet weight]) were gently removed
from the HBA plate with a plastic inoculating loop and suspended by vortexing
in 0.3 ml of phosphate-buffered saline (pH 7.2, room temperature) made up in
D2O (PBS-D2O). For most cultures, .80% of cells were scraped off the plate. In
cases of heavy growth, ,10% of cells were harvested, usually from the first
quadrant. The suspension was immediately transferred to a 5-mm-diameter
susceptibility-matched MR sample tube (Shigemi). 1H MRS measurements were
performed at 37°C on a Bruker Avance 360 MHz MR spectrometer using a
1H/13C 5-mm probe head. One-dimensional (1D) spectra were acquired with
acquisition parameters as follows: frequency, 360.13 MHz; pulse angle, 90° (6 to
7 ms), repetition time, 1s; 8k data points, 256 or 512 transients; spectral width,
3600 Hz; total acquisition time, 10 or 20 min. The field was locked to D2O. Water
suppression was effected by a selective excitation field gradient method (double-
pulsed field gradient spin echo [DPFGSE]) (3). The spectra of cells suspended in
PBS-D2O were stable for at least 2 h at 37°C.

Signal assignment. 2D homo- and heteronuclear correlation spectra were
acquired for at least two isolates per species to assign 1D MR resonances to
specific compounds. {1H, 1H} gradient correlation spectroscopy (COSY) exper-
iments were performed in magnitude mode. The acquisition parameters were as
follows: sweep width in t2, 3,600 Hz; t2 time domain, 2K; 256 increments of 32 or
48 acquisitions each; repetition time, 1 s. Sine bell window functions were applied
in the t1 dimension, and Gaussian-Lorentzian window functions were applied in
the t2 dimension. Zero filling was used to expand the data matrix to 1K in the t1
dimension. Total correlation spectroscopy (TOCSY) spectra with mixing times of
40 and 150 ms were acquired with 256 increments of 2K data points and 32
acquisitions (1). {1H, 13C} one-bond shift correlation spectra were obtained in
the 1H detection mode using a gradient heteronuclear single quantum coherence
(HSQC) pulse sequence (23). The 1H MR spectral width was 3,600 Hz, and the
13C MR spectral width was 15,000 Hz. 13C MR decoupling during acquisition was
achieved by using globally optimized alternating phase rectangular pulses
(GARP) (18). The evolution time (t1) was incremented to obtain 400 FIDs, each
of 40 to 64 acquisitions and consisting of 2K data points. The repetition time was
1 s. A sine bell window function was applied in the t2 dimension, and a Gaussian-
Lorentzian function was applied in the t1 dimension. Zero filling to 1 K was used
in the t1 dimension prior to Fourier transformation. {1H, 13C} gradient hetero-

nuclear multiple-bond correlation (HMBC) spectra were acquired without pro-
ton decoupling using the same parameters as for the HSQC experiments, except
for a 13C MR spectral width of 20 kHz (23). One-bond and long-range correla-
tion experiments were usually optimized for 1JC,H of 140 Hz and nJC,H of 7 Hz,
respectively. 1D 1H MR spectra were acquired before and after the 2D experi-
ments to verify absence of metabolic changes.

Data processing. Spectra were processed using Bruker XWINNMR spectrometer
software. Zero filling was performed to extend the free induction decay data set
to 16K. An exponential window function was applied before Fourier transfor-
mation, yielding a line broadening of 1 Hz. Chemical shift calibration was
performed by setting the center of the spectrum to 4.64 ppm (the nominal
position of the water resonance with respect to tetramethylsilane in PBS-D2O at
37°C). Spectra were manually phase corrected to achieve a linear and flat base-
line. Sixteen contiguous fixed integration regions were subjectively chosen on the
basis of major peaks present in the representative spectra (see Fig. 1). The
individual integrals were normalized to the total intensity of the 16 integrals.

LDA. The table of integrals was imported from Microsoft Excel into STATISTICA

(StatSoft Pacific P/L) for LDA. Each of the first 15 of 16 chosen integral regions
(see Results) formed one independent variable in the seven-group LDA (stan-
dard method, tolerance 0.01, a priori classification probability proportional to
group size). The 16th region (arbitrary choice) was omitted from the LDA
because, in a normalized data set, one region is redundant for discriminant
analysis. Information from the omitted region is “embedded” in the remaining
regions. Classification functions and classification probabilities were calculated
with STATISTICA.

Classification of spectra and identification of isolates. In this paper we use the
following definitions. The term “classification” refers to assignment of an indi-
vidual spectrum from a bacterial culture to a species group. “Identification”
refers to assignment of an isolate to a species group (on the basis of classification
of two independent spectra derived from duplicate cultures of the isolate).
“Correct classification” refers to assignment of a spectrum to the same species
group as conventional classification with a percent classification probability of
$85%. The chosen percentage is arbitrary but is considered a reasonably high
probability for confident assignment. “Misclassification” refers to assignment of
a spectrum to a species group different from conventional classification with a
percent classification probability of $85%. “Indeterminate classification” refers
to assignment of a spectrum to any species group with percent classification
probability of ,85%. “Correct identification” refers to assignment of both spec-
tra of duplicate cultures according to conventional identification and with an
average percent classification probability of $85%. “Misidentification” refers to
assignment of both spectra of duplicate cultures to the same species group but
different from conventional identification and with an average percent classifi-
cation probability of $85%. “Indeterminate identification” refers to assignment
of spectra of duplicate cultures to different groups or the same group with an
average classification probability of ,85%.

An optimized seven-group classifier was developed based on the bootstrap
method (2) modified and renamed the robust bootstrap method by Somorjai et
al. (19). Starting with all 312 spectra, we randomly selected half the spectra from
each species group and used this training set to train the seven-group classifier
(LDA). The resulting classifier was then used to validate the remaining spectra
(the test set). This process was repeated B times (with replacement), and every
time the optimized LDA coefficients were saved. The weighted average of these
B sets of LDA coefficients produces the final classifier (B 5 1,000). The weight
for the mth set is Wm 5 KmCm

1/2 (m 5 1,. . .,B), where 0 # Cm # 1 is the
crispness (defined as the fraction of test samples assigned to a class with a
percent probability of $75%) and 0 # Km # 1 is Cohen’s chance-corrected
measure of agreement (4), with Km 5 1 signifying the perfect classification of a
test set. The weights Wm were obtained not for the bootstrap training sets but for
the less optimistic test sets. The optimized classifier was then used to classify all
312 spectra. Classifier outcome is reported as a normalized percent class prob-
ability.

The Robust BootStrap classification software was written in-house using STA-
TISTICA, Microsoft EXCEL, and Microsoft VISUAL BASIC FOR APPLICATIONS and run
on a Pentium-based personal computer. The VISUAL BASIC FOR APPLICATIONS code
is available from the authors.

RESULTS

1H MR spectra. Representative spectra of each of the seven
species groups and the 16 integration regions chosen for anal-
ysis are shown in Fig. 1. Spectra of ATCC type strains are
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TABLE 1. Classification and identification results with optimized classifier

Species group Lab. no.

Classification probabilitya

Error
groupb

ID
resultcInitial

culture

Repeat cultures:

1 2 3 4 5 6

E. faecalis (18 isolates,
60 cultures)

ATCC 29212 100, 100 100, 100 100, 100 100, 100 100, 100 100, 99 c
083-1246 96, 98 c
175-1753 100, 100 c
184-0712 100, 100 100, 100 c
184-0721 100, 100 62, 97 100, 100 c
200-1831 100, 98 77, 87 i
200-2616 100, 100 99, 100 c
206-0685 100, 100 98, 94 c
270-2132 100, 100 c
273-2358 100, 100 c
282-0250 100, 100 c
282-0407 100, 100 c

(gallinarum) 182-2747 98, 96 98, 100 c
(gallinarum) 14/04/56 100, 100 c
(gallinarum) 14/04/53 100, 100 c
(casseliflavus) 14/04/58 87, 76 i
(casseliflavus) 14/04/52 100, 100 c
(casseliflavus) 207-2246 100, 100 c

S. aureus (18 isolates,
56 cultures)

ATCC 25923 100, 100 100, 100 100, 100 100, 100 100, 100 100, 100 c
008-1690 100, 100 c
040-2754 100, 100 c
099-1094 89, 91 c
124-2873 100, 100 94, 100 c
127-2131 100, 100 58, 82 i
127-2297 100, 100 100, 100 c
242-2881 100, 100 c
261-1095 100, 100 c
271-0835 99, 100 c
281-2429 100, 100 c
29213 100, 100 c
319-2410 100, 100 c
320-2161 100, 100 c
320-2356 72, 100 100, 100 100, 100 c
323-0934 100, 100 c
323-1573 100, 100 c
338-1348 100, 100 c

S. epidemidis (14 isolates,
40 cultures)

ATCC 12228 100, 100 100, 100 100, 98 100, 100 50, 84 i
003-1283 100, 100 75, 100 c
141-1667 100, 100 c
162-2710 100, 100 c
170-1085 100, 99 c
174-2177 100, 89 c
177-1320 61, 99 i
270-0170 100, 100 c
281-0122 100, 100 c
289-1072 95, 99 c
319-1923 100, 100 c
323-1622 100, 100 c
326-2592 100, 100 c
327-2569 100, 100 c

S. agalactiae (15 isolates,
36 cultures)

048-1676 100, 100 c
159-2821 100, 100 c
165-1046 98, 97 S. milleri group i
176-0797 100, 100 100, 100 100, 100 c
183-2646 100, 100 c
208-2835 100, 100 c
242-1786 100, 100 c
260-1829 100, 100 c
269-0712 100, 100 c
269-1137 100, 100 c
269-1160 100, 100 c
270-1106 100, 100 c
285-2806 100, 100 c
290-1094 100, 100 c
291-1523 100, 100 c

S. milleri (group 11 isolates,
30 cultures)

073-0596 100, 100 c
097-1166 100, 100 c

Continued on following page
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shown where available; otherwise spectra of isolates close to
the group centroid (based on integral intensities) of all spectra
are shown. The most significant contributing metabolites iden-
tified for each integration region and used for the statistical
analyses are listed in Table 2. Since it is not possible to show
the range of spectral patterns found in the 30 to 60 spectra
examined from each species group, we show in Fig. 2 the range
of normalized integral intensities (mean 6 standard deviation
SD) measured for each species group.

Classification of spectra and identification of isolates. The
results of the classification of 312 spectra and identification of
104 isolates from the seven species groups based on the opti-
mized classifier are shown in Table 1. A summary of results in
terms of classification and identification performance is shown
in Table 3. Less than 2% of spectra were misclassified, and less
than 1% of isolates were misidentified. Nineteen spectra had a
classification of indeterminate.

Reproducibility of spectra. Independent analysis of spectra
from concurrent, duplicate cultures and of isolates retrieved

repeatedly from storage over a 1 to 8-month period confirmed
that the classification method is robust and is not affected by
short- or long-term procedural variability due to factors such as
minor changes in culture conditions, number of organisms, or
storage of isolates (Table 1).

DISCUSSION

1H MRS and selection of independent variables for multi-
variate analysis. Visible differences between typical spectra of
some species are readily observed, as seen in Fig. 1. However,
differences between spectra of species such as S. pyogenes and
S. pneumoniae are not obvious by visual inspection, and the
only possibility of reliably distinguishing between such similar
groups lies in a multivariate analysis of the data. The initial
step in such an analysis is the extraction from the spectra,
which are composed of many thousands of data points, of a
manageable set of independent variables in which any signifi-
cant group differences are manifest. While sophisticated meth-

TABLE 1—Continued

Species group Lab. no.

Classification probabilitya

Error
groupb

ID
resultcInitial

culture

Repeat cultures:

1 2 3 4 5 6

141-0714 100, 100 99, 100 c
141-1834 99, 100 c
150-1172 100, 100 c
164-0507 98, 89 c
185-1175 100, 100 100, 99 c
291-0591 98, 96 c
291-1767 42, 94 100, 99 i
349-2486 42, 47 92, 84 i
408-0803 100, 100 c

S. pneumoniae (15 isolates,
42 cultures)

ATCC 6305 99, 100 100, 100 97, 100 100, 99 100, 100 100, 99 100, 100 S. pyogenes i
221-2745 78, 74 c
221-2755 100, 100 c
230-2817 100, 99 c
234-1207 91, 100 c
235-2193 94, 100 c
241-1187 100, 92 c
259-1456 100, 100 c
272-0604 100, 98 c
278-1723 64, 73 i
278-1727 97, 100 c
324-1010 100, 100 c
404-0191 100, 98 c
467143 100, 100 c
480837 72, 90 c

S. pyogenes (13 isolates,
48 cultures)

ATCC 19615 96, 99 99, 100 100, 100 100, 100 100, 100 100, 100 c
162-1915 99, 59 S. pneumoniae i
213-0136 100, 70 100, 100 c
221-1798 99, 100 99, 99 c
221-2985 99, 95 95, 95 96, 95 E. faecalis (both) m
223-2690 99, 100 100, 100 c
235-3096 94, 87 c
236-1570 98, 100 c
260-2388 88, 100 93, 96 c
312-2457 99, 99 c
12/03/06 98, 99 c
326-0413 95, 100 c
3-61-70 89, 90 c

a Numbers show percent classification probabilities for each spectrum of duplicate cultures. Classification probabilities less than 85% are shown in bold typeface.
Misclassifications are underlined.

b The error group is the species to which a spectrum was incorrectly assigned.
c Isolate identification result. c, correct, i, indeterminate; m, misidentification.
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ods have been described for the selection of optimally discrim-
inating spectral regions (21), we chose a simple division of all
spectra into 16 contiguous regions visually selected on the basis
of peaks present in the spectra illustrated in Fig. 1. The ad-
vantage of this procedure is that the resultant independent
variables may be assigned a specific biochemical significance
(i.e., an independent variable may be associated with a partic-
ular metabolite or group of metabolites) if the metabolites
contributing to the signal in each integration region can be
identified. Although we have identified in Table 2 some of the
major metabolites contributing to the spectra in Fig. 1, the
bacterial identification method applied here does not depend
on identification or quantitation of the metabolites contribut-
ing to the MR signal. It is, however, important to note that the
measured cellular characteristics on which the classification is
based are substantially different from those detected during
routine identification and are also different from those mea-
sured by other whole-organism fingerprinting techniques. It
was not our intention in this study to identify metabolites
which distinguish the species groups or to construct dendro-

grams of group relationships. These will be addressed in a
separate report.

Classification and identification strategy. Classification
based on LDA requires that a set of functions derived by LDA
of a training set of data be used to classify a test set of data,
which is preferably independent of the training set (cross-
validation). The function of the training set is to describe, in
terms of the n independent variables derived from the MR
spectra, the region of n-dimensional data space occupied by
each of the a priori defined groups. If the defined groups in the
training set are well separated in data space, the LDA will
produce classification functions which assign every member of
the training set to its a priori defined group. The region of data
space associated with a particular group will increase with
phenotype variation between the members of a particular spe-
cies group and also with procedural (environmental, biochem-
ical, and methodological) variations associated with repeated
culture and classification of spectra of a specific member of a
group. A training set comprising only a small number of ran-
domly selected members of a particular group is therefore

FIG. 1. (A) Representative 1H MR spectra of E. faecalis, S. milleri, S. pneumoniae, and S. pyogenes isolates. Refer to Table 2 for the identity
of the major metabolites contributing to the spectra in each integration region. (B) Representative 1H MR spectra of S. epidermidis, S. aureus, and
S. agalactiae isolates. The intense betaine peaks in the spectra of S. aureus and S. epidermidis and the glycerol phosphocholine (GPC) peak of S.
agalactiae have been truncated to show details of the less intense peaks. The relative intensities of the betaine and glycerol phosphocholine peaks
can be seen in Fig. 2. Refer to Table 2 for the identity of the major metabolites contributing to the spectra in each integration region.
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unlikely to accurately represent the data space (phenotype
range) occupied by all members of that species group. If the
training set contains only a single measurement of each isolate
member, it may also not account for procedural variability.
Consequently, it is to be expected that some misclassifications
will occur when a classification function based on a training
subset of a group is used to classify group members which are
not members of the training set.

For classifier robustness and reliability, it is desirable that
the number of spectra per species group in the training set be
5 to 10 times larger than the number of independent variables
(19). Such large data sets are rare in the published literature
and usually difficult to acquire, especially if the derived classi-
fier is to be validated against a test set independent of the
training set. The Robust BootStrap method attenuates this
problem by allowing cross-validated classifier development
with all of the available data (19).

In an attempt to reduce the number of independent vari-
ables, we applied the forward stepwise method of seven-group
LDA and limited the number of independent variables. There
was a progressive decrease in overall classification accuracy
as the number of independent variables was decreased. In
contrast, pairwise LDA between any of the species groups
required only two to four independent variables for 100% dis-
crimination between any pair of species groups. We are pres-
ently developing software to classify multiple groups based on
a set of classifiers derived from pairwise LDA.

The ease of preparation and examination of duplicate or
even triplicate cultures of a particular clinical isolate, as used in
this study, has the advantage that a consensus identification of
the isolate based on multiple independent analyses is obtained.
This feature of our isolate identification strategy has not been
applied in other microbial whole-organism fingerprinting stud-
ies (5, 8), in which, at best, only instrument duplicates were
acquired. We have demonstrated that in a few cases the du-
plicates may be classified as different species. Consequently,
identification based on analysis of a single subculture of an

isolate cannot be assigned the same confidence level as an
identification based on classification of independent duplicate
cultures. When using conventional methods, which report an
identification probability based on analysis of a single culture
of an isolate, it is common practice to reexamine isolates for
which the identification probability is ,85%. Analysis is re-
peated until a single test returns an identification probability of
.85%. By this method, it is possible that the average identi-
fication probability of all tests on an isolate will be ,85% at the
conclusion of testing. Our method of testing duplicate cultures
and requiring that correct identification be based on an aver-
age probability of .85% imposes a more rigorous and reliable
identification constraint than would be the case with single
cultures. However, in Table 3 it can be seen that the accuracy
of identification based on classification of spectra from single
cultures would, in fact, have been similar to that based on
duplicate cultures.

Phenotypic variability within species groups was addressed
by examination of at least 11 isolates from each species group.
The general success of the classification method used indicates
that between the species groups there are significant and con-
sistent spectral differences, which are larger than the typical
range of variation within species due to procedure or pheno-
type.

Classification and identification results. The very small
number of misclassifications of spectra could not be attributed
to any specific steps of the method. Potential problems with
reproducibility due to short- and long-term procedural vari-
ability (use of different batches of culture medium, storage of
isolates, etc.) were excluded by undertaking (i) separate anal-
ysis of spectra from duplicate cultures of all isolates and (ii)
repeated culture of 25 isolates, at times up to 8 months after
original culture and spectroscopy. The single instance of mis-
identification (S. pyogenes Lab. No. 221-2985) may have been
the result of contamination.

We did not examine a sufficient number of isolates in the S.
milleri group to attempt an MRS-based assignment of the
isolates to one of the three species within the group (S. angi-
nosus, S. constellatus, and S. intermedius). However, our results
demonstrate that on the basis of the nonroutine metabolites
measured, the group is physiologically homogeneous relative
to the diversity of the seven species groups examined. Al-
though not surprising, this result is consistent with group sim-
ilarities defined by other biochemical tests. Similarly, our data
confirm that the E. casseliflavus and E. gallinarum isolates

TABLE 2. Integral regions and most significant
contributing metabolites

Region Range
(ppm)

Metabolites with resonances
in regiona

1 4.00–3.81 AA, betaine, GPC, GPE, EA
2 3.81–3.70 AA, glycerol, G3P
3 3.70–3.50 AA, GPC, glycine, choline, inositol
4 3.50–3.34 Taurine, GPE, tryptophan
5 3.34–3.10 Histidine, tyrosine, taurine, phenylalanine,

betaine, GPC, choline, inositol, PA, EA
6 3.10–2.88 Lysine, histidine, tyrosine, asparagine, PA
7 2.88–2.61 Aspartate, asparagine, methionine
8 2.61–2.42 Succinate
9 2.42–2.22 Valine, glutamine, glutamate, succinate
10 2.22–1.95 Isoleucine, glutamine, glutamate, methio-

nine, PA, N-acetyl compounds
11 1.95–1.80 Acetate, lysine, isoleucine
12 1.80–1.58 Leucine, lysine
13 1.58–1.40 Lysine, alanine
14 1.40–1.23 Lactate, isoleucine, threonine
15 1.23–1.08 None identified
16 1.08–0.75 Valine, leucine, isoleucine

a Abbreviations: AA, amino acid (nonspecific); PA, polyamine; GPC, glycerol
phosphocholine; GPE, glycerol phosphoethanolamine; EA, ethanolamine; G3P,
glycerol-3-phosphate.

TABLE 3. Summary of classification and identification results

Classification or
identification type Count % of total

Classification type
Correct 288 92.3
Indeterminate 19 6.1
Misclassification 5 1.6
Total 312 100.0

Identification type
Correct 144 92.3
Indeterminate 11 7.1
Misidentification 1 0.6
Total 156 100.0
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examined are physiologically more similar to E. faecalis than to
the Streptococcus and Staphylococcus species tested.

Choice of growth medium. In selecting the most appropriate
medium for use in a clinical diagnostic or reference laboratory,
we reasoned that choice of a universal growth substrate and
ease of sample preparation were of prime importance. Since
HBA is a common medium in use in diagnostic microbiology
laboratories in Australia and since bacterial cells could be
easily harvested directly from HBA plates without the need for
washing, we chose this growth medium as best satisfying our

objectives. It is of note that there were differences between our
spectra and those published for S. aureus and E. faecalis grown
on Trypticase soy sheep blood agar (5). In the latter study,
interpretation of spectral patterns was reportedly not affected
by the choice of growth medium, possibly because spectral
patterns were inspected visually and distinguished by peak
positions rather than peak intensities. We found previously
that growth on or in different media (HBA versus brain heart
infusion broth) affected the relative peak intensities (due to
changes in metabolite pool sizes) much more significantly than
it affected peak positions, which may be slightly affected by
factors such as intracellular pH (R. Bourne, unpublished data).
These differences suggest that the analysis is dependent on the
constraint that all cultures must be grown on the same me-
dium.

Clinical application. There are several characteristics of the
method used in this study which point to the robust nature of
the identification. First, the growth conditions for the samples
are not strictly controlled. For example, the precise constitu-

FIG. 2. Range of measured integral intensities for each species
group. The means (bars) and standard deviations (error bars) are
shown.
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tion of the growth medium may vary from batch to batch (base
media from two different manufacturers and multiple batches
of horse blood were used). The size of the inoculum may vary
from plate to plate. Growth of bacteria on an agar plate is
inherently inhomogeneous, due to crowding and slow diffusion
of oxygen and other nutrients through colonies and agar. Our
early experiments with triplicate cultures of all isolates dem-
onstrated a lack of variation in spectra from cells grown on
single batches of medium. Due to large variations between
species in the amount of growth obtained overnight on HBA
plates (the growth of S. milleri was usually very poor), the wet
weight of cells resuspended varied from 2 to 200 mg. Since the
MR signal is directly proportional to the sample concentration,
there is no need to standardize the sample density. Poor bac-
terial growth required only an extended number of transients
to achieve an adequate signal-to-noise ratio.

The phase correction and integration steps of spectrum pro-
cessing, as implemented, required some subjective operator
input. These deficiencies in the method will introduce some ex-
tra variance into the data. They may be overcome by procedures
not presently available in our laboratory (use of magnitude
spectra and automated integration [22]). Other whole-organism
fingerprinting techniques are reported to require strict control
of growth media and repeated standardization with control
cultures (11, 12).

The nondestructive nature of the method enables retention
of viable organisms postanalysis for subsequent checking of
contamination or methodological errors.

The use of more sophisticated pattern recognition methods
than those used in our study (19) may further improve discrim-
ination and allow separate classification within the species
groups, albeit at the possible expense of easily interpreted
biochemical information. For an application dedicated to iden-
tification rather than characterization, this would be an accept-
able compromise.

We have demonstrated that, in principle, MRS may be com-
bined with automated pattern recognition techniques to iden-
tify bacteria to the species level. We have recently achieved
identification results of similar accuracy for six gram-negative
species and for two Cryptococuccus neoformans varieties (un-
published results). The extreme ease of sample preparation,
biochemically informative results, rapid automated identifica-
tion, and the robust nature of the method are attractive for clin-
ical and industrial applications. In practice, MR-based identi-
fication may be of most value for bacterial species which are
relatively slow growing or difficult to identify by conventional
methods.
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