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The last several years have seen an emergence of literature documenting the utility of combination antimicrobial therapy, partic-
ularly in the salvage of refractory methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. Recent clinical data are shaping 
conundrums of which regimens may be more beneficial, which can be potentially harmful, and which subset of patients stand to 
benefit from more aggressive treatment regimens than called for by current standards. In addition, the incorporation of combination 
therapy for MRSA bacteremia should be accompanied by the reminder that antimicrobial therapy does not need to be uniform for 
the entire duration, with an early intensive phase in high inoculum infections (eg, with combination therapy), followed by a consol-
idation phase (ie, monotherapy). This review and perspective consolidates the recent data on this subject and directs future goals in 
filling the knowledge gaps to methodically move forward towards improving patient outcomes.
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STANDARD-OF-CARE (SOC) FOR MRSA 
BACTEREMIA: ROOM FOR IMPROVEMENT?

The first consideration when assessing combination versus 
SOC monotherapy regimens (vancomycin or daptomycin) for 
MRSA bacteremia is the SOC performance in clinical prac-
tice and clinical trials. After all, medical need for alternatives 
would be low if SOC reflected steady progress with successive 
improvement in patient outcomes over time. Unfortunately, this 
is not the case for serious MRSA infections such as bacteremia 
and endocarditis, as vancomycin has served as the corner-
stone of therapy from the time MRSA was a sporadic pathogen 
in the 1970s, to a common healthcare pathogen in the 1980s, 
to a community-based pathogen around 2000 [1]. Although 
daptomycin costs have fallen dramatically after generic intro-
duction, vancomycin remains the standard initial treatment 
of MRSA bacteremia at nearly every institution. Previous re-
views note the use and limitations of these primary therapies 
for MRSA bacteremia [2, 3]. The discordance between antibi-
otic susceptibility testing and clinical success with vancomycin 
remains; S. aureus vancomycin resistance is exceedingly rare in 
traditional bacterial medium; however, vancomycin treatment 

failure, including persistent bacteremia is quite common [4, 
5]. Concurrently, despite progress and improvements in many 
other common medical conditions—for example, 30-day mor-
tality for acute myocardial infarction decreased by 50% from 
1984 to 2008—patient mortality rates in S. aureus bacteremia in 
general and MRSA in particular have remained fairly constant 
over this time period [2].

COMBINATION THERAPIES FOR MRSA BACTEREMIA

Vancomycin Plus β-Lactams

Interest in the specific combination of vancomycin with 
β-lactams against MRSA bacteremia first emerged due to the 
so-called seesaw effect, an inverse relationship between van-
comycin and β-lactam susceptibility observed in some van-
comycin intermediate-resistant S.  aureus (VISA) strains [6]. 
Indeed, early studies revealed better activity of ampicillin-
sulbactam over vancomycin against these strains [7].

 MRSA susceptibility to β-lactams is enhanced coincident 
with the emergence of decreased susceptibility to vancomycin, 
despite the presence of the mecA product, PBP2a. In rare in-
stances, deletion of mecA and conversion back to MSSA oc-
curs under vancomycin selection pressure [6]. The mechanism 
for the seesaw effect may lie in chaperon protein PrsA altering 
PBP2A maturation [8], and clinical validation of this notion 
holds merit and may solidify the combination against S.  au-
reus. As such, the potential clinical utility of the combination 
is extensive and the inspiration for numerous investigations. 
Experimental models consistently validate vancomycin synergy 
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with different β-lactams in vancomycin susceptible MRSA po-
tentially through dual effects on peptidoglycan synthesis [7, 8].

In study by Truong et  al, vancomycin combined with var-
ious β-lactams resulted in a significant reduction in clinical 
failure in vancomycin susceptible strains (minimum inhibitory 
concentration (MIC) ≤ 2 mg/L) [9]. A similar investigation by 
Casapao et al found no significant difference in clinical failure 
but revealed shorter median duration of bacteremia in patients 
receiving combination [10]. In the Combination Antibiotics for 
Methicillin-Resistant Staphylococcus aureus-1 (CAMERA-1) 
randomized controlled trial, a decrease in average duration 
of bacteremia by 1 day (P = .06) was observed in patients re-
ceiving flucloxacillin plus vancomycin relative to vancomycin 
alone [11]. The follow-up CAMERA-2 study, the most rigorous 
clinical trial on the subject, will be discussed in detail in a sep-
arate section below.

Daptomycin Plus Antistaphylococcal β-Lactams

The mechanisms underpinning daptomycin synergy with 
β-lactams are well established [12]. As a functional cationic 
peptide, daptomycin is attracted to the negatively charged 
cellular bacteria surface. In MRSA, β-lactams enhance 
daptomycin binding to cell membranes by inducing more neg-
atively charged cell surfaces resulting in potent bactericidal 
synergy [13]. However, select β-lactams such as meropenem 
may not increase overall daptomycin binding, but rather fo-
cally enhances divisome-specific binding, where daptomycin 
exerts its most potent effect [14, 15]. In addition, β-lactam 
inhibition of select penicillin-binding proteins (PBPs), such 
as PBP1, in MRSA may provide added synergistic mechanism 
and prevent resistance development [14, 16]. Importantly, 
corresponding in vivo animal models of daptomycin plus 
β-lactam treatment demonstrate enhanced clearance of MRSA 
in target tissues [17].

In a small case series of patients with persistent MRSA bac-
teremia, Dhand and colleagues described 7 cases of daptomycin 
combined with an antistaphylococcal β-lactam (primarily 
nafcillin) resulting in rapid clearance and infection resolution, 
including examples in daptomycin-resistant MRSA. This syn-
ergistic effect was linked to enhanced daptomycin binding and 
cidality [13]. Subsequent case series and cohort studies were lim-
ited by small sample sizes and use of β-lactam plus daptomycin 
as salvage therapy [18–21]. A  large (n = 229) retrospective, 
comparative cohort study by Jorgensen et  al addressed these 
limitations by evaluating MRSA bacteremia patients treated 
with daptomycin alone versus daptomycin combined with a 
β-lactam for at least 72 hours and initiated within 5 days of cul-
ture [19]. The β-lactams were diverse and included cefepime, 
cefazolin, ceftaroline, ceftriaxone, meropenem, piperacillin/
tazobactam, ertapenem, and ampicillin-sulbactam; significantly 
reduced odds of clinical failure occurred in the dual therapy 
cohort (adjusted odds ratio [OR] = 0.386) [19]. This study 

identifies potential benefits of using β-lactams in combination 
with daptomycin when added early in the bacteremia course.

Daptomycin Plus Ceftaroline

An important limitation of the above β-lactam studies for 
MRSA is that, although synergistic with SOC agents and 
known to enhance innate immunity [22], the β-lactams under 
study do not possess direct bactericidal MRSA activity. In con-
trast, ceftaroline is active against MRSA by binding to PBP2A 
and inhibiting peptidoglycan transpeptidation, but it is not 
approved by the Food and Drug Administration (FDA) for 
bacteremia [23]. Like other β-lactams, ceftaroline enhances 
daptomycin cell membrane binding [24]. In one of the first 
case reports, ceftaroline was added to daptomycin to treat a pa-
tient who developed persistent, daptomycin-resistant MRSA. 
Interestingly, this not only cleared persistent bacteremia but 
also reverted the MRSA back to a daptomycin-susceptible phe-
notype [25]. Subsequent case series of this combination therapy 
demonstrated similar success [26, 27].

A large retrospective matched cohort study among 3 insti-
tutions compared patients with MRSA bacteremia treated with 
SOC versus daptomycin plus ceftaroline [28]. Many of the 
combination patients were inherently high-risk because the 
combination was used in a salvage role, but despite this con-
sideration, daptomycin-ceftaroline resulted in clearance of 
persistent MRSA bacteremia and a numerically lower 30-day 
mortality rate than SOC (8.3% vs 14.2% at 30 days). In patients 
switched to combination early in the course of bacteremia with 
an endovascular source, there was a further trend for improved 
survival (Figure 1).

A randomized-controlled open-label pilot study attempted to 
provide clarity on the value of this combination [29]. Patients 
with MRSA bacteremia at 3 institutions were randomized to 
receive daptomycin 6–8  mg/kg daily plus ceftaroline 600  mg 
every 8 hours or SOC monotherapy. The study was designed 
to measure both bacteremia duration and mortality; however, 
interim analysis showed an in-hospital mortality rate of 26% 
for the SOC arm and 0% for daptomycin plus ceftaroline group 
(P = .029), resulting in early study termination due to the ethics 
of continuing such a study in an open-label format. The me-
dian duration of bacteremia was similar between the 2 groups. 
Importantly, there were minimal treatment-related adverse 
events [29]. Some critiques of this study have been proposed 
including questions on premature termination without prede-
fined designated data safety monitoring board and stopping 
rules, and external validity [30]. However, it sheds light on the 
potential utility of this combination in high-risk MRSA bacte-
remia patients and provides a baseline for future studies.

Daptomycin Plus Fosfomycin

Fosfomycin inhibits the formation of the peptidoglycan 
precursor UDP N-acetylmuramic acid, an early step in 
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peptidoglycan synthesis, there is potential for dual mecha-
nistic synergy with daptomycin [31]. In vitro results confirm 
synergy in various assays and model systems [32–34], and the 
combination has been shown to slow daptomycin resistance de-
velopment [33]. Animal models of experimental infective en-
docarditis and osteomyelitis also show effective bacterial killing 
[34–36].

Clinical success of daptomycin plus fosfomycin was de-
scribed in 3 patients with left-sided staphylococcal endocarditis 
[37], leading to the design of a randomized controlled clinical 
trial in MRSA bacteremia. The trial compared daptomycin plus 
fosfomycin (10 mg/kg intravenously daily and 2 g intravenously 
every 6 hours, respectively) to daptomycin 10  mg/kg mono-
therapy. Initial results with the combination appear prom-
ising––54% cure with combination therapy versus 42% with 
monotherapy (relative risk, 1.29 [95% confidence interval, .93–
1.8]; P = .135) and greater bacteremia clearance by day 7 [38]. 
But again, there were few patients with complicated bacteremia; 
only 12% of patients had confirmed endocarditis, although 45% 
of patients had catheter sources of bacteremia. Furthermore, 
more patients in the combination therapy group had treatment-
limiting adverse events (P = .018), so the safety profile appears 
to favor monotherapy. Although intravenous fosfomycin is not 
yet available in several countries including the United States, 
this combination therapy holds promise for future evaluation 
and consideration.

Putting CAMERA-2 Under the Microscope

In one of the most ambitious study designs of MRSA combi-
nation therapy, CAMERA-2 compared SOC monotherapy 
to combination therapy of a SOC agent with flucloxacillin/

cloxacillin or cefazolin in those with a history of mild penicillin 
allergy. Although the protocol allowed daptomycin or vanco-
mycin, 348/352 (99%) patients in the trial received vancomycin, 
rendering this in essence a vancomycin plus β-lactam versus 
vancomycin study. Similar to CAMERA-1, the authors found 
shorter bacteremia duration with addition of a β-lactam but de-
tected acute kidney injury (AKI) of sufficient magnitude in the 
combination therapy group to terminate the study at the rec-
ommendation of the data safety monitoring board. Overall, the 
study showed no benefit of adding a β-lactam to vancomycin, 
with the shortening of duration of bacteremia being negated by 
the AKI [39]. Therefore, although numerically large, the neg-
ative results of CAMERA-2 cannot be extended to all MRSA 
combination therapy [40]. Some salient features of the trial bear 
discussion for conclusions to be drawn in context.

First, the CAMERA-2 patients showed an 11% all-cause mor-
tality at 42 days for the standard vancomycin monotherapy arm, 
which is approximately half of the 20–25% generally accepted 
in the literature. This may have been due to the fact that only 
4.3% of patients in the study had confirmed endocarditis, al-
though 38% had skin or intravenous line sources of bacteremia, 
a low-risk group where there is no medical need for combina-
tion therapy. Regardless, such low mortality does not reflect real 
world practice settings and hardly left room for improvement 
with any alternative comparison.

Second, with the data that emerged since development of the 
CAMERA-2 study protocol pointing to AKI risk with vancomycin 
plus piperacillin/tazobactam, these results confirm nephrotoxicity 
in vancomycin plus some penicillins [41]. Importantly, the addi-
tion of cefazolin, a β-lactam with a better safety profile compared 
to antistaphylococcal penicillins [42], to vancomycin in the small 

Figure 1. Data from McCreary et al [28] demonstrating mortality in patients treated with SOC vancomycin or daptomycin versus DAP + CPT in all patients, those switched 
to DAP + CPT early in the course of bacteremia (<72 hrs), and those switched early with an endovascular source of bacteremia. Abbreviations: DAP+CPT, daptomycin plus 
ceftaroline; SOC, standard of care. aSOC represents all patients since no switch occurred. bSOC represents patients with an endovascular source. 
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subset of 27 patients found only 1 patient developed AKI (Figure 
2). Other clinical studies with vancomycin combined with ceph-
alosporins, including cefazolin, demonstrate improved clinical 
response, and low nephrotoxicity potential, but these studies are 
limited by retrospective design, small sample size, and suboptimal 
evaluation of nephrotoxicity [43–45].

Some helpful insights regarding nephrotoxicity potential of 
different β-lactams when combined with vancomycin can be 
made when reviewing the study by Wolman et al showing that 
lipophilic beta-lactams are recognized by the organic anion 
transporter 3 (OAT-3), allowing for drug accumulation within 
proximal tubular cells [46]. Coupled with vancomycin, which 
may already be placing mitochondrial stress on the proximal 
tubular cells [47], OAT-3 mediated intracellular accumulation 
of lipophilic β-lactams may cause mitochondrial injury in these 
highly metabolically active cells. Given that the endosymbiosis 
theory places primordial origins of mitochondria as intracel-
lular bacteria [48], the potency of combination therapy may 
have a price on these organelles if β-lactam plus vancomycin 
concentrations are high enough in the cell. Indeed, when one 
reviews the partition coefficient (relative solubility in organic 
versus aqueous solvents) of the various β-lactams, striking par-
allels are seen between nephrotoxic hydrophobic β-lactams with 
vancomycin (eg, piperacillin, anti-staphylococcal penicillins) 
versus hydrophilic ones with less nephrotoxic potential (eg, am-
picillin, most cephalosporins). Therefore, until more definitive 
data exist, we recommend utilizing β-lactams with vancomycin 
with these points in mind.

ROLE FOR PATIENT RISK STRATIFICATION FOR 
THERAPY SELECTION

Consistent limitations of clinical trials in S. aureus bacteremia 
is the “one size fits all” approach where all patients are treated 

in the same manner regardless of outcome risk. S. aureus bacte-
remia trials enroll patients with bacteremia from skin and soft 
tissue infection and catheter sources as well as endovascular 
sources. Although these might be equally distributed among the 
randomization groups, a superior or inferior therapy is hard to 
discern because it is not powered for the high-risk endovascular 
source patients who may benefit from combination or other 
novel therapy where animal modeling supports their role. Figure 
3 highlights the limitation of the low percentage of patients with 
endovascular/endocarditis sources in the prospective and ret-
rospective combination studies discussed. Retrospective ana-
lyses of combination therapy are significantly biased because 
clinicians frequently deploy combination antibiotic therapy for 
MRSA bacteremia in the highest risk patients outside of clinical 
trial settings, usually in a salvage approach. Therefore, retro-
spectively comparing these outcomes is unlikely to provide a 
fair assessment, no matter how rigorous the post hoc matching. 
There is significant need to stratify patients based on clinical 
features and potentially apply new approaches in those high-
risk patients, but questions remain on how.

Along with clinical judgement of infection severity, source 
of infection (eg, endovascular vs nonendovascular), and 
comorbidities, some novel applications of biomarkers show 
promise. In the randomized pilot study by Geriak et al, no pa-
tients randomized to daptomycin plus ceftaroline died, but 6 
patients receiving SOC died. Among these 6 patients, 5 had in-
terleukin (IL)-10 concentrations upon admission of >5 pg/mL 
(threshold for elevated IL-10), whereas no patients died in the 
combination group with elevated IL-10. The anti-inflammatory 
cytokine IL-10, driven by endovascular bacterial burden, is a 
recently identified but consistent host biomarker for increased 
S. aureus bacteremia mortality risk [29, 49–53]. A recent study 
that applied high resolution proteomic and metabolomic 

Figure 2. CAMERA-2 results demonstrating significantly less nephrotoxicity when combining vancomycin with cefazolin as compared to an antistaphylococcal penicillin 
(*Fisher exact test) [36]. Abbreviation: CAMERA, combination sntibiotics for methicillin-resistant Staphylococcus aureus.
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techniques, coupled with advanced computational strategies, 
on blood samples drawn at the time of admission revealed a 
more extensive cadre of biomarkers that may be useful in early 
stratification of mortality risk in patients with S. aureus bacte-
remia [54].

MRSA THAT ARE Β-LACTAM SUSCEPTIBLE IN VIVO

Recent reports have reinforced the potential clinical utility of 
standard β-lactams for MRSA infections by demonstrating that 
some clinical MRSA strains have a “bicarbonate responsive” β 
-lactam susceptible phenotype: in the presence of bicarbonate 
buffer, they are phenotypically methicillin-susceptible and po-
tentially treatable with β-lactams alone [55–57]. This is highly 
relevant given that bicarbonate is the main in vivo physiological 
buffer but absent in the bacteriological media used in standard 
clinical antimicrobial susceptibility testing. In this line of in-
vestigation, MRSA strains were effectively treated by β-lactam 
monotherapy in rabbit models of endocarditis. Because clinical 

strains are not routinely tested for this bicarbonate responsive-
ness, the addition of β-lactams to standard MRSA backbone 
therapy (daptomycin, vancomycin) may be providing some di-
rect antimicrobial activity along with enhancing activity of the 
backbone drug or innate host defense peptides.

THE DEBATE ON DURATION OF 
COMBINATION THERAPY

MRSA bacteremia treatment guidelines recommending “4–6 
weeks” of antibiotic therapy fail to account for individual pa-
tient and infection factors, including inoculum size and host 
immunocompromising comorbidities. Interestingly, oncologists 
frequently deploy early intensive “induction chemotherapy” 
and subsequently back off to less intense “maintenance chemo-
therapy” regimens. It is understood in oncology that killing tumor 
cells more efficiently comes at the price of patient toxicity, but that 
early in the treatment course, this is a price willing to be paid. After 
some critical initial period of tumor reduction, there is the need 

Figure 3. Overview of endovascular/endocarditis source of bacteremia among patients included in retrospective and prospective studies of MRSA combination therapy. 
The percentage of endovascular/endocarditis source represents patients from each study with endovascular or endocarditis source explicitely stated in the study results. 
Abbreviations: CAMERA, combination sntibiotics for methicillin-resistant Staphylococcus aureus; MRSA, methicillin-resistant Staphylococcus aureus.
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to continue to provide antineoplastic therapy but the side effects 
risks to the patient becomes an equally important consideration.

With these points in mind, combination antimicrobial 
therapy is important to initiate early, within the first 72 hours of 
onset, and ideally within the first 24 hours to prevent complica-
tions of persistent bacteremia [58–60]. However, combination 
therapy may not be needed for the entire 4–6 weeks in S. au-
reus bacteremia. In fact, starting with a failing monotherapy up 
front that results in combination salvage therapy may result in 
longer durations of salvage combination and greater total anti-
biotic exposure on the tail end. Instead, we advocate intensive 
therapy up front and narrow down for the remainder of treat-
ment based on patient response. Figure 4 provides a conceptual 
approach for implementing early combination therapy based on 
risk stratification and appropriate de-escalation and duration. 
In the study by McCreary et al, only 55% of patients completed 

treatment on daptomycin plus ceftaroline, while the remainder 
were de-escalated to daptomycin, ceftaroline, or vancomycin 
monotherapy [28]. Understanding which patients are candi-
dates and when to de-escalate to monotherapy are important 
antimicrobial stewardship interventions. This can be applicable 
to outpatient parenteral antimicrobial therapy (OPAT), where 
MRSA bacteremia patients can be streamlined to a single anti-
biotic after the inpatient induction phase. In this regard, novel 
predictive biomarkers may have a role. A recent study by Volk 
et  al found that β-lactams, including those inactive against 
MRSA, stimulate IL-1β and reduce IL-10 during the first 7 days 
of treatment, improving the patient innate immune response to 
infection [49]. Future studies should consider using these and 
other host biomarkers to identify optimal duration of combina-
tion therapy and best approaches for de-escalation on an indi-
vidual patient basis.

Figure 4. Conceptual decision pathway for risk stratification and antibiotic therapies for MRSA bacteremia. Abbreviations: CT, computerized tomography; ESRD, end state 
renal disease; GNR, gram-negative rod; GPC, gram-positive cocci; ICU, intensive care unit; IL, interleukin; IVDA, intravenous drug abuse, MRI, magnetic resonance imaging; 
MRSA, methicillin-resistant Staphylococcus aureus; SIRS, systemic inflammatory response syndrome; TEE, transesophogeal echocardiogram.
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CONCLUSION

MRSA bacteremia is the final common pathway of a heteroge-
neous group of deep-seated infections that possess tissue-specific 
differences in inocula and host-pathogen interactions. As such, 
it will be necessary for clinical investigators to simultaneously 
evolve diagnostics of risk stratification with matching optimal 
pharmacotherapies. We began this discussion asking whether 
combination therapy works, which combinations are best, and 
for which patients. Early combination therapy offers advan-
tages over monotherapy in high-risk endovascular infection. 
However, vancomycin plus hydrophobic β-lactam combinations 
(eg, antistaphylococcal penicillins) best be avoided due to neph-
rotoxicity, and if such agents are to be used in combination, they 
may be better suited with daptomycin. Using daptomycin plus 
ceftaroline appeared very promising even in a trial with a very 
small number of patients. More studies will be needed to examine 
relative differences on efficacy, safety, and pharmacoeconomic 
advantages of different combinations. With dropping costs of 
non-vancomycin MRSA antibiotics via expiration of drug patents 
and generic availability, financial factors will play less of a role in 
directed MRSA therapy in the evolution away from vancomycin.
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