Skip to main content
. 2022 Feb 8;2022:2564022. doi: 10.1155/2022/2564022

Table 3.

Performance comparison of different models for detecting COVID-19 on the source dataset (the best rates are bold-faced)

Model/method Evaluation metrics
Accuracy Precision Recall F1
AdaBoost 95.1 93.6 96.7 95.1
AlexNet 93.7 94.9 92.2 93.6
Decision tree 79.4 76.8 83.1 79.8
EfficientNetB0 98.9 99.1 98.9 99.0
GoogleNet 91.7 90.2 93.5 91.8
ResNet50 94.9 93.0 97.1 95.0
ResNet50V2 94.2 92.8 96.7 94.1
ShuffleNet 97.5 96.1 99.0 97.5
SqueezeNet 95.1 94.2 96.2 95.2
VGG-16 94.9 94.0 95.4 94.9
Xception 98.8 99.0 98.6 98.8

Contrastive learning [35] 90.8 95.7 85.8 90.8
COVID CT-Net [30] 90.7 88.5 85.0 90.0
DenseNet201-based [48] 96.2 96.2 96.2 96.2
Modified VGG19 [52] 95.0 95.3 94.0 94.3
xDNN [17] 97.3 99.1 95.5 97.3

ADA-COVID 99.9 99.9 99.8 99.9