Skip to main content
. 2022 Feb 8;2022:2564022. doi: 10.1155/2022/2564022

Table 4.

Performance comparison of different models for detecting COVID-19 on the target dataset.

Model/Method Evaluation metrics
Accuracy Recall Specificity F1
AlexNet 74.5 70.4 79.0 75.0
DenseNet-121 88.9 88.8 88.9 88.2
DenseNet-169 91.2 93.3 88.9 90.8
DenseNet-201 91.7 88.6 94.1 91.9
GoogleNet 78.9 75.9 82.3 79.0
Inception-ResNet-v2 86.3 88.1 84.2 87.0
Inception-v3 89.4 90.0 88.9 88.8
MobileNet-v2 87.2 93.2 77.6 89.0
NasNet-large 85.2 79.3 91.9 84.0
NasNet-Mobile 83.4 84.8 81.9 85.0
ResNet-101 89.7 82.2 89.2 89.0
ResNet-18 90.1 89.4 90.9 91.0
ResNet-50 90.8 90.0 91.0 90.1
ResNeXt-101 90.9 93.1 88.9 90.6
ResNeXt-50 90.6 93.4 88.2 90.3
ShuffleNet 86.1 83.5 89.0 86.0
SqueezeNet 78.5 86.5 63.8 82.0
VGG-16 78.5 74.6 82.8 76.0
VGG-19 83.2 90.7 74.7 85.0
Xception 85.6 88.3 80.6 87.7

Contrastive learning [35] 78.6 78.0 77.0 78.8
Decision function [72] 88.3 87.0 87.9 86.7
DenseNet-121 + SVM [4] 85.9 84.9 86.8 86.2
DenseNet-169-based [11] 83.0 84.8 85.5 81.0
DenseNet-169-based [76] 87.7 85.6 86.9 87.8
ResNet-101-based [71] 80.3 85.7 86.0 81.8

ADA-COVID (without training) 92.5 93.5 94.2 93.0
ADA-COVID (with training) 95.8 94.9 96.0 95.2