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Environmental fluctuations often select for adaptations such as diapause
states, allowing species to outlive harsh conditions. The natural sugar
trehalose which provides both cryo- and desiccation-protection, has been
found in diapause stages of diverse taxa. Here, we hypothesize that
trehalose deposition in resting stages is a locally adapted trait, with higher
concentrations produced in harsher habitats. We used resting stages,
produced under standardized conditions, by 37 genotypes of Daphnia
magna collected from Western Palaearctic habitats varying in their propen-
sity to dry in summer and freeze in winter. Resting eggs produced by
D. magna from populations from summer-dry habitats showed significantly
higher trehalose than those from summer-wet habitats, suggesting that
trehalose has a protective function during desiccation. By contrast, winter-
freezing did not explain variation in trehalose content. Adaptations
to droughts are important, as summer dryness of water bodies is foreseen
to increase with ongoing climate change.
1. Introduction
Environmental factors determine the occurrence and geographical range of
species, whose ability to persist in any given habitat depends on their capacity
to develop behavioural, physiological or structural adaptations, especially to
extreme environmental fluctuations [1,2]. These adaptive strategies, which
have allowed most environments on the planet to be colonized [3], may involve
moving to a different place (migration [4]) or suspending development and
forming protective dormant stages [5].

Diapause, a programmed state of developmental arrest, is a form of dor-
mancy often initiated in response to environmental triggers in anticipation of
deteriorating environmental fluctuations [6–8]. It often goes hand-in-hand
with seasonality [9]. During diapause, activities such as embryogenesis,
growth, maturation, breeding and hatching may be postponed, resulting in dor-
mant cysts, gemmules, eggs and larvae [8–10], capable of surviving conditions
such as cold or heat stress [5]. Desiccation, a state of extreme dryness, is fre-
quently observed as a stress factor that triggers diapause in many organisms.
In diapause, some organisms can successfully survive desiccation, even when
99% of the water is removed from their cells [11,12]. This ability seems to
have evolved early in evolutionary history and is observed in prokaryotes
[13] and eukaryotes, including plants [14], fungi [15] and animals [7]. Specific
mechanisms and adaptations, including the production of sugar molecules
(e.g. sucrose and trehalose) [11,16,17] and small stress proteins (e.g. heat
shock and late embryogenesis abundant proteins) [9,18,19] are required to sur-
vive the severe damage that desiccation would otherwise cause to cells [20].
The array of these mechanisms suggests the convergent evolution of those
traits (reviewed in [20]).
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Figure 1. Geographical distribution of sampling sites and their habitat types.
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The role of the natural sugar, trehalose, was first identified
as being essential to diapause in Artemia salina [21,22], whose
dormant eggs contained higher trehalose concentration than
non-dormant eggs [22]. Trehalose not only helped organisms
survive during diapause conditions, but also functioned as
an energetic substrate, boosting their emergence from dia-
pause and their further development [21]. Numerous
studies have corroborated the role of trehalose as both a
cryo- and desiccation-protectant, for instance in bacteria
[23], fungi [24–26], nematodes [27], tardigrades [28], insects
[29,30] and crustaceans [31]. Trehalose also aids organisms
in other stressful conditions, such as when water salinity
and temperature rise [19,20,32]. The main benefits of treha-
lose are its stability as a chemical with a low degradation
rate; it is able to stabilize dry membranes, liposomes and pro-
teins over the long-term by impeding their aggregation
[27,33] and has a special ability to reach a vitrification state
and fill cellular spaces left by water [11,22,25,34]. However,
despite the fact that trehalose is a compatible solute in
many organisms [35], its biosynthesis is energetically costly
[26]. Furthermore, over-accumulations of trehalose have led
to aberrations and seem to interfere with reactive oxygen
species signalling and reducing programmed cell damage
[36]. Thus, trehalose is a double-edged sword that should
only be relied on when its benefits outweigh its costs. If
these benefits depend on the environment, trehalose
expression should show a signature of local adaptation,
occurring in higher amounts in habitats with more severe
diapause conditions.

Here, we test whether the concentration of trehalose in
resting eggs is higher in genotypes of Daphnia magna from
habitats with particularly harsh diapause conditions,
namely water bodies that freeze in winter and desiccate
during summer. Daphnia magna Straus 1820 is an ideal organ-
ism to study local adaptation in diapause. It inhabits brackish
and freshwater bodies in a wide variety of habitats, from per-
manent to intermittent freshwater ponds [37] and it produces
diapausing resting eggs which ensure survival during severe,
otherwise unliveable conditions [38,39].
2. Material and methods
(a) Daphnia samples
Thirty-seven genotypes, each from a distinct population across
the Western Palaearctic were selected from the D. magna Diver-
sity Panel (e.g. [40]; figure 1 and electronic supplementary
material, table S1). Water bodies were characterized by their ten-
dency to dry out during summer or not (based on observation
and reports, see [40]), and to freeze regularly during winter or
not (indicated as average temperature of the coldest month
below zero). This resulted in four distinct habitat categories
([41,42]; figure 1, electronic supplementary material, table S1).
(b) Resting stage production
Resting eggs were produced by selfing from genotypes kept as
clonal lines for five months under standardized laboratory con-
ditions. The number of resting eggs produced depends on the
genotype [42], but can be triggered by short photoperiod or
crowding [38,43]. We kept crowded monoclonal populations at
16 and 20°C and 8 : 16 dark : light cycle in 400-ml medium jars
with artificial medium [44], feeding three times per week with
the green algae Scenedesmus sp. Medium was changed once a
month. Resting eggs were collected weekly and kept in closed



Table 1. Analysis of variance for the effect of habitat type and host
genotype on trehalose concentration of Daphnia magna resting eggs.
Significant p-values ( p ≤ 0.001) are shown in italics.

factor d.f.
mean of
squares F-value p-value

summer-dry 1 327.3 12.0 0.001

winter-freeze 1 47.0 1.73 0.198

summer-dry:

winter-freeze

1 16.5 0.61 0.442

residuals 33 27.3

error: genotype 246 15.69
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jars with the same medium conditions for five months
maximum.

(c) Trehalose extraction and concentration measure
For each genotype, eggs (actually embryos in developmental
arrest) were removed from the resting egg-case. In total eight bio-
logical replicates per genotype were used, each containing five
eggs. For each replicate, we calculated the total egg volume
(assuming the eggs were ellipsoids) by measuring length and
width per egg using an eyepiece graticule (2 mm± 0.01) in a
stereomicroscope. Eggs were cleaned with deionized water,
placed in a 0.5-ml Eppendorf tube filled with 25 µl of ultrapure
water and disintegrated using a sonicator (Biorupter Next Gener-
ation System—UCD300, Diagenode), with up to three runs of
three cycles of 90 s each, until achieve a homogeneous solution.

For trehalose extraction, samples were incubated at 95°C for
60 min and centrifuged for 15 min at 4°C at 13 200 r.p.m. and
16 100g. We used 20 µl of the supernatant to determine trehalose
concentration following the manufacturer protocol of the Mega-
zyme trehalose kit (Megazyme, Bray, Ireland). This method
relies on the difference in NADPH+, before and after trehalose
degradation by trehalase. Falcon Microtest 96 microplates were
used for absorbance reads in an Infinite M200 Tecan spectropho-
tometer at 340 nm. For each 96-well plate (including two
biological replicates each), we added eight blanks and two treha-
lose standards solution to calibrate and validate the reaction. After
shaking 3 s and 5 min pause, 16 measurements were taken per
sample (4 × 4 matrix per well). Absorbance values were retrieved
by i-control Microplate Reader Software by Tecan before and after
trehalase addition. Calculation of trehalose concentration followed
the manufacturer’s instructions, accounting for egg volume and
standard calibrations. According to the manufacturer’s instruc-
tions, absorbance estimates below 0.1 are unreliable, which was
the case for 13 of our 296 individual measures (see electronic sup-
plementary material, tables S1 and S2 for details). We, therefore,
excluded those replicates from statistical analysis, even though
including them (setting estimates below 0.1 to an absorbance of
0.1) did not affect the outcome of the analysis (see electronic sup-
plementary material, table S3). To compare our estimates with
other studies, we estimated dry weight to volume ratio per egg
by using four replicates of 100 eggs each. We compared our treha-
lose estimates with another commonly used estimation method
(high-performance liquid anion exchange chromatography) and
were able to show that both methods reach the same results (elec-
tronic supplementary material, section S5), providing us with
confidence in the spectrophotometric method used here.

(d) Data analysis
Data analysis was performed using the eight biological repli-
cates, distributed evenly across four microtitre plates. We did
not detect an effect of the microtitre plate (block-effect). The
lme4 package was used to estimate the genotype variance com-
ponent for trehalose content (lmer(conc_trehalose∼(1|genotype)).
Analysis of variance used summer-dry (Y/N) and winter-freeze
(Y/N) as independent explanatory variables, and genotype
variable as error, to test for differences in trehalose content
(table 1). Our data followed normality and homoscedasticity
assumptions. All analyses were performed with R (v. 3.5) in R
studio (v. 1.2.5033). All material used is available in electronic
supplementary material, table S2 and section S4.
3. Results
Mean percentage of trehalose in resting eggs was 10.55% of
dry weight (s.e. = 4.45). The among genotype variance com-
ponent for these estimates was 14%. The mean percentage
is similar to reports for some invertebrates with dry resting
stages (nematodes [45], insects [46] and the lower crustacean
Artemia (15% of dry weight) [22]). There was strong variation
among and within genotypes (figure 2). Analysis of variance
revealed a higher trehalose concentration ( p-value = 0.001) in
resting eggs from summer-dry habitat populations (table 1
and figure 2). Factoring for winter-freezing did not reveal a
significant difference, nor did the interaction between both
factors (table 1 and figure 2).
4. Discussion
In this study, we show that trehalose concentration in resting
stages varies among D. magna genotypes and that this vari-
ation is partially influenced by the local habitat type. While
previous studies focused on quantifying trehalose between
species or between directly developing eggs and dormant
stages [22,24,47], our study is the first to determine genetic
variation within the same egg type of a species. Since all
our genotypes were acclimated under similar laboratory con-
ditions and produced resting eggs using eight independent
replicates under the same conditions unrelated to their
environment of origin, our results reflect genetic differences
among the 37 genotypes studied here. This allows us to
examine the evolution of trehalose concentration and test
for its adaptive role across different environments. Our
hypothesis—that trehalose concentration would be higher
for genotypes from habitats with more severe conditions
during diapause—was corroborated here, as genotypes
from habitats with a high propensity for summer desiccation
produced resting eggs containing about 20% more trehalose.
This difference might be even greater when considering natu-
ral environmental triggers. The high (sometimes extreme)
temperatures of the dry pond sediment (greater than 50°C
[40]) constitute a severe stressful condition, requiring an effi-
cient protection mechanism that trehalose is able to provide,
as it fills the spaces left by water in the resting embryos’ tissue
with a glass-like structure and maintains the stability of cells
and their contents [22,33].

By contrast to summer-dryness, we found no relation
between trehalose concentration and winter-freezing. This
finding is not very surprising because the resting stages in
the pools we classified as winter-freezing pools may often
not freeze solid; they generally only acquire ice at the surface.
Except for very shallow pools such as Nordic rock pool habi-
tats [40]. Thus, resting eggs can often overwinter on the
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surface of the pond sediment without freezing stress. Also,
the pools included in our study do not dry out in winter,
so the severe combination of drying and freezing does not
occur [5]. A more detailed study with better data about
local winter conditions may reveal an effect of winter harsh-
ness on trehalose concentration.

If trehalose is beneficial for the survival of resting eggs,
one may expect it to be found equally in the resting eggs of
all genotypes. Since this is not verified, trehalose production
may be costly. A trade-off was found between storing and
using energy metabolites for desiccation versus starvation
stress in Drosophila melanogaster [48]. Trehalose might also
be involved in biotic interactions, as suggested in symbioses
between higher plants and microorganisms [36,49], and in
pathogenic interactions [50]. An unexpected link may also
exist between host trehalose concentrations and infection sus-
ceptibility, based on observations that only D. magna
populations from summer-dry habitats are susceptible to
the persistence of a virulent microsporidian parasite [41,51];
however, it is unclear if elevated trehalose in resting eggs
plays a causal role here. In interactions between Plasmodium
falciparum and Anopheles gambiae mosquitoes, trehalose is
likely a source of energy that enhances infection success
[52]. Further investigations in our study system might examine
the relationship between host–parasite interaction and
trehalose production.

Hengherr et al. [31] presented an estimate of trehalose in
one genotype of D. magna resting eggs (0.5% of trehalose
per dry weight), which is much lower than our estimates
(about 10%). Since the quantification method differed
between the two studies, we contacted the laboratory and
conducted an experiment to quantify trehalose using
duplicated samples of the same biological material, that
were analysed by each laboratory following the methods
previously applied to each study (this study and [31]). The
two methods resulted in very similar trehalose estimates
and were in accordance to values presented in our study
(see electronic supplementary material, section S5). The
lower values presented in Hengherr et al. [31] might be
explained by an extreme case of low trehalose concentration
in resting eggs of a D. magna genotype from a summer-wet
population.

Our study indicates that Daphnia resting eggs are locally
adapted to the desiccation of their habitat in summer, allow-
ing the species to inhabit a wider range of habitats and
geographical areas, including very small water bodies that
frequently dry up [53] and desert pools, where water is
only available for a limited period after rainfall [54]. With
ongoing climate change, an increased incidence of droughts
across large geographical regions is predicted and can
already be seen in the greater incidence of pools drying up
in summer [55]. Daphnia magna as an important component
of many fresh- and brackish-water ecosystems will be
strongly affected by such changes. Survival of local popu-
lations may critically depend on its ability to produce
resting stages that can survive summer dryness. Understand-
ing local adaptation to summer dryness is a first step to
predict how species may evolve to cope with this aspect of
climate change and provide insights on the future of abiotic
and biotic interactions.
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