Skip to main content
. 2022 Feb 8;13:741. doi: 10.1038/s41467-022-27993-7

Fig. 5. Independent manipulation of polarization-division multiplexed broadband THz pulses within the four-wire waveguide (FWWG).

Fig. 5

a Schematic of the FWWG with Bragg gratings (150-periods-long) engraved along two of the four wires (top and bottom left wires), both placed on the same side of the FWWG. In this case, the multiscale grooves mainly interact with the x-polarized THz beam and barely influence the y-polarized THz beam. b Optical microscopic image of the multiscale grooves engraved along the two wires of the FWWG. c Experimental characterization of the FWWG hosting the integrated Bragg gratings, performed by using two broadband THz pulses multiplexed in polarization. The THz signals detected via Rx1 and Rx2 are recorded and plotted together with the reference signal obtained from an unetched FWWG (i.e., no gratings on the wires). d Comparison between the simulated and experimental transmission spectra of the FWWG containing the integrated Bragg gratings. e Simulated distributions of the electric field modulus evaluated at 0.59 THz, for a x-polarized THz beam (cross-sectional view at y = r + g/2).