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Abstract
Background and Objectives
Delayed cerebral ischemia (DCI) is the leading complication of subarachnoid hemorrhage (SAH).
BecauseDCI was traditionally thought to be caused by large vessel vasospasm, transcranial Doppler
ultrasounds (TCDs) have been the standard of care. Continuous EEG has emerged as a promising
complementary monitoring modality and predicts increased DCI risk. Our objective was to de-
termine whether combining EEG and TCD data improves prediction of DCI after SAH. We
hypothesize that integrating these diagnostic modalities improves DCI prediction.

Methods
We retrospectively assessed patients with moderate to severe SAH (2011–2015; Fisher 3–4 or
Hunt-Hess 4–5) who had both prospective TCD and EEG acquisition during hospitalization.
Middle cerebral artery (MCA) peak systolic velocities (PSVs) and the presence or absence of
epileptiform abnormalities (EAs), defined as seizures, epileptiform discharges, and rhythmic/
periodic activity, were recorded daily. Logistic regressions were used to identify significant
covariates of EAs and TCD to predict DCI. Group-based trajectory modeling (GBTM) was
used to account for changes over time by identifying distinct group trajectories of MCA PSV
and EAs associated with DCI risk.

Results
We assessed 107 patients; DCI developed in 56 (51.9%). Univariate predictors of DCI are
presence of high-MCA velocity (PSV ≥200 cm/s, sensitivity 27%, specificity 89%) and EAs
(sensitivity 66%, specificity 62%) on or before day 3. Two univariate GBTM trajectories of EAs
predicted DCI (sensitivity 64%, specificity 62.75%). Logistic regression and GBTM models
using both TCD and EEG monitoring performed better. The best logistic regression and
GBTM models used both TCD and EEG data, Hunt-Hess score at admission, and aneurysm
treatment as predictors of DCI (logistic regression: sensitivity 90%, specificity 70%; GBTM:
sensitivity 89%, specificity 67%).

Discussion
EEG and TCD biomarkers combined provide the best prediction of DCI. The conjunction of
clinical variables with the timing of EAs and high MCA velocities improved model performance.
These results suggest that TCD and cEEG are promising complementarymonitoringmodalities for
DCI prediction. Our model has potential to serve as a decision support tool in SAH management.

Classification of Evidence
This study provides Class II evidence that combined TCD and EEG monitoring can identify
delayed cerebral ischemia after SAH.
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Delayed cerebral ischemia (DCI) is the leading complication
of subarachnoid hemorrhage (SAH). Previously, it was be-
lieved that DCI is caused solely by large vessel vasospasm, and
thus, transcranial Doppler ultrasound (TCD) currently serves
as the standard of care for DCI monitoring. Although TCD
serves as a noninvasive, portable, bedside monitoring exam, it
is done infrequently (at best 1–2 times per day), is operator
dependent, can be limited by patient anatomy (poor temporal
bone window), and can be affected by other physiologic
measures (such as heart rate and blood pressure). In addition,
we now know that vasospasm alone does not fully explain
DCI.1-3

Continuous EEG (cEEG) has emerged as a promising sup-
plementary diagnostic tool for DCI prediction and addresses
some limitations of TCD monitoring. cEEG is noninvasive
and portable and, most importantly, can provide several days
of continuous data. Studies have demonstrated quantitative
cEEG measures such as relative alpha variability and post-
stimulation alpha/delta ratio4-6 and epileptiform abnormali-
ties (EAs)7,8 to be associated with DCI. There is also evidence
that patients usually first exhibit cEEG changes prior to de-
veloping DCI and that EEG is more strongly associated with
DCI than elevated TCD velocities.8,9 TCD and cEEG offer
potentially synergistic information about DCI risk. Yet the
combined utility of TCD and cEEG data for DCI prediction
has not been assessed.

We sought to address whether integrating TCD and cEEG
measures can identify DCI after SAH. We hypothesized that
combining TCD and cEEG parameters in a single model will
improve DCI prediction compared to either modality alone.

This study provides Class II evidence that combined TCD
and EEG monitoring can identify delayed cerebral ischemia
after SAH.

Methods
Study Population
We retrospectively evaluated cEEG, TCD, and electronic
medical records from 107 patients with moderate to high-
grade SAH from theMassachusetts General Hospital (MGH)
between September 2011 and January 2015. The inclusion
criteria were age ≥18 years; moderate to high-grade SAH
(Hunt-Hess grade 4–5 or Fisher group 3–4); nontraumatic
SAH; TCD data available; and cEEG lasting at least 24 hours

and not discontinued more than 24 hours before diagnosed
DCI events. We excluded patients who developed non-
convulsive or convulsive status epilepticus due to confound-
ing of EEG interpretation.We perform daily TCDmonitoring
as part of standard clinical care, and record peak systolic ve-
locities (PSVs) at the middle (MCA), anterior (ACA), and
posterior (PCA) cerebral arteries. We performed cEEG
monitoring as part of standard clinical care in all high-grade
SAH cases. Monitoring typically began within 48 hours of
admission and continued for 10 days.

Standard Protocol Approvals, Registrations,
and Patient Consents
For this retrospective analysis, we sought approval from the
MGH institutional review board (IRB) to conduct this study
(IRB 2013P001024). The IRB approved waiver of participant
consent.

Transcranial Doppler
We only looked at MCA PSV, as the sensitivity and specificity
of ACA and PCATCD values for predicting DCI are limited10

and were not consistently available in many patients. We
defined high-MCA velocity as MCA PSV measurement ≥200
cm/s. While this is a classic threshold for vasospasm,11-13 we
chose to use the term high-MCA velocity in this article to
denote arterial narrowing and avoid confusion, given that
“vasospasm” and “DCI” have been used interchangeably in
the literature.14-16

EEG Recordings
cEEGs were recorded using conventional 10–20 scalp elec-
trode placement. We defined EAs as seizures, epileptiform
discharges, lateralized or generalized periodic discharges, and
lateralized rhythmic delta activity. The presence or absence of
these abnormalities on each day, based on daily cEEG reports
generated by fellowship-trained clinical neurophysiologists,
was tallied for each patient with “day of bleed” marked as
day 0.

DCI Alarms
We defined DCI alarms as the presence of either an EA or
high MCA velocity.

DCI Classification
We defined DCI according to an international consensus
definition as either (1) new focal neurologic deficits or de-
crease in the Glasgow Coma Scale of at least 2 points, per-
sisting for a minimum of 1 hour, not explained by other causes

Glossary
ACA = anterior cerebral artery; cEEG = continuous EEG; CI = confidence interval; DCI = delayed cerebral ischemia; EA =
epileptiform abnormality;GBTM = group-based trajectory modeling; IRB = institutional review board; LOO-CV = leave-one-
out cross-validation;MCA =middle cerebral artery;MGH =Massachusetts General Hospital;NPV = negative predictive value;
OR = odds ratio; PCA = posterior cerebral artery; PPV = positive predictive value; PSV = peak systolic velocity; SAH =
subarachnoid hemorrhage; TCD = transcranial Doppler ultrasound.
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(e.g., complications of a procedure, sedation, spike in in-
tracranial pressure, rerupture, hydrocephalus, systemic or
metabolic abnormalities) by means of clinical assessment,
imaging, or laboratory data; or (2) the presence of cerebral
infarction on CT or MRI of the brain, acquired at the dis-
cretion of the clinical team, that was not present on any
neuroimaging done within the first 48 hours following early
aneurysm occlusion, and not attributable to other causes such
as surgical clipping or endovascular treatment.14 Although
“delayed neurologic deterioration” is a more general term in
the absence of angiographic or radiologic evidence, we con-
sider the 2 definitions overlapping. The consensus definition
more specifically refers to this as “clinical deterioration caused
by DCI,” which we abbreviate to DCI for conciseness.

As previously published,7 we adjudicated the presence or
absence of DCI using a multistep process of (1) prospective
daily structured research coordinator interviews with the
clinical team, (2) independent medical record review by 3 of
the authors (E.S.R., M.B.W., S.F.Z.) blinded to cEEG and
TCD findings, and (3) consensus adjudication in any case of
uncertainty or disagreement.

Data Analysis
We compared baseline characteristics between DCI and non-
DCI groups with 2-tailed t tests and Fisher exact tests. We
censored longitudinal data once patients developed DCI. We
imputed missing data for the MCA PSV via mean (linear)
imputation.

We used swimmer plots to visualize the temporal relationship
between EAs, high-MCA velocity, and DCI for individual
patients. We calculated cumulative distribution functions for
the first instance of EA and high-MCA velocity. We used a
nonparametric bootstrap with 1,000 replications to estimate
95% confidence intervals (CIs). Then, we compared differ-
ences in the incidence of these events across DCI and non-
DCI groups with Kolmogorov-Smirnov tests.

We used logistic regression and forward stepwise selection to
select TCD and cEEG predictors of DCI. We treated TCD
data in 2 different ways: (1) as a binary, max carried forward
predictor, whether someone had high-MCA velocity (defined
as PSV ≥200 cm/s) on or before each day; and (2) as a
continuous, max carried forward predictor using the highest
PSV values on or before each day. We also used cEEG data as
a binary max carried forward predictor by dichotomizing
based on whether a patient had any form of EA present on or
before each day. We fit a series of logistic regressions using
these TCD and cEEG predictors of DCI and selected the
earliest day that was significantly associated with DCI. Then
we explored the utility of combining TCD and cEEG in a
multivariate regression model. Finally, we calculated model
accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), updated post-test
probabilities, and c statistics. The updated post-test proba-
bilities (denoted as “DPPV” and “DNPV”) are calculated by

subtracting PPV from the study’s DCI prevalence and sub-
tracting NPV from the study’s non-DCI prevalence, re-
spectively. The c statistic is equal to the area underneath the
receiver operator characteristic curve. The closer the c statistic
is to 1, the better the model performance. These metrics were
calculated through leave-one-out cross-validation (LOO-
CV). LOO-CV fits a model on all but 1 patient at a time,
and the model predicts the outcome of the observation left
out. This process is done iteratively, then pooled to compare
the actual outcomes to calculate model performance metrics.
We also reported these metrics based on the threshold de-
fined by the Youden index,maxðsensitivity + specificity − 1Þ, for
DCI prediction. For sensitivity analysis, we compared model
prediction for early DCI and late DCI. We defined early DCI
as any DCI event occurring on or prior to the median DCI
date of our cohort.

We used group-based trajectory modeling (GBTM) to de-
scribe the evolution of TCD and cEEG over time and test the
association of trajectory group membership with DCI. GBTM
is a finitemixturemodel that assumes a population is composed
of a specified number of subgroups that follow distinct trajec-
tories of 1 or more repeated measures over time; in this case,
MCA PSV and EA. Rather than assuming individuals’ group
membership a priori, GBTM probabilistically gathers individ-
uals into statistically meaningful subgroups. After each se-
quential observation, individuals’ posterior probability of
membership in each trajectory group is updated based on full
available data. These posterior probabilities can then enter into
predictive models such as logistic regression to test the asso-
ciation of trajectory group membership with outcome.17-20

We included data from the first 10 days after SAH for each
patient in GBTMs. We jointly modeledMCA PSV using a beta
distribution and EA using a binomial distribution. To select the
optimal number of trajectory groups, we compared the
Bayesian Information Criteria for each of the models that we
fitted. We identified an inflection point that was the best bal-
ance between model fit and parsimony. We used LOO-CV to
calculate the posterior probability of group membership for
each patient on each day.We then entered these posteriors into
adjusted outcome models to predict DCI. We assessed model
performance by calculating model accuracy, sensitivity, speci-
ficity, PPV, NPV, updated post-test probabilities, and c statis-
tics, again using the threshold defined by the Youden index. For
the best model, we performed sensitivity analysis by reporting
model performance for early and late DCI events.

We alsomodeled time toDCI using a survival regressionmodel
with binary TCD, EEG, and demographic variables as features.
To assess performance for each of these survival regression
models, we used LOO-CV and reported the cumulative sen-
sitivity, dynamic specificity, and c statistics at each time point.

Statistical analysis was done using R (The R Foundation) and
GBTM analysis was done using the Traj package in STATA
(StataCorp). Significance was determined based on α = 0.05.
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We attempted to address sources of bias via prospective
identification of patients and adjudication of DCI classifica-
tion. There is a risk of selection bias in the inclusion criteria,
but it is clinically justified because rates of DCI are higher in
high-grade SAH.

Data Availability
The data from this study are available from the corresponding
author on request.

Results
Cohort Composition
A total of 227 patients were screened and 107 were confirmed
eligible and included in the study. No patient was lost to
follow-up given the short timeline of DCI development. Of
the 107, 56 (52.3%) experienced DCI. The median day of
DCI was 6 (interquartile range 5, 9). DCI most commonly
occurred on days 5 (10/56 [17.86%]) and 9 (8/56 [14.29%])
(Figure 1A). The mean age was 56.5 years (SD ±14.17) and
75 (70.1%) patients were female. EA and high-MCA velocity
incidences peaked on day 3 for the DCI group (Figure 1, B
and C). Table 1 presents the variables considered in our
analysis.

High-MCA Velocity and Presence of EAs
Precede DCI
We visualized the time relationship between the first occur-
rence of high-MCA velocity, EA, and DCI using swimmer
plots (Figure 2, A and B). The plot shows that 53/56
(94.64%) patients with DCI experienced at least 1 DCI alarm
before their DCI event, compared with 42/51 (82.35%) of
patients without DCI (p = 0.08).

We created cumulative plots to visualize and compare the
first instances of EA and high-MCA velocity in the DCI
and non-DCI groups. The timing at which the first instance
of EA occurs differed in the DCI vs non-DCI groups
(Kolmogorov-Smirnov test, p < 0.01), with the separation
in the 95% CI occurring on day 5. There was no significant
difference in the first instance of high-MCA velocities
between the DCI and non-DCI groups (Figure 2, C
and D).

For patients with DCI who had both DCI alarms (19/56
[33.93%]), EA often preceded high-MCA velocity (14/19,
by a mean of 2.5 days), and both preceded DCI
(Figure 2E). When we tested each DCI alarm in-
dependently and in combination during a patient’s mon-
itoring period to predict DCI, we found that using the
occurrence of either EA or high-MCA velocity resulted in
much higher sensitivity (94.64%), but lower specificity
(17.65%), and using both EA and high-MCA velocity
resulted in a much higher specificity (82.35%) but lower
sensitivity (33.93%) compared to using a single alarm
type to predict DCI. Still, these analyses had limited
performance.

Logistic Regressions With Single-Day EEG and
TCD Measures
To evaluate the time dependence of the DCI alarms, we fit
max carried forward logistic regressions using continuous
TCD velocities. Then, we fit logistic regressions using binary
max carried forward predictors of cEEG and TCD. These
models thus account for data on or before that day. Contin-
uous MCA PSV values were not significantly associated with
DCI on any day, but high-MCA velocity occurrence on or
before day 3 (p = 0.042) was a significant predictor of DCI.
For cEEG, EA occurrence on or before day 3 (p < 0.01), day 5
(p = 0.028), and day 6 (p = 0.028) were significant predictors
of DCI. Day 4 was not significant (p = 0.059).

We combined EA (p = 0.007) and high-MCA velocity (p =
0.024) occurrence on or before day 3 as independent pre-
dictors of DCI in a multivariate regression model. The model
using both high-MCA velocity and EA presence on or before
day 3 (sensitivity 76.09%, specificity 56.82%) outperformed
the MCA-only (sensitivity 27.45%, specificity 89.36%) and
EA-only (sensitivity 66.00%, specificity 61.70%) models in
terms of sensitivity, but c statistics remain limited (c = 0.5405,
95% CI 0.4141–0.6670).

GBTMOutcomeModeling Based on Final Group
Trajectory Membership
To capture trajectory information over time, we implemented
GBTM modeling as detailed in the Methods. We first mod-
eled continuous MCA velocities over time and found that a
4-subgroup GBTM model best fits the data (Figure 3A). Al-
though all 4 subgroups have distinctive trajectories from one
another (p < 0.05), only 1 group (yellow, high and rapidly
increasing PSV, 17/26 [65.38% DCI]) was significantly as-
sociated with DCI (odds ratio [OR] 4.84, p = 0.02,
Figure 3A).

We then modeled EA incidences using GBTM and found that
2 distinct subgroups best fit the data (Figure 3B). Patients in
group 2 (dark gray, consistently high EA, 37/53 [69.81%
DCI]) had a higher risk of DCI (OR 5.09, p < 0.01) compared
to those in group 1 (light gray, decreasing EA, 18/53 [33.96%
DCI]). Patients assigned to group 1 experienced either no
occurrences of EA or only early during monitoring.

We modeled trajectories of EA andMCA PSV jointly through
a multivariate-trajectory model. This type of GBTM model
simultaneously accounts for MCA PSV and EA trajectories
when determining subgroups, and is thus a distinct model
from the ones described previously. The best fit multivariate-
trajectory GBTM identified 4 distinct groups whenMCA PSV
and EA were modeled jointly (Figure 4, A and B). Using
group 1 (purple, low/stable PSV and EA, 1/13 [7.69% DCI])
as a reference group, group 4 (navy blue, moderate/increasing
PSV and high/increasing EA, 23/32 [71.87% DCI]) had an
increased risk of DCI (OR 23.30, p < 0.01). Group 3 (orange,
high/rapidly increasing PSV, moderate/stable EA, 22/33
[66.67% DCI]) also had an increased risk of DCI (OR 18.04,
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p < 0.01) compared to group 1. Group 2 (light green, high/
increasing PSV and moderate/stable EA, 6/23 [26.09%
DCI]) did not have a significantly different risk of DCI
compared to group 1, but the incidence of DCI remained low
in both groups.

GBTM Outcome Modeling Based on Single-Day
Trajectory Membership
Regressing the final group trajectory membership probabili-
ties with DCI identified the group trajectory memberships
that were significantly associated with DCI. While this was
useful to describe a patient’s overall risk for DCI, to predict
DCI using these group trajectory memberships, we used daily
group membership probabilities predicted with LOO-CV and
regressed them with DCI outcome.

Daily univariate MCA PSV group trajectory memberships
were not significantly associated with DCI. Univariate EA
trajectory group membership served as a significant predictor

of DCI as early as day 3 (sensitivity 64%, specificity 62.75%)
and peaked on day 5 (sensitivity 73.53%, specificity 52.94%).

In the multivariate GBTM, group membership served as a
significant predictor on days 3–7 (p < 0.05). The day 3
multitrajectory group membership model (sensitivity 85.11%,
specificity 48.98%) had better sensitivity than the day 3 EA-
only trajectory membership model. Model performance using
group membership on day 5 performed comparably (sensi-
tivity 81.82%, specificity 42.86%), but may be more limited in
its clinical utility given 12/56 (21.42%) patients with DCI
experienced their DCI event before day 5.

Inclusion of Clinical Predictors in Logistic
Regressions and GBTMs
We performed logistic regressions with clinical variables as
predictors of DCI and found that higher Hunt-Hess score at
admission (p = 0.004; sensitivity 53.57%, specificity 70.59%)
and clipping of aneurysm (p = 0.024; sensitivity 61.11%,
specificity 61.7%) were significantly associated with increased
risk of DCI. A model with only these 2 clinical variables
performed with sensitivity of 79.63% and specificity of
57.45%.

We included these clinical variables in the best performing
logistic regression model. A final adjusted logistic regression
model with the addition of Hunt-Hess score at admission (p =
0.016) and aneurysm treatment (p = 0.013) as independent
clinical covariates of DCI along with EA (p = 0.006) and high-
MCA velocity (p = 0.072) on or before day 3 resulted in a
model with 88.64% sensitivity and 70.73% specificity.

For GBTM models, addition of the Hunt-Hess score im-
proved the univariate EA day 3 model (sensitivity 72.92%,
specificity 72.34%). The addition of data on aneurysm treat-
ment also improved the EA day 3 trajectory model in terms of
specificity (sensitivity 60.42%, specificity 78.72%), but most

Figure 1HighMiddle Cerebral Artery Velocity and Epileptiform Abnormality Incidences Across Delayed Cerebral Ischemia
and Non–Delayed Cerebral Ischemia Groups

Patients were monitored with transcranial Doppler
ultrasound (TCD) for an average (±SD) of 8.98 (±4.30)
days with a mean start day 1.75 (±1.18) after sub-
arachnoid hemorrhage (SAH). The mean duration of
continuous EEG (cEEG) recordings was 6.32 (±3.22)
days with amean start date of 1.94 (±1.30) days post-
SAH. (A) Histogram of delayed cerebral ischemia
(DCI) incidence over the first 15 days post-SAH shows
that peak DCI incidence occurs on day 5 (10/56 pa-
tientswithDCI [17.86%]) andday 9 (8/56 patientswith
DCI [14.28%]). (B) Histogram of TCD alarms over the
first 15 days post-SAH shows that, for patients with
DCI, peak incidence of TCD alarms occurs on day 3,
and peak incidence of TCD alarms for patients with-
out DCI occurs on day 4. The first instance of any TCD
alarm occurrence within the non-DCI group occurred
on day 3. (C) Histogram of EEG alarms shows that a
higher proportion of patients with DCI get EEG
alarms. eTable 1 (links.lww.com/WNL/B676) shows
counts of DCI and patients without DCI tabulated
against DCI alarms occurring at any time during
monitoring (prior to DCI).

Table 1 Univariate Analysis

Non-DCI DCI p Value

N (%) 51 (47.6) 56 (52.34)

Hunt-Hess 4–5 26 (51.0) 42 (75.0) 0.017

Aneurysm treatment (coil vs clip) 29 (56.9) 21 (37.5) 0.037

High MCA on day 3 5 (9.8) 14 (25.0) 0.043

EA on day 3 18 (35.3) 33 (62.3) 0.008

Abbreviations: DCI = delayed cerebral ischemia; EA = epileptiform abnor-
mality; MCA = middle cerebral artery.
Fisher exact tests of EEG, transcranial Doppler ultrasound, Hunt-Hess score
at admission, and aneurysm treatment modality (endovascular coiling vs
surgical clipping) show that there is a significant difference between each of
these variables between the non-DCI and DCI groups in our study.
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notably improved model sensitivity on day 6 (sensitivity 92%,
specificity 44.68%). The model with all 3 variables (EA day 3
trajectory membership, Hunt-Hess, and aneurysm treatment)
had the best performance (sensitivity 83.33%, specificity
68.09%). Models using trajectory group information on
subsequent days had similar performances (sensitivity
80.95%–84.38%, specificity 65.95 from days 4–6).

Inclusion of aneurysm treatment and Hunt-Hess score as
clinical variables also improve the day 3 multivariate-
trajectory group membership model (sensitivity 86.67%,
specificity 65.22%). This adjusted multivariate trajectory
model has the best sensitivity on day 6 (sensitivity 87.5%,
specificity 60.87%).

The best logistic regression and GBTM models include both
significant clinical variables and both monitoring modalities. A
summary of these model performances can be found in Table 2,
and an overview of models in our study can be found in Figure 5.

Survival Regression Models
The best survival model used only EA, Hunt-Hess, and an-
eurysm treatment modality. However, model performance
prior to day 5 was limited. The best performance (c statistic)
did not occur until after 8 days post-SAH (eFigure 1, links.
lww.com/WNL/B676).

Sensitivity Analysis
When we assess our best logistic regression (day 3 with
TCD, cEEG, and clinical variables) in early vs late DCI
events, our model is better at predicting DCI events oc-
curring ≤ day 6 (sensitivity 91.30%, specificity 73.17%, c =
0.8155 [0.7126–0.9183]) compared to > day 6 (sensitivity
85.71%, specificity 70.73%, c = 0.7271 [0.5905–0.8636]). A
similar pattern can be found with our best GBTM model
(day 3 multivariate trajectory membership and clinical
variables) (≤ day 6 [sensitivity 95.24%, specificity 67.39%,
c = 0.7857 (0.6787–0.8928)] vs > day 6 [sensitivity 91.67%,
specificity 56.52%, c = 0.7219 (0.5979–0.8459)]).

Figure 2 Delayed Cerebral Ischemia Alarms and Time of First Occurrence in Relation to Delayed Cerebral Ischemia

For patients with delayed cerebral ischemia (DCI) (A), most receive at least 1 kind of DCI alarm prior to DCI occurrence. However, many of the patients without
DCI (B) also receive DCI alarms. Cumulative probability plots of the first EEG alarm (C) show that patients with DCI receive their first EEG alarm earlier than
patients without DCI, though the difference was not significant until day 5. The cumulative probability plots of the first TCD alarm was not different between
non-DCI and DCI groups (D). Finally, (E) shows that in general, EEG alarms precede TCD alarms, and both precede DCI occurrence. MCA = middle cerebral
artery.
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Discussion
We show that combining EEG and TCD data improves
prediction of DCI over either modality alone. Most patients
with DCI (94.64%) have at least 1 DCI alarm prior to the DCI
event. For patients with DCI who had both alarms, EA often
preceded high-MCA velocity, and both preceded DCI. The
addition of 2 clinical variables (Hunt-Hess score at admission
and aneurysm treatment modality [i.e., surgical clipping or
endovascular coiling]) further improved model performance.

High MCA velocity alone at any time during monitoring (up to
the day of DCI or discontinuation) weakly predicts DCI. Al-
though we tried to analyze TCD velocities as a continuous

variable, binary max carried forward variable, or with GBTMs,
none of these approaches improved the univariate model per-
formance. Our best TCD-only model (sensitivity 27.45%, spec-
ificity 89.36%) had worse sensitivity than what was described in a
recent meta-analysis, where TCD vasospasm (defined by mean
flow velocity ≥120 cm/s) had an 89% (76–95%) sensitivity and
71% (56–81%) specificity for DCI.21 This is possibly due to
variable definitions of DCI, as most studies included in the meta-
analysis were published prior to the consensus guideline14 or our
use of peak rather than mean flow velocities secondary to data
availability. It is also increasingly recognized that DCI can occur
without angiographic or radiologic vasospasm, and vice versa.3,22

This may be another potential cause for the TCDmodels’ limited
performance in our study.

Figure 3 Univariate Group-Based Trajectory Modeling

In univariate group-based trajectory modeling (GBTM) of middle cerebral artery (MCA) (A), only the group experiencing high, rapidly increasing peak systolic
velocities (yellow, group 4) had a significant increase of delayed cerebral ischemia (DCI) risk (eTable 2, links.lww.com/WNL/B676; odds ratio [OR] 4.84, p= 0.02).
Dots represent average MCA value of individuals across the trajectory group, and the solid lines represent the best fit line of each MCA subgroup. Thin lines
represent individual MCA trajectories over time. In univariate GBTM of epileptiform abnormality (EA) (B), group 2 (dark gray) was associated with a significant
increase of DCI risk (eTable 3; OR 5.09, p < 0.01) when compared to group 1 (light gray). Opaque dots represent the EA prevalence in the subgroupon each day,
and the solid lines represent the best fit line of each EA subgroup. The semitransparent dots centered around0 and 1 represent individualswhodid (1) anddid
not (0) have an EA on that specific day.

Figure 4 Multivariate Group-Based Trajectory Modeling

Multivariate group-based trajectorymodeling (GBTM) identified 4 distinct subgroups ofmiddle cerebral artery (MCA) (A) and epileptiform abnormality (EA) (B)
when trajectories from bothmodalities aremodeled jointly. Patients in “high risk” groups experience high and rapidly increasingMCA peak systolic velocities
(PSVs) along with moderate EA (orange; odds ratio [OR] 18.04, p < 0.01) and moderate and increasing MCA PSVs and increasing EA (navy blue; OR 23.30, p <
0.01) (eTable 4, links.lww.com/WNL/B676). Using trajectory group membership on days 3 and 5 has fair model performance (eTable 5).
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Based on our previously published finding that EA occurrence
is higher in patients with DCI,7 we more closely investigated
the timing of EA as a predictive marker of DCI in this study. In

EA-only logistic regression models, EA was a significant pre-
dictor of DCI as early as day 3 (sensitivity 66%, specificity
61.70%), and model performance peaked at day 6 (sensitivity

Table 2 Model Performance Including Clinical Variables

Accuracy Sensitivity Specificity PPV (DPPV) NPV (DNPV) c Statistics

Hunt-Hess 0.6168 (0.5178–0.7092) 0.5357 0.7059 0.6667 (+0.1433) 0.5806 (−0.1040) 0.5683 (0.4559–0.6807)

Aneurysm treatment 0.6139 (0.5118–0.7091) 0.6111 0.617 0.6471 (+0.1237) 0.5800 (−0.1034) —

Hunt-Hess + aneurysm
treatment

0.6931 (0.5934–0.781) 0.7963 0.5745 0.6825 (+0.1591) 0.7105 (−0.2339) 0.6738 (0.5656–0.7819)

High-MCA velocity (day 3) +
Hunt-Hess + aneurysm
treatment

0.7097 (0.6064–0.7992) 0.7755 0.6591 0.7170 (+0.1937) 0.7250 (−0.2484) 0.6906 (0.5804–0.8008)

EA (day 3) + Hunt-Hess +
aneurysm treatment

0.7692 (0.6691–0.8511) 0.8333 0.6977 0.7547 (+0.2314) 0.7895 (−0.3129) 0.7582 (0.6518–0.8646)

High-MCA velocity (day 3) +
EA (day 3) + Hunt-Hess

0.7111 (0.606–0.8018) 0.7826 0.6364 0.6923 (+0.1689) 0.7368 (−0.2602) 0.7105 (0.6009–0.82)

High-MCA velocity (day 3) +
EA (day 3) + Hunt-Hess +
aneurysm treatmenta

0.8 (0.6992–0.879) 0.8864 0.7073 0.7647 (+0.2413) 0.8529 (-0.3763) 0.7733 (0.6665–0.8801)

GBTM EA trajectory (day 3) +
Hunt-Hess + aneurysm
treatment

0.7579 (0.6592–0.8399) 0.8333 0.6809 0.7273 (+0.2039) 0.8000 (−0.3234) 0.7473 (0.6425–0.8521)

GBTM multitrajectory (day
3) + Hunt-Hess + aneurysm
treatment

0.7582 (0.6572–0.8419) 0.8667 0.6522 0.7091 (+0.1857) 0.8333 (−0.3567) 0.7517 (0.6459–0.8575)

Abbreviations: EA = epileptiform abnormality; GBTM= group-based trajectorymodeling;MCA =middle cerebral artery; NPV = negative predictive value; PPV =
positive predictive value.
The best model (a) was a logistic regression that included transcranial Doppler ultrasound, EEG, and clinical variables as covariates. Model performance
metrics were calculated via leave-one-out cross-validation and c statistics were not calculated for models where there is a single binary variable.

Figure 5 Model Comparison

A comparison of TCD only (blue), EEG only (green) and combined (red) models show that the best models used both modalities and clinical variables. GBTM
models performed comparably to logistic regressions.
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67.65%, specificity 57.14%). EA-only logistic regression
models could detect impending DCI with a higher sensitivity
than TCD-only models, a finding also reported in a previous
study by our group.8 For many patients with DCI, EA alarms
also preceded TCD velocities crossing the 200 cm/s thresh-
old (Figure 2E). Other studies have shown similar findings
where cEEG changes such as decreasing relative alpha vari-
ability6 and decreasing alpha and theta power23 preceded
detection of vasospasm on TCD.

The univariate GBTM model for EA identified 2 trajectory
membership groups associated with DCI risk. The group with
consistent EA occurrence over time is associated with a 5-fold
increase in odds of DCI (69.81% DCI) compared to the
group where EAs occur in the beginning but disappear over
time (28.30% DCI). This result suggests that individuals who
have persistent EAs tend to be at an increased risk of DCI
compared to individuals with transient early EAs.

The multivariate GBTM model identified 4 distinct groups.
Groups 1 (purple; low/stable MCA PSVs and EA) and 2
(green; high/increasing MCA PSVs and low/decreasing EAs)
can be considered benign trajectories, where most individuals
belonging to these groups did not experience DCI. This
contrasts with group 4 (navy blue; moderate/increasing PSV
and high/increasing EA), where most individuals assigned to
this final group trajectory did experience DCI. It seems that
EA, rather than MCA PSV, drives the trajectory groups’ as-
sociation with DCI risk. If patients consistently have EAs, as is
the case in group 4 (navy blue), DCI risk increases. If EA is
decreasing over time, DCI risk does not increase, even in the
presence of increasing MCA PSV (groups 2, 3, 4).

GBTMs performed comparably to logistic regressions for
univariate EA and the multivariate models. GBTM was re-
cently shown to improve upon the accuracy of logistic re-
gressions in models predicting outcomes of patients after
cardiac arrest.20 Thus, we expected the trajectory information
to enhance prediction compared to logistic regressions,
but this was not the case. This may be because our logistic
regression variables are max carried forward and not a time-
invariant variable, like those used in the 2019 study to com-
pare GBTM and logistic regressions. Of note, both GBTM
and logistic regression models performed better than
single-day logistic regressions (that is, time-invariant, not max
carried forward). It seems that incorporating longitudinal
information improves model performance, without a clear
benefit of one model over another. Practically, there is some
benefit of this, as implementing a logistic regression model
may be easier for clinicians to adapt on a large scale. However,
the incorporation of trends through GBTMmay be important
in capturing the changes that occur across the full window of
DCI occurrence. There are dynamic processes that occur after
SAH, including early injury factors (e.g., blood–brain barrier
disruption, seizures, hydrocephalus, inflammation, and
edema) that can happen in the first 72 hours postictus24-26 as
well as late injury factors (e.g., delayed cerebral ischemia,

delayed hydrocephalus). Looking at trends of both cEEG and
TCD may better capture these changes. It is possible that
future evaluations of specific EA features, beyond presence or
absence of EA, will prove more robust. Incorporating hourly
trends may also make the addition of trends informationmore
valuable.

After evaluating both TCD-only and EA-only models, we
found that DCI prediction improves when bothmodalities are
considered together. This is because cEEG and TCD help
assess different aspects of DCI physiology, namely the met-
abolic supply–demand mismatch.7,24,27 TCD allows us to di-
rectly evaluate reductions in the supply related to large vessel
vasospasm. EEG, on the other hand, will enable us to look at
markers of excess demand, like EA. By combining these 2 mo-
dalities, we attempt to capture data reflecting 2 sides of this
delicate balance and end up with a better prediction algorithm.

In our study, higher Hunt-Hess score at admission and clip-
ping of aneurysms were significantly associated with increased
DCI risk and improve logistic regression and multivariate
GBTM performances. Although the radiographic severity of
SAH is also significantly associated with DCI risk based on the
literature,28-33 our data were limited to cEEG monitoring
mainly in patients with high Fisher scores (3–4). Thus, we
were unable to test it as an independent clinical predictor.

These results highlight the importance of clinical variables on
the overall prediction of complications like DCI after SAH.
Existing literature that uses a combination of clinical and ra-
diographic grading scales to predict DCI has fair discrimina-
tion, with c statistics ranging from 0.63 to 0.79.34-36

Our best model, a multivariate logistic regression with
binarized, max carried forward EA and TCD values on day 3,
Hunt-Hess, and aneurysm treatment, achieved a c statistic of
0.77 (95% CI 0.67–0.88). We note that the other models,
which only include radiographic and clinical scales, may be
easier to implement when cEEG monitoring is not available.
While our model needs to be externally validated, our results
show TCD and cEEG as promising complementary moni-
toring modalities for DCI prediction and can serve as a de-
cision support tool in SAH management.

Our study has a few limitations. We did not have enough
TCD measurements available of other arteries to calculate
measures such as the Lindergaard ratio or to independently
assess the utility of ACA and PCA velocities in DCI pre-
diction. The institutional TCD data velocities were prefer-
entially recorded as PSVs rather than mean flow velocities,
and while these values were internally validated to correlate
with other modalities for assessing vasospasm, it remains
possible that these measurements contributed to the lower
sensitivity in our logistic regression models using only TCD
information. Mean flow velocity values are better defined in
the literature, with at least 17 TCD studies using mean flow to
evaluate DCI from 1992 to 2014.21 A comparison of PSV to
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mean flow velocity performance in other datasets could help
elucidate if this was the case.While our dataset is relatively large
for a DCI study, we did not have an independent validation
cohort. In the future, larger cohorts across multiple institutions
would help externally validate our findings. Our study is limited
to EEG text reports and the EEG reports extracted did not
comment on the trends of spectral patterns. Thus, we limited
our analysis to a daily, binary assessment of cEEG as the
presence or absence of EA. There is rich information to be
gained from cEEG that can be used to enhance the models.
Combining spectral cEEG measures associated with DCI, such
as alpha-delta ratio,4,5,37 relative alpha variability,5,6 and total
power,37 could improve DCI prediction when used with TCD
and should be explored further in the future.

This study provides new evidence that cEEG and TCD to-
gether provide an improved prediction of DCI. TCD and
cEEG provide synergistic information and models using both
TCD and cEEG outperformed models using either modality
alone. Models that consider the timing of DCI alarms, using
different approaches, performed better than models that did
not. Simple clinical variables (Hunt-Hess score and aneurysm
treatment modality) further improve multimodal perfor-
mance with the best model using these clinical variables in
addition to the presence of either EA or high-MCA velocity
up to day 3 for DCI prediction.

Acknowledgment
J. Elmer is supported by the National Institute of Neurological
Disorders and Stroke (NINDS) (5K23NS097629, R01NS119825).
S.F. Zafer is supported by the NIH (K23NS114201). E.S.
Rosenthal was supported by the NIH (1K23NS105950). L.J.
Hirsch received research support from The Daniel Raymond
Wong Neurology Research Fund at Yale; consultation fees for
advising from Aquestive, Ceribell, Marinus, Medtronic, Neuro-
pace, and UCB; royalties for authoring chapters for UpToDate
Neurology and from Wiley for coauthoring Atlas of EEG in
Critical Care; and honoraria for speaking from Neuropace and
Natus. H.P. Zaveri is supported by the NIH (NS109062).
K.N. Sheth is supported by the NIH (U24NS107136,
U24NS107215, R01NR018335, R01NS107215, U01NS106513,
R03NS112859) and the American Heart Association
(18TPA34170180, 17CSA33550004, 20SRG35540018). Yale
University receives grants to support Dr. Sheth’s research from
Biogen, Novartis, Hyperfine, and Bard. Dr. Sheth receives equity
from Alva and fees from Zoll for his role as a DSMB Chair.
N.H. Petersen received funding from theNIH (K23NS110980).
M.B. Westover received funding from Glenn Foundation for
Medical Research, American Federation for Aging Research
(Breakthroughs in Gerontology), the American Academy of
Sleep Medicine Strategic Research Award, DoD Moberg ICU
Solutions, Inc., subcontract, and the NIH (1R01NS102190,
1R01NS102574, 1R01NS107291, 1RF1AG064312). J.A. Kim
received funding from NINDS (R25N065743, K23NS112596-
01A1), American Academy of Neurology Clinical Research
Training Scholarship, American Heart Association, and Bee
Foundation.

Study Funding
The authors report no targeted funding.

Disclosure
The authors report no disclosures relevant to the manuscript.
Go to Neurology.org/N for full disclosures.

Publication History
Received by Neurology May 7, 2021. Accepted in final form
November 8, 2021.

References
1. Vora YY, Suarez-Almazor M, Steinke M, Martin ML, Findlay M. Role of transcranial

Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid
hemorrhage. Neurosurgery. 1999;44(6):1243-1247.

2. Roos YB, De Haan RJ, Beenen LF, Groen RJ, Albrecht KW, Vermeulen M. Com-
plications and outcome in patients with aneurysmal subarachnoid haemorrhage: a
prospective hospital based cohort study in The Netherlands. J Neurol Neurosurg
Psychiatry. 2000;68(3):337-341.

3. Dankbaar JW, Rijsdijk M, Van Der Schaaf IC, Velthuis BK, Wermer MJH, Rinkel
GJE. Relationship between vasospasm, cerebral perfusion, and delayed cerebral
ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 2009;
51(12):813-819.

Appendix Authors

Name Location Contribution

Hsin Yi Chen,
BS

Yale University Analysis and interpretation of data,
drafting manuscript

Jonathan
Elmer, MD

University of
Pittsburgh Medical
Center

Analysis of data, revising
manuscript for intellectual content

Sahar F. Zafar,
MD

Massachusetts
General Hospital

DCI adjudication, revising
manuscript for intellectual content

Manohar
Ghanta, MS

Massachusetts
General Hospital

TCD and EEG data extraction for
preprocessing

Valdery Moura
Junior, MS

Massachusetts
General Hospital

EEG data extraction for
preprocessing

Eric S.
Rosenthal, MD

Massachusetts
General Hospital

DCI adjudication, revising
manuscript for intellectual content

Emily J.
Gilmore. MD

Yale University Interpretation of data, revising
manuscript for intellectual content

Lawrence J.
Hirsch, MD

Yale University Revising manuscript for intellectual
content

Hitten P.
Zaveri, PhD

Yale University Interpretation of data, revising
manuscript for intellectual content

Kevin N. Sheth,
MD

Yale University Revising manuscript for intellectual
content

Nils H.
Petersen, MD,
PhD

Yale University Revising manuscript for intellectual
content

M. Brandon
Westover, MD,
PhD

Massachusetts
General Hospital

Study design, DCI adjudication,
interpretation of data, revising
manuscript for intellectual content

Jennifer A.
Kim, MD, PhD

Yale University Study conceptualization and design,
analysis and interpretation of data,
revising manuscript for intellectual
content

e468 Neurology | Volume 98, Number 5 | February 1, 2022 Neurology.org/N

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

https://n.neurology.org/lookup/doi/10.1212/WNL.0000000000013126
http://neurology.org/n


4. Claassen J, Hirsch LJ, Kreiter KT, et al. Quantitative continuous EEG for detecting
delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin
Neurophysiol. 2004;115(12):2699-2710.

5. Rots ML, van Putten MJAM, Hoedemaekers CWE, Horn J. Continuous EEG
monitoring for early detection of delayed cerebral ischemia in subarachnoid hemor-
rhage: a pilot study. Neurocrit Care. 2016;24(2):207-216.

6. Vespa PM, Nuwer MR, Juhász C, et al. Early detection of vasospasm after acute
subarachnoid hemorrhage using continuous EEG ICUmonitoring. Electroencephalogr
Clin Neurophysiol. 1997;103(6):607-615.

7. Kim JA, Rosenthal ES, Biswal S, et al. Epileptiform abnormalities predict delayed
cerebral ischemia in subarachnoid hemorrhage. Clin Neurophysiol. 2017;128(6):
1091-1099.

8. Rosenthal ES, Biswal S, Zafar SF, et al. Continuous electroencephalography predicts
delayed cerebral ischemia after subarachnoid hemorrhage: a prospective study of
diagnostic accuracy. Ann Neurol. 2018;83(5):958-969.

9. Rathakrishnan R, Gotman J, Dubeau F, Angle M. Using continuous electroenceph-
alography in the management of delayed cerebral ischemia following subarachnoid
hemorrhage. Neurocrit Care. 2011;14(2):152-161.

10. Washington CW, Zipfel GJ. Detection and monitoring of vasospasm and delayed
cerebral ischemia: a review and assessment of the literature. Neurocrit Care. 2011;
15(2):312-317.

11. Marshall SA, Nyquist P, Ziai WC. The role of transcranial Doppler ultrasonography in
the diagnosis and management of vasospasm after aneurysmal subarachnoid hem-
orrhage. Neurosurgery. 2010;21(2):291-303.

12. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound
recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769-774.

13. Kirsch JD, Mathur M, Johnson MH, Gunabushanam G, Scoutt LM. Advances in
transcranial Doppler US: imaging ahead. Radiographics. 2013;33(1):1-15.

14. Vergouwen MDI, Vermeulen M, van Gijn J, et al. Definition of delayed cerebral
ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical
trials and observational studies: proposal of a multidisciplinary research group. Stroke.
2010;41(10):2391-2395.

15. Weir BKA, Kongable GL, Kassell NF, et al. Cigarette smoking as a cause of aneurysmal
subarachnoid hemorrhage and risk for vasospasm: a report of the Cooperative An-
eurysm Study. J Neurosurg. 1998;89(3):405-411.

16. Lynch JR, Wang H, McGirt MJ, et al. Simvastatin reduces vasospasm after aneurysmal
subarachnoid hemorrhage: results of a pilot randomized clinical trial. Stroke. 2005;
36(9):2024-2026.

17. Nagin DS. Analyzing developmental trajectories: a semiparametric, group-based ap-
proach. Psychol Methods. 1999;4(2):139-157.

18. Nagin DS. Group-based modeling of development. Choice Rev. 2005.
19. Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Annu Rev

Clin Psychol. 2010;6(1):109-138.
20. Elmer J, Jones BL, Zadorozhny VI, et al. A novel methodological framework for

multimodality, trajectory model-based prognostication. Resuscitation. 2019;137:
197-204.

21. Kumar G, Shahripour RB, Harrigan MR. Vasospasm on transcranial Doppler is pre-
dictive of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a sys-
tematic review and meta-analysis. J Neurosurg. 2016;124(5):1257-1264.

22. Dankbaar JW, De Rooij NK, Velthuis BK, Frijns CJM, Rinkel GJE, Van Der Schaaf IC.
Diagnosing delayed cerebral ischemia with different CT modalities in patients with
subarachnoid hemorrhage with clinical deterioration. Stroke. 2009;40(11):3493-3498.

23. Gollwitzer S, Groemer T, Rampp S, et al. Early prediction of delayed cerebral ischemia
in subarachnoid hemorrhage based on quantitative EEG: a prospective study in adults.
Clin Neurophysiol. 2015;126(8):1514-1523.

24. Foreman BP. The pathophysiology of delayed cerebral ischemia. J Clin Neurophysiol.
2016;33(3):174-182.

25. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving
frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4(4):432-446.

26. Cossu G,Messerer M, OddoM, Daniel RT. To look beyond vasospasm in aneurysmal
subarachnoid haemorrhage. Biomed Res Int. 2014;2014:628597.

27. Dreier JP, Isele T, Reiffurth C, et al. Is spreading depolarization characterized by an
abrupt, massive release of gibbs free energy from the human brain cortex? Neurosci-
entist. 2013;19(1):25-42.

28. van der Steen WE, Leemans EL, van den Berg R, et al. Radiological scales predicting
delayed cerebral ischemia in subarachnoid hemorrhage: systematic review and meta-
analysis. Neuroradiology. 2019;61(3):247-256.

29. Claassen J, Bernardini GL, Kreiter K, et al. Effect of cisternal and ventricular blood on
risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale
revisited. Stroke. 2001;32(9):2012-2020.

30. De Rooij NK, Rinkel GJE, Dankbaar JW, Frijns CJM. Delayed cerebral ischemia after
subarachnoid hemorrhage: a systematic review of clinical, laboratory, and radiological
predictors. Stroke. 2013;44(1):43-54.

31. Crobeddu E, Mittal MK, Dupont S, Wijdicks EFM, Lanzino G, Rabinstein AA. Pre-
dicting the lack of development of delayed cerebral ischemia after aneurysmal sub-
arachnoid hemorrhage. Stroke. 2012;43(3):697-701.

32. VergouwenMDI. Vasospasm versus delayed cerebral ischemia as an outcome event in
clinical trials and observational studies. Neurocrit Care. 2011;15(2):308-311.

33. Frontera JA, Claassen J, Schmidt JM, et al. Prediction of symptomatic vasospasm after
subarachnoid hemorrhage: the modified Fisher scale. Neurosurgery. 2006;59(1):21-27.

34. De Oliveira Manoel AL, Jaja BN, Germans MR, et al. The vasograde: a simple grading
scale for prediction of delayed cerebral ischemia after subarachnoid hemorrhage.
Stroke. 2015;46(7):1826-1831.

35. De Rooij NK, Greving JP, Rinkel GJE, Frijns CJM. Early prediction of delayed
cerebral ischemia after subarachnoid hemorrhage: development and validation of a
practical risk chart. Stroke. 2013;44(5):1288-1294.

36. Fang YJ, Mei SH, Lu JN, et al. New risk score of the early period after spontaneous
subarachnoid hemorrhage: for the prediction of delayed cerebral ischemia. CNS
Neurosci Ther. 2019;25(10):1173-1181.

37. Labar DR, Fisch BJ, Pedley TA, FinkME, Solomon RA. Quantitative EEGmonitoring
for patients with subarachnoid hemorrhage. Electroencephalogr Clin Neurophysiol.
1991;78(5):325-332.

Neurology.org/N Neurology | Volume 98, Number 5 | February 1, 2022 e469

Copyright © 2022 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n

