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Abstract

a. Purpose of Review—Mitochondrial dysfunction is a hallmark of aging. Mitochondrial 

genome (mtDNA) instability contributes to mitochondrial dysfunction, and mtDNA mutagenesis 

may contribute to aging. However, the origin of mtDNA mutations remains somewhat 

controversial. The goals of this review are to introduce and review recent literature on mtDNA 

mutagenesis and aging, address recent animal and epidemiological evidence for the effects of 

chemicals on mtDNA damage and mutagenesis, propose hypotheses regarding the contribution 

of environmental toxicant exposure to mtDNA mutagenesis in the context of aging, and suggest 

future directions and approaches for environmental health researchers.

b. Recent Findings—Stressors such as pollutants, pharmaceuticals, and ultraviolet radiation 

can damage the mitochondrial genome or disrupt mtDNA replication, repair, and organelle 

homeostatic processes, potentially influencing the rate of accumulation of mtDNA mutations. 

Accelerated mtDNA mutagenesis could contribute to aging, diseases of aging, and sensitize 

individuals with pathogenic mtDNA variants to stressors. We propose three potential mechanisms 

of toxicant-induced effects on mtDNA mutagenesis over lifespan: 1) increased de novo mtDNA 

mutations, 2) altered frequencies of mtDNA mutations, or 3) both.

c. Summary—There are remarkably few studies that have investigated the impact of 

environmental chemical exposures on mtDNA instability and mutagenesis, and even fewer in 

the context of aging. More studies are warranted because people are exposed to tens of thousands 

of chemicals, and are living longer. Finally, we suggest that toxicant-induced mtDNA damage and 

mutational signatures may be a sensitive biomarker for some exposures.
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Introduction

Pollution is the leading cause of premature death globally [1]. Regulation of pollutants that 

mandate clean air and water standards have vastly improved human health and resulted 

in humans living longer. However, increased longevity is often only in high income areas 

[2]. Only 15–30% of lifespan is estimated to be determined by genetics [3], therefore the 

environment, including pollution, in addition to other often congruent social determinants 

of health, likely plays a critical role in aging. Indeed, leukocyte telomere shortening is 

associated with psychosocial stress [4], and those living in proximity to high-traffic corridors 

with high PM2.5 exposure exhibit epigenetic markers of accelerated aging [5]. Although 

these effects are of significant public health concern, the contribution and mechanisms 

of exposure to environmental pollutants on human aging are not well understood [6]. 

Perhaps this is in part due to the complexity of interpreting changes in certain molecular 

biomarkers, such as the reported mixture of positive, negative, and no association with 

mitochondrial copy number variation and telomere length with levels of exposure to metals, 

organohalogens, and perfluorinated compounds [7].

A major hallmark of aging is mitochondrial dysfunction [8], and mitochondria are often 

dysfunctional in specific diseases of aging [9, 10]. For example, mitochondrial dysfunction 

in Parkinson’s Disease (PD) results from genetic (nuclear and mitochondrial) mutations 

[11], including age-related accumulation of mtDNA point mutations, mtDNA deletions, and 

mtDNA depletion in dopaminergic neurons of PD patients [12]. Exposure to the pesticides 

rotenone and paraquat, and a number of other chemicals [13] that cause mitochondrial 

dysfunction [14] and mtDNA damage, are major environmental factors contributing to 

idiopathic PD (eloquently reviewed by Gonzalez-Hunt and Sanders [15]). In animal and 

in vivo studies, mtDNA damage accumulated prior to dopaminergic neurodegeneration and 

mitochondrial respiration deficiencies after rotenone exposure [16] and paraquat exposure 

[17]. However, it remains unclear in humans whether mtDNA damage and mitochondrial 

dysfunction contribute to the etiology of aging and these diseases, or are a consequence of 

the disease (though see Sanders et al. [17]).

Recent reviews highlight the compelling possibility that mitochondrial genome instability, 

not just nuclear genome instability, may play a significant role in aging [18, 19], yet the 

origin of mtDNA mutations is still debated [20, 21] and the effect of exposures on mtDNA 

mutagenesis is understudied. This has not been addressed in the context of toxicology, in 

part likely due to the complexities of mitochondrial genetics and genomics. Advances in 

next-generation sequencing technologies capable of precisely detecting mtDNA mutations 

may not only resolve the debate on the origin of mtDNA mutations, but could permit the 

use of mtDNA mutations as a fingerprint for the cumulative effects of certain chemical 

exposures throughout life.

The particular vulnerability of mitochondria, and the mitochondrial genome specifically, to 

environmental exposures is of significant public health concern. Therefore, we review the 

role that chemical-induced mitochondrial genomic instability (particularly mtDNA damage 

and mutagenesis) may have in premature aging and diseases, and briefly recommend how 

future studies may use mtDNA stability as a biomarker for environmental exposures and 
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aging. While this review focuses on the potential outcome of cumulative lifetime burden 

of exposure to environmental toxicants, it is critical to note that elderly individuals are 

also likely more sensitive to the effects of environmental exposures including mitochondrial 

toxicants [22], theoretically exacerbating the effects of exposure on health and longevity 

in a particularly vulnerable population in the near future (see other reviews in this special 

issue). One such study determined that short-term increases in mean ambient air temperature 

are associated with higher blood mtDNA lesions in older individuals [23], perhaps due to 

impaired mitochondrial turnover in aged individuals. Investigating whether or not elderly 

individuals may then accumulate higher levels mtDNA mutations remains an important area 

of future research, as will be discussed in this review.

Mitochondria, mtDNA replication and mutagenesis

Mitochondria are required for energy production and other important biological processes in 

almost all eukaryotes. Mitochondria contain multiple copies of their own genome [24–26] 

that encodes various proteins necessary for oxidative phosphorylation. The 16,569 bp human 

mitochondrial genome contains 13 protein coding genes (subunits of respiratory complexes 

I, III, IV, and V) in addition to 22 tRNAs, 2 rRNAs, and a non-coding region called the 

‘D-loop’ [27]. Despite differences in genome size, gene orientation, genetic code, sequence, 

and even structure between species [28], mitochondrial genome function and biological 

processes are conserved across eukaryotes, providing robust evolutionary evidence for the 

importance of mtDNA function and maintenance.

The mitochondrial genome is replicated independently of the cell cycle by a sole DNA 

polymerase, Pol γ [27]. Multiple models of the mechanism of mtDNA replication 

exist within and between species [29–31]. However, most evidence supports a strand 

displacement mode of mtDNA replication in humans and other mammals [27, 32, 33], 

which has potential consequences for mtDNA mutational processes that we discuss below. 

Pol γ contains a catalytic subunit and 3’−5- exonuclease and 5’-dRP lyase activities which 

are required for proofreading and base excision repair. Initial theory suggested that the 

proximity of mtDNA to reactive oxygen species produced by the electron transport chain 

causes high levels of oxidative damage, explaining the ~10 to 20-fold higher mtDNA 

mutation rate compared to the nuclear genome [34]. However, current research suggests that 

endogenous Pol γ replication error is the major contributor to the high rate of mutation 

accumulation in mtDNA [20, 27]. Pol γ is a high-fidelity polymerase [35], which suggests 

that the absence of certain DNA repair pathways in mitochondria presumably contributes to 

the higher mtDNA mutation rate. For example, the rare event of nucleotide misincorporation 

by Pol γ cannot be repaired due to the absence of mismatch repair in mitochondria. The 

absence of other repair pathways, such as nucleotide excision repair, may increase the error 

rate of mtDNA replication at damaged sites. However, very few studies have questioned 

the effect of exogenous sources of mtDNA damage (e.g., genotoxicant exposures) on Pol γ 
processivity, fidelity, and exonuclease activity [36].

Mitochondrial genome stability is critical for human health. Mutations in POLG and 

two other crucial components of the mtDNA replication machinery (mitochondrial 

ssDNA binding protein and the mitochondrial helicase, Twinkle) result in mtDNA 

Leuthner and Meyer Page 3

Curr Environ Health Rep. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genomic instability and mitochondrial diseases in human patients. Error during mtDNA 

replication and exposure of susceptible single-stranded mtDNA ultimately leads to higher 

accumulation of mtDNA mutations or mtDNA depletion, resulting in disease [32, 37]. These 

mitochondrial diseases vary in pathology, but often present as metabolic dysfunction and 

myopathies or encephalopathies, as previously reviewed [38], and perhaps premature aging 

[39].

mtDNA mutagenesis and aging

Soon after the human mitochondrial genome was first sequenced (1988), mtDNA deletions 

and depletion disorders were proposed to contribute to aging and diseases of aging 

[40, 41]. Current research using advanced next-generation sequencing technologies with 

ultra-sensitive error-corrected sequencing demonstrates that mtDNA point mutations may 

also contribute to aging. For example, pre-frontal cortex brain tissue from healthy aged 

individuals (75+ years) had a five-fold increase in mtDNA mutation frequency compared 

to young individuals (<1 year) [42]. Early stage Alzheimer’s Disease patients harbored 

significantly higher mtDNA mutations in the hippocampus compared to healthy, aged 

adults and those with late-stage AD (where there is likely selection against cells and 

mitochondrial genomes containing harmful variants) [43]. Another study analyzed tumor-

normal tissue pairs from 1,675 cancer patients and showed that the number of mtDNA base 

pair substitution mutations were significantly positively correlated with patient age [44]. 

Critically, these studies [42–44] confirmed an earlier result by Zheng et al.[45] that (in 

humans) the origin of mtDNA point mutations are Pol γ polymerase-mediated errors (based 

on high rates of C → T transition mutations), and not due to oxidative damage (which is 

considered to have a G → T transversion mutation signature), as previously thought [46, 

47].

Analyses of mtDNA sequences from the same healthy, aged brain tissue from Kennedy et 

al. ([42]) discovered that C → T mutations exhibited significant heavy strand bias in a 

specific GG[C>T]G context [48]. In a ssDNA yeast model, C → T mutations dominated 

after exposure to hydrogen peroxide and paraquat, not G → T as observed in dsDNA 

[48]. This potentially uncovers a mechanism and signature of oxidative damage particularly 

relevant to mtDNA because the mtDNA heavy strand is often displaced during mtDNA 

replication, leaving it single-stranded and vulnerable to endogenous and exogenous damage. 

Therefore, Degtyareva et al. propose that cytosines may be sites for mutagenic lesions 

on persistent ss-mtDNA, though the biochemistry of the lesion remains unknown [49]. 

Relatedly, some have suggested that abasic sites and strand breaks prevail as the signature 

of oxidative damage over 8-oxo-dG lesions, resulting in targeted degradation of linearized 

mtDNA [21] by quality control processes such as mitophagy, components of the replication 

machinery including Pol γ, and mitochondrial genome maintenance exonuclease 1 [50, 51], 

or mechanisms of selective removal yet to be discovered [52]. This further emphasizes that 

the complex role of oxidative damage in mtDNA mutagenesis and aging, especially after 

exposure to toxicants that induce redox stress, merits further investigation [53].

Historically, mitochondria were thought to play a central role in aging because in most cells, 

mitochondria produce a majority of endogenous reactive oxygen species (ROS) that can 
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damage DNA, protein, and affect other molecular and cellular processes (the ‘mitochondrial 

free radical theory of aging’) [46]. However, in addition to sequencing evidence against 

oxidative damage contributing to mtDNA mutagenesis, it is now known that mitochondrial 

ROS also play important endogenous roles in intracellular signaling that regulate cell 

senescence, metabolism, autophagy, and proteostasis. The mitochondrial theory of aging 

has been extensively reviewed (e.g. Pinto and Moraes [54]), but the contribution of the 

environment in the context of the mitochondrial free radical theory of aging has not been 

previously considered. Many chemicals and pollutants can cause molecular and cellular 

damage; therefore, it is reasonable to theorize that exposures such as those that disrupt the 

redox balance of cells or induce ROS production may cause oxidative damage.

Another ongoing debate in the aging field is whether mtDNA mutations cause, or are 

merely a consequence of, aging. Evidence from studies in model organisms demonstrate 

the potential contribution of mtDNA mutations to aging. Homozygous Pol γ exonuclease 

activity-deficient “mutator” mice have increased mtDNA mutation frequencies and exhibit 

premature aging phenotypes compared to age-matched wild-type mice [55, 56]. Important 

to note, however, is that heterozygotes had a mutation frequency higher than aged wild-type 

mice, yet had no aging phenotypes [57]. In another study, one-year-old Pol γ-deficient mice 

also showed increased mtDNA transition mutations compared to wild-type in striatal tissue, 

and greater dopaminergic neurodegeneration when crossed with a Parkinson’s Disease 

mouse model [58]. An age-related hearing loss (AHL) mouse model crossed with a Pol 

γ-deficient mouse had a higher mtDNA point mutation frequency in inner ear tissue at both 

5 and 17 months, and experienced accelerated hearing loss, premature death, and significant 

weight loss, hair loss, graying, and kyphosis as early as about 10 months of age compared 

to AHL mice with wild-type Pol γ [59]. There was no increase in mtDNA point mutation 

frequency from 5 to 17 months in the mutant mice, which could suggest that the rate of 

mtDNA mutation accumulation over lifespan may not contribute to aging directly, but that 

instead perhaps there is clonal expansion of mtDNA mutations early in life that result in 

an increased burden of mtDNA mutations later in life and contribute to aging pathologies 

[59]. However, Kim et al. did measure an increase in mtDNA deletion frequency from 5 

months to 17 months of age, which could provide evidence that deletions contribute more to 

aging and aging pathologies than point mutations [59]. In fact, ultra-sensitive sequencing to 

detect low-frequency mtDNA deletion mutations (‘LostArc’) showed that levels of mtDNA 

deletions (not depletion) increased with age in human skeletal muscle biopsies, which 

correlated with impaired oxidative phosphorylation, and were exacerbated in POLG disease 

patients [32]. Lujan et al. hypothesize that impaired mtDNA degradation (mitophagy) over 

time may contribute to increased mtDNA deletions with age [32].

Other relevant mtDNA mutator models have been developed in Caenorhabditis elegans and 

Drosophila melanogaster [60–63]. These studies are consistent with the theory that increased 

frequencies of mtDNA mutations are associated with decreased longevity and other aging-

related phenotypes compared to wild-type organisms (with the exception of Kauppila et al. 

[63]). An important caveat is that some of these studies have only sequenced specific regions 

of the mitochondrial genome (e.g., just the D-loop or a single gene) which could bias results, 

as there are likely different mutational and biological processes (such as selection) acting 

on different regions of the genome. Nevertheless, accelerated mtDNA mutation rates of 
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error-prone Pol γ can cause aging and other aging-related pathologies, but raise doubt about 

whether normal rates of mtDNA mutagenesis contribute to aging [20]. Therefore, we believe 

that it is pertinent to investigate whether other factors, such as environmental exposures that 

cause mtDNA damage, sufficiently contribute to mtDNA mutagenesis and affect aging and 

aging-related diseases.

mtDNA heteroplasmy and aging

It is now clear that humans and many other eukaryotes retain low levels of mtDNA 

heteroplasmy, meaning mutant mtDNA is often present at variable frequencies within 

organelles, cells, and tissues [64]. This is of high relevance to human health and disease 

[65], as well as pathologies of aging. Heteroplasmic mutations are inherited maternally 

or arise and then expand in certain tissues during development and aging. It is thought 

that pathological phenotypes appear only when a mutant mitochondrial genome reaches a 

certain frequency, or “threshold”. Heteroplasmy often fluctuates, yet it still is incompletely 

understood what processes regulate mtDNA heteroplasmy through the germline and in 

the soma. In general, the redundant nature of mtDNA is predicted to 1) hinder the 

maternal transmission of mutant genomes through the germline [66–68], and 2) delay the 

accumulation of mtDNA mutations past a critical threshold through various processes [60, 

68–75]. However, heteroplasmic mtDNA mutations are still associated with lifespan and 

give rise to diseases of aging – even those inherited maternally [76, 77].

The heteroplasmic nature of the mitochondrial genome contributes to the complexities of 

investigating mtDNA mutagenesis. Heteroplasmy is dependent on mtDNA copy number 

(mtCN), which is in part regulated by coupling of replication and degradation of 

mitochondrial genomes. However, mtCN varies by orders of magnitude between cell types, 

(e.g. myocardial muscle cells contain more than 6,000 copies per cell, while leukocytes have 

around 350 copies per cell) [26]. Though mtCN has been used widely as a biomarker for 

age, health, and exposure to environmental pollutants in peripheral tissues (e.g. [7, 78, 79]), 

there is high inter-individual variation in mtCN in matching tissues, further complicating 

interpretation of the biological consequences to changes (or not) in mtCN, and consequently 

heteroplasmy [26]. Many studies have had contradictory results when determining mtCN 

across age (no change, increase, or decrease), which is again highly dependent on tissue 

type. Perhaps this is due to the significant complexities involved with measuring and 

interpreting mtCN in laboratory and epidemiological studies. Issues such as methodological 

bias, specimen heterogeneity, cell type composition, and genetic and environmental factors 

(such as exercise and aging) must be considered for the precise quantification of mtCN 

and interpretation of literature [80]. Despite these factors, mitochondrial disease, aging, 

neurodegeneration, and cancer [80], as well as exposures (e.g., [81] and as reviewed 

previously [82, 83]), results in both increases and decreases to mtDNA copy number, 

complicating interpretation of changes. Therefore, the field would greatly benefit from an 

updated review exclusively focused on mtCN and chemical exposures.

Apart from mtCN change as a biomarker, turnover of mtDNA may be quite important in 

the context of interpreting findings of mtDNA mutations. For example, an adaptive response 

may result in increased turnover to facilitate removal of damaged or mutated mtDNA, 
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theoretically resulting in no change in mtCN, and perhaps fewer mtDNA mutations and 

low levels of heteroplasmy. Conversely, perhaps increased rates of mitochondrial biogenesis 

and mtDNA replication result in overrepresentation of certain mtDNA molecules due to 

clonal expansion or selection [61]. Turnover rates may themselves be influenced by both 

environmental stressors and age, thus indirectly impacting age-related mutagenesis. For 

example, mild oxidative stress increases both mitochondrial biogenesis, degradation, and 

dynamics [83].

Another challenge in assessing mtDNA heteroplasmy is that mtDNA mutations are often 

present at frequencies that are orders of magnitude lower than the error rates of conventional 

sequencing technologies (1 in 1,000 base pairs) [84]. New technologies correct errors from 

mtDNA damage and PCR amplification during the preparation of sequencing libraries, 

and can accurately detect mtDNA mutations at frequencies as low as 1 in 107 base pairs 

[32, 85–87]. A recent mouse study conducted Duplex Sequencing of mtDNA from brain, 

muscle, single oocytes, and oocyte pools from aged dams (10-mo) and daughter pups 

(1-mo) to investigate the frequencies and spectrum of de novo germline and somatic mtDNA 

mutations across age and tissue type [88]. Remarkably, the majority of mtDNA mutations 

occurred below 1%, and in most cases, a variant was present in only one mtDNA molecule 

[88]. They observed ~2.6-fold increase in mtDNA mutation frequencies in the aged dams 

compared to the pups in all tissues except pooled oocytes, with an enrichment of G → 
A/C →T mutations, consistent with polymerase error, spontaneous deamination of cytosine 

on the heavy strand during replication, or oxidative damage to ssDNA [88]. In humans it 

is also likely that mtDNA mutations occur and persist at very low frequencies (perhaps 

within a single mitochondrial genome) [89], and these rare variants might have functional 

consequences on health and aging [64, 90].

Just as mtDNA mutations are present at low frequencies in cancers [91–94], exposure 

to environmental pollutants that cause mtDNA damage and mutations will likely result 

in very rare mutations, which will only be detected with ultra-sensitive sequencing 

technologies [95, 96]. Improved sequencing methods, including methods in single cell 

or single mitochondrion sequencing [97, 98], have revealed the pervasiveness of mtDNA 

heteroplasmy, yet the origin, nature, and significance of mtDNA mutations remain an 

exciting area of future research, particularly in the fields of toxicology and aging, as we 

discuss next.

mtDNA vulnerability to mutations and toxicants

The structure of the mitochondrial genome and the single-strand displacement model of 

mtDNA replication are thought to predispose mtDNA to damage or replication errors, 

though this is a very recent theory. The highly conserved double-stranded circular 

mitochondrial genome harbors significant strand asymmetry in regards to nucleotide 

composition. In humans and most mammals, the mitochondrial genome contains a heavy 

and a light strand (LS) in which the inner heavy strand (HS) contains twice as many guanine 

nucleotides. The origin of the asymmetrical composition of the mitochondrial genome 

is thought to be due to the displacement of the single-stranded parent HS, rendering it 

susceptible to endogenous damage and spontaneous deamination of cytosine (C → U; G 
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→ A), and adenine (A → hypoxanthine (hX); T → C) [99] or maybe oxidative damage 

to cytosine (C → T) [48]. It has recently been demonstrated that the guanine-rich HS may 

be highly permissive to G-quadruplex (G4) formation compared to the nuclear genome [86, 

87]. G4 structures may play a functional role (such as increasing the binding efficiency of 

mitochondrial transcription factor A, TFAM) [102], but are also a likely source of genomic 

instability, as they are often detected in proximity to mtDNA deletion mutations [103]. 

Other structural motifs in mammalian mtDNA, such as triple-stranded DNA as a result 

of triplex repeats, are negatively associated with maximum lifespan [104]. Enrichment of 

secondary stem-loop structures that form on the LS, which may mimic origins of replication, 

is positively associated with longevity in mammals [105]. It is predicted that these structures 

result in lower accumulation of deletion mutations, which could “decelerate mitochondrial 

aging” due to fewer dysfunctional organelles, thus delaying cellular senescence [105]. These 

results are consistent with mitochondrial genome instability contributing to aging.

mtDNA has several other properties that may make it particularly susceptible to mutagenesis 

compared to the nuclear genome. First, mtDNA is located in the mitochondrial matrix in 

proximity to the electron transport chain, which is the primary site of ROS production in 

most cells [106]. However, the exact location of the mitochondrial genome and the type of 

ROS produced [107, 108] (which may also depend on the mechanism of toxicity) may factor 

in to mtDNA damage and mutagenesis. Furthermore, mitochondrial membrane potential is 

not uniform within an organelle, similar to localization of pH and voltage gradients, likely 

due to compartmentalization of ATP synthase and the ETC chain [109], potentially affecting 

which mtDNA molecules are exposed to ROS. This is important because the packaging and 

localization of mtDNA is heterogeneous across cell type and varies with cellular demands, 

be it mtDNA transcription, mtDNA replication, or being held in reserve, potentially resulting 

in altered vulnerability to ROS or other stressors. In general, oxidative stress plays a large, 

yet complex, role in theories of aging, and of mitochondrial dysfunction. It will be critical 

in future studies to continue to distinguish between the beneficial effects of low levels of 

oxidative stress (such as stimulation of mtDNA turnover), and higher levels, which cause 

mtDNA damage [110].

Other properties that render mtDNA susceptible to environmental exposures and 

mutagenesis may be the lack of protective histones and the fact that several DNA 

repair pathways are absent from mitochondria [111, 112]. However, mtDNA is packaged 

into nucleoids, which may serve a protective function [113, 114]. In mammals, TFAM 

facilitates the compaction of mtDNA, thus regulating mtDNA replication and copy number, 

in addition to mtDNA transcription [115, 116]. Transcription of mtDNA may also be 

controlled by cytosine methylation [117, 118], or the more recently discovered adenosine 

methylation[119], although CpG methylation in mitochondria is still controversial [120]. 

Studies have demonstrated changes in mtDNA methylation after various exposures (tobacco 

smoke and air pollution for example [121, 122]) and mtDNA epigenetics may be a valuable 

biomarker for environmental exposure and health [123]. It is therefore possible that mtDNA 

epigenetic modifications that alter accessibility of mtDNA-damaging agents, and possibly 

mtDNA maintenance machinery, may result in heterogeneous accumulation of mutations 

across different cell types, different mitochondrial genomes, or potentially specific regions 

within the mitochondrial genome. On the other hand, it is accepted that mtDNA-nuclear 
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DNA crosstalk is mediated via nuclear epigenetics [124]. Therefore, it is conceivable that 

chemical or age-induced changes to the nuclear epigenome that control mtDNA replication, 

repair, and transcription [125, 126] might also impact mtDNA mutagenesis.

Lastly, biological and physicochemical properties of the mitochondrion result in 

accumulation of cationic compounds, weak acids, and lipophilic compounds [33, 111, 127, 

128]. All of these features in addition to the high copy number of mtDNA could render 

mtDNA a sensitive and reliable biomarker for toxicant-induced mtDNA damage, and thus 

exposure.

Evidence for effects of toxicants on mitochondrial genome integrity

Environmental toxicants likely contribute to mtDNA instability through a range of 

mechanisms such as direct mtDNA damage, depletion of nucleotide pools, redox stress, 

or interference with organelle dynamics (fusion/fission) and turnover (biogenesis and 

mitophagy), which are critical for health and healthy aging [129–132]. Here we will review 

the limited evidence of effects of chemical exposure on mtDNA mutagenesis in model and 

sentinel organisms, as well as human in vitro and population health studies (Table 1). Effects 

of toxicants on mtDNA copy number, biogenesis, degradation, and mitochondrial dynamics, 

all highly relevant to regulation of mtDNA mutational processes [71], have been reviewed 

elsewhere [83].

There is little to no direct evidence for a role of mtDNA damage in de novo point or 

deletion mutations, though mechanisms of mtDNA deletion formation have been speculated 

[145]. In addition to oxidative damage, stressors such as ultraviolet C radiation (UVC), or 

toxicants that form bulky adducts such as metabolites of benzo[a]-pyrene (B[a]P) and other 

polycyclic aromatic hydrocarbons, can cause direct damage to mtDNA in humans and other 

organisms [111, 112, 146–148]. Mitochondria lack nucleotide excision repair and mismatch 

repair mechanisms, rendering mtDNA susceptible to genotoxicant-induced mtDNA damage 

and mutations [112]. This is compelling and relevant to environmental health because a wide 

range of environmental pollutants can cause damage that requires nucleotide excision repair, 

while mismatch repair is required to correctly replace a misincorporated nucleotide resulting 

from polymerase error (potentially due to a damaged template during replication). If these 

lesions are not repaired and the organelle is not targeted for degradation, this could lead 

to nucleotide misincorporation during mtDNA replication, resulting in a mutation (where 

the absence of mismatch repair would presumably amplify this effect). For reference, an 

updated list of known mtDNA genotoxicants was recently curated by Copeland and Wallace 

[33].

Biochemical studies initially demonstrated that human Pol γ misincorporates purines 

(mostly dAMP, some dGMP) opposite N2-deoxyguanosine (dG) adducts derived from B[a]P 

7,8-diol 9,10-epoxide exposure, with limited translesion synthesis [133]. This could result 

in a specific mutational signature (G → T), but more often is thought to result in mtDNA 

deletions and copy number depletion due to polymerase stalling and thus inhibition of 

mtDNA replication. In vitro exposure to UVC also causes mtDNA damage that blocks the 

processivity of Pol γ, but some evidence suggests bypass of pyrimidine dimers may result 
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in nucleotide misincorporation [149]. In vivo, a recent study in Mus musculus showed that 

after 28 days of exposure to B[a]P or N-ethyl-N-nitrosourea (ENU), mice had significant 

mtDNA adduct formation in both bone marrow and liver compared to controls, but no 

increase in mtDNA point mutation frequency or deletion frequency in two mtDNA genes 

(12S rRNA and ND5) after either exposure [134]. It should be noted that a potential 

limitation in this study is the reliance on Random Mutation Capture, which can only assay 

mutations at TCGA sites. This offers an incomplete result when investigating effects of 

exposures because the trinucleotide context (5’ and 3’ base identity) cannot be investigated 

with this method. This highlights the need to conduct whole-genome studies. Nevertheless, 

mtDNA copy number did not decrease after ENU exposure as would be expected with 

polymerase stalling. This suggests perhaps mitochondrial-specific mechanisms to avoid 

mutation accumulation (which could even be tissue-dependent), such as targeted degradation 

of damaged or mutant mtDNA [51, 60, 132, 150]. These hypothesis remain an intriguing and 

important future area of research.

If mtDNA damage does not increase the frequency of point mutations alone, certain genetic 

backgrounds may predispose individuals to increased susceptibility to chemical-induced 

mtDNA mutagenesis [32, 110]. For example, in various Saccharomyces cerevisiae strains 

harboring genetic mutations in the POLG homolog MIP1, exposure to the alkylating agent 

methyl methanesulfonate (MMS) significantly increased the frequency of mtDNA mutations 

compared to wild-type [135]. Interestingly, the spectrum of MMS-induced mutation was 

similar in both wild-type and a MIP1 strain: C:G → G:C transversions in a PCR-amplified 

region of the mitochondrial 16S ribosomal subunit. Perhaps this mutation spectrum is due 

to the apparent presence of DNA Polymerase zeta in yeast mitochondria [152], which is 

an error-prone translesion synthesis polymerase that can result in G → C transversions at 

damaged and abasic sites [153]. Nevertheless, this demonstrates the potential for individual 

susceptibility to toxic exposures, particularly in individuals with deficiencies in POLG.

Off-target drug toxicity disrupts mtDNA integrity in humans, which is a significant concern 

in the geriatric population [22]. One of the most well-known examples is the effect of 

the nucleoside reverse transcriptase inhibitors (NRTIs), which are anti-viral drugs used to 

treat human immunodeficiency virus [136]. NRTIs are phosphorylated to active nucleotide 

analogs that lack a 3’ hydroxyl group, and when incorporated into the daughter strand, 

mtDNA replication is prematurely terminated resulting in significant mtDNA depletion. 

It is not inconceivable that other drugs and potentially environmental pollutants could 

similarly disrupt mitochondrial genome instability by interfering with nucleotide pool 

composition or perhaps creating nucleotide analogs or modifications that either stall the 

mtDNA replication machinery or result in error-prone replication, potentially resulting in 

copy number depletion, or even mtDNA mutations.

The origin of mitochondria from an ancient alpha (α)-proteobacteria ancestor explains the 

vulnerability of mitochondrial translation to many antibiotics. Individuals with a specific 

mutation in the 12S ribosomal RNA mitochondrial gene are at high risk to develop hearing 

loss after exposure to aminoglycosides compared to those without this mutation: however, 

not all individuals harboring this variant develop deafness, and not all those that develop 

deafness have had an exposure to aminoglycosides [151]. This suggests that there are other 
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environmental factors involved, perhaps exposure to other drugs or chemicals with similar 

toxicities and highlights a compelling question for future investigation: why do patients with 

the same mutation (such as this 12S rRNA variant, or a nuclear POLG mutation) often 

have such variable clinical presentation of pathologies? These differences may be due to 

other genetic or environmental factors (social, diet, etc.), but perhaps variable environmental 

exposures play an important role in these aging-related diseases.

To our knowledge, there are only a few case studies that have investigated the effect 

of exposure to environmental pollutants on mtDNA mutations in human populations. 

Occupational workers in India with high lead blood levels had more mtDNA single 

nucleotide variants than those with low lead exposure. Most of these mtDNA mutations were 

transition mutations (T:A → C:G) [138]. Farmers from the Shandong province in China had 

more mtDNA mutations in lung tissue samples compared to peripheral blood, potentially 

suggesting mtDNA genomic instability from long-term inhalation to high levels of pesticides 

[139]. However, this study was only able to detect mutations at a minimum frequency of 

25%, potentially missing the majority of low-frequency heteroplasmic mutations. Another 

more recent study investigated the effects of cigarette smoking on mtDNA mutagenesis in 

blood that was collected from a cohort of smoking and non-smoking females [141]. Of 

those who smoke, about 35% of individuals exhibited mtDNA heteroplasmy, compared to 

never smokers, where less than 20% of individuals exhibited mtDNA heteroplasmy (p < 

0.01) [141]. Surprisingly, there was no association with smoking and frequency of de novo 
mutations, which suggests that this increase in heteroplasmy may be due to clonal expansion 

of pre-existing mutations. Perhaps either increased cellular turnover from stress, or perhaps 

the potential effects on mitochondrial fission and fusion dynamics as well as mitophagy 

by specific chemicals affects clonal expansion (heteroplasmy) [71]. Finally, although not 

an anthropogenic pollutant, there is epidemiological evidence that exposure to ultraviolet 

radiation contributes to increased age-related clonal expansion of a mtDNA point mutation 

and the common mtDNA deletion in skin cells [140], presumably due to effects on mtDNA 

replication or mtDNA homeostasis [157, 158] and mitochondrial dysfunction [159]. UVA 

and UVB wavelengths induce the same photolesions as UVC (though UVC cannot penetrate 

the ozone layer), in addition to a significant amount of oxidative mtDNA damage, likely 

contributing to mtDNA mutagenesis. This body of literature suggests that mtDNA damage 

can lead to mtDNA mutagenesis during aging, at least under certain conditions.

Understanding the effect of exposures on mtDNA damage, copy number, and mutagenesis 

is a complex endeavor for environmental molecular epidemiologists. For example, air 

pollution, specifically PM2.5, is known to induce oxidative stress, mtDNA damage, and 

in some cases increase or decrease activity of mitochondrial homeostatic dynamics (fusion 

and fission) and mitophagy [154–156]. One could hypothesize that this could result in an 

increase or decrease in mtDNA mutations or heteroplasmy (see Figure 1 and Figure 2), and 

could depend on the dose and even be cell or tissue-specific [82, 83].

Investigation of mtDNA mutagenesis in natural populations of sentinel organisms may also 

provide insight into the effects of exogenous stressors on mtDNA mutational processes 

[160]. A recent study of Chernobyl bank voles concluded that voles exposed to high 

levels of cesium and strontium radiation for 50 generations have increased accumulation 
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of mtDNA mutations: the mitochondrial genome had more polymorphic sites and greater 

genetic diversity within the contaminated population compared to vole populations living 

in uncontaminated areas [143]. Perhaps mtDNA damage from radiation resulted in mtDNA 

mutations [143]. However, mutation as an evolutionary process does not act in isolation: 

there are other evolutionary forces that drive genetic diversity of a population, such as 

natural selection acting on a mutation, gene flow from individuals migrating between 

populations, or genetic drift. For example, contrary to the results from the Chernobyl voles, 

marsh frogs from heavy metal and PAH-contaminated sites in Azerbaijan exhibited lower 

genetic diversity compared to frogs from uncontaminated sites [144]. This is a result of 

either genetic drift acting on a declining population size due to heavy pollution (a genetic 

“sink”), or selection to tolerate pollution. These case studies provide some evidence of 

effects of pollution on mtDNA sequence variation and population health, but not conclusive 

proof of toxicant-induced mtDNA mutagenesis.

Controlled laboratory studies may provide insight into the mechanisms and effects of 

toxicants on mtDNA mutagenesis. For decades, evolutionary biologists have used mutation 

accumulation line (MA) experiments to investigate mtDNA mutational processes [161]. 

MA experiments are often conducted in model organisms with rapid generation times that 

reproduce clonally (such as species of the keystone freshwater crustacean Daphnia) or 

via selfing (such as C. elegans) [162–165]. However, there are still challenges to directly 

estimate mtDNA mutation rates such as ability to detect very low frequency mutations, 

and the presence of selection acting to favor or purge mtDNA mutations on different levels 

(organelle, cell, tissue, germline bottleneck) [166]. Until recently, no MA experiment had 

investigated the effect of chemical exposure on nuclear genome mutational processes [167–

169], and to our knowledge no MA experiment has investigated the effect of exposures 

on mtDNA mutagenesis. Though MA experiments are laborious and time intensive, with 

the advancement of sequencing technologies and dropping costs of sequencing, we propose 

this to be a relevant and useful approach to not only investigate the effect of exposures on 

mtDNA mutagenesis, but potentially provide resolution as to what cellular processes (and 

possible interventions in treating human diseases) contribute to the origin and transmission 

of mtDNA mutations.

mtDNA as a biomarker for exposure and health: summary and 

recommendations for future studies

However large or small the contribution of mtDNA mutations in aging and diseases of aging, 

because environmental toxicants can interfere with mitochondrial genome integrity and 

because a relatively high level of mtDNA mutations can be tolerated, mtDNA mutagenesis 

may be a good biomarker for footprints of exposure and potential health consequences. 

From our review of the evidence provided above, we consider possible theoretical outcomes 

of future investigations, as illustrated in Figure 1. First, exposures may result in increased 

mtDNA mutation rates. Exposed individuals may have higher frequencies of mtDNA 

mutations than those with lower exposures, and on a population level, there may be a 

larger distribution (more variation) in the frequencies of mtDNA mutations (Figure 2). It 

is conceivable that this accelerated rate of mtDNA mutagenesis increases the risk of a 
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pathogenic variant appearing earlier in life, potentially only in a subset of cells. Second, 

exposures may affect the replication machinery and organelle dynamics and turnover, 

which may result in significant clonal expansion of existing variants (Figure 1). Exposed 

individuals may have more mutations at higher frequencies compared to low exposure 

(Figure 2). On a population level, there may be more individuals with greater mtDNA 

heteroplasmy, which may be indicative of clonal expansion of existing mutations (Figure 

2). As mutant mitochondrial genomes escape degradation and proliferate, it is possible that 

pathogenic mutations pass a critical threshold earlier, resulting in accelerated aging and 

earlier onset of aging diseases (Figure 1). A third possibility is that both mechanisms are 

occurring, as different chemicals exert different mechanisms of toxicity, and the human 

exposome is vast.

It is critical to better understand the effects of the environment on aging, particularly on 

diseases of aging such as cancer and neurodegenerative diseases, as the proportion of people 

over the age of 65 will almost double globally by 2050, from 9% to 16% [170]. The 

search for both drug and lifestyle interventions for treatment of mitochondrial diseases is 

very active, and such approaches may be beneficial [171, 172]. However, from a public 

health perspective, pollution prevention is a more equitable approach as the WHO predicts 

80% of older people will be living in low- and middle-income countries [173]. Robust 

molecular biomarkers are therefore imperative to understand exposure and potential health 

outcomes for regulation. Research to better understand the associations of mtDNA mutations 

(including specific signatures of mtDNA mutagenesis) and heteroplasmy in epidemiological 

studies, as well as uncovering the mechanisms that regulate, and consequences of exposures 

on, mtDNA mutational processes in laboratory research remain exciting areas of future 

environmental health research.
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Figure 1. Schematic of effects of age and environmental toxicant exposures on mtDNA 
mutagenesis.
mtDNA mutations are thought to accumulation over time and contribute to healthy aging 

(green line). Exposure to exogenous stressors, such as environmental pollutants, may result 

in higher rates of mtDNA mutation accumulation (purple line). It is also hypothesized 

that many chemicals interfere with mtDNA replication, turnover, and organelle dynamics, 

potentially resulting in clonal expansion of existing mtDNA mutations, without increasing 

the rate of de novo mutation accumulation (blue line). Theoretically, if pathogenic mutations 

arise earlier or at great frequencies (or both; not shown), a threshold of tolerance (dashed 

line) of mtDNA mutations may be reached earlier in life, potentially resulting in premature 

aging phenotypes and accelerated onset of aging-related diseases such as neurodegeneration 

or cancer. It is likely that there will be high interindividual variation of the “threshold”, as 

shown in the shaded areas around the dashed line as some individuals are likely to be more 

sensitive and vulnerable, while others may be more tolerant to exposures and/or mtDNA 

mutation accumulation. Created with BioRender.com.
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Figure 2. Schematic of effects of environmental toxicant exposures on mtDNA heteroplasmy in 
young versus old individuals or populations.
New evidence suggests mtDNA mutations undergo clonal expansion during aging. 

Theoretically, this results in more mutations at a higher frequency in aged versus young 

individuals. An old population also likely has a greater distribution in the frequency 

of mtDNA mutations compared to young populations. Exposure to stressors such as 

environmental pollutants may result in an increase in the rate of mutation accumulation or 

clonal expansion of existing variants, resulting in a shift and greater distribution of mtDNA 

heteroplasmy early in life, resulting in a premature “aged” mutational signature (green 

box) in individuals or a population with high exposures compared to low exposures. It is 

also likely that mtDNA mutation rates and heteroplasmy will vary when looking in within 

aged populations with variable environmental exposures. Those that have either endured a 

lifetime burden of exposures or recent exposure to chemicals may have greater accumulation 

of mtDNA mutations (i.e. more mutations within an individual, and more individuals with 

mtDNA mutations at higher frequencies), than healthy aged individuals and populations 

(blue box). Created with BioRender.com
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