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Abstract

Single cell RNA-sequencing data have significantly advanced the characterization of cell type 

diversity and composition. However, cell type definitions vary across data and analysis pipelines, 

raising concerns about cell type validity and generalizability. With MetaNeighbor, we proposed an 

efficient and robust quantification of cell type replicability that preserves dataset independence and 

is highly scalable compared to dataset integration. In this protocol, we show how MetaNeighbor 

can be used to characterize cell type replicability by following a simple 3-step procedure: gene 

filtering, neighbor voting, and visualization. We show how these steps can be tailored to quantify 

cell type replicability, determine gene sets that contribute to cell type identity, and pretrain a model 

on a reference taxonomy to rapidly assess newly generated data. The protocol is based on an 

open-source R package available from Bioconductor and Github, requires basic familiarity with 

Rstudio or the R command line, and can typically be run in less than 5 minutes for millions of 

cells.

EDITORIAL SUMMARY

This protocol provides step-by-step instructions for using MetaNeighbor, a computational tool 

that allows quantification of cell type replicability across single cell transcriptomic datasets and 

identifies the gene sets that contribute to cell identity.
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A new protocol for using MetaNeighbor to quantify the replicability of cell types across single cell 

transcriptomic datasets.

PROPOSED TEASER

Quantifying cell type replicability with MetaNeighbor

Introduction

The advent of single cell technologies has enabled the molecular characterization of 

heterogeneous tissues at cellular resolution, complementing historical approaches based 

on marker genes, morphology and electrophysiology. By combining ever improving 

technologies, consortia efforts have published compendia totaling several hundred thousand 

cells over multiple modalities to provide comprehensive cell type taxonomies and 

exciting new insights on the molecular basis of cell type identity1–6. However, validating 

computationally derived cell types remains an important challenge. Single cell data are 

inherently noisy and subject to lab-specific technical variation, which makes them difficult 

to normalize and combine. Moreover, putative cell types are obtained through unsupervised 

clustering procedures containing numerous free parameters, raising questions about their 

reproducibility7.

Numerous pipelines have been proposed to combine multiple single cell datasets to obtain 

a more extensive characterization of cell types8–14. While they vary widely in their 

mathematical formalisms, these pipelines are based on the idea that data can be corrected, 

either directly, or by embedding cells in a common space that removes unwanted technical 

variation. These pipelines also provide metrics that quantify how well multiple datasets have 

been merged. However, these metrics are applied after the correction procedure, by which 

point the datasets are no longer independent, thus making it difficult to assess whether data 

have been overcorrected. To accurately measure confidence in cross-dataset signals, we need 

a direct evaluation of cell type replicability that preserves dataset independence as this is a 

better measure of the likelihood to rediscover a cell type in an independent dataset.

Development of the protocol

MetaNeighbor proposes an easily interpretable cross-dataset framework that quantifies 

cell type replicability while preserving dataset independence15 (Fig. 1a). Replicability is 

formulated as a straightforward classification task: based on the expression profile of a cell 

type from a train dataset (hereafter referred to as “reference dataset”), can I predict which 

cells belong to a similar cell type in an independent test dataset (hereafter referred to as 

“target dataset”)? In a nutshell, cells from a given reference cell type vote for their closest 

neighbors in an independent target dataset, effectively ranking target cells by similarity. 

This cell-level ranking is aggregated at the cell type level (in the target dataset) as an Area 

Under the Receiver Operator Characteristic curve (AUROC), which reflects the proximity of 

a target cell type to the reference cell type. For example, an AUROC of 0.9 indicates that 

cells are, on average, ranked in front of 90% of all other cells in the target dataset. If two 

cell types have a shared biological identity, we expect them to be mutual top matches (when 

reversing reference and target roles) with a high average AUROC score.
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MetaNeighbor’s framework is flexible and can be adapted to multiple applications. In its 

supervised mode, it evaluates the replicability of cell types that are thought or known to be 

matching a priori. If, as is often the case, the cross-dataset cell type matching is unknown, 

MetaNeighbor also provides an unsupervised mode, which automatically identifies the 

strongest matching cell types and outputs the corresponding AUROCs. MetaNeighbor 

can also be used for the functional characterization of replicating cell types, identifying 

pre-defined gene sets (e.g., from the Gene Ontology or the HUGO Gene Nomenclature 

Committee) that contribute to cell type identity. Finally, the simplicity and scalability of the 

statistical framework facilitates the setup of computational control experiments.

To adapt to the emergence of large-scale datasets, which now routinely contain 100,000 

cells or more, we improved MetaNeighbor’s implementation to quickly and interactively 

assess replicability for data compendia containing a high number of cells and independent 

experiments4. Aside from pure speed improvements, we added the possibility to compare a 

dataset to a pre-trained MetaNeighbor model, which allows the rapid evaluation of newly 

annotated data against comprehensive consortium data.

Applications of the method

In the original publication, we validated MetaNeighbor’s ability to characterize rare and 

transcriptionally subtle cell types15. Across 3 early transcriptomic neuron taxonomies, 

MetaNeighbor identified 11 strongly replicating interneuron subtypes, along with novel 

robust marker genes15. A similar analysis was performed across 7 datasets from the Brain 

Initiative Cell Census Network (BICCN), sampling from the mouse primary motor cortex 

using a variety of laboratories, technologies and clustering pipelines4. From the BICCN 

datasets, MetaNeighbor estimated that a majority (60/113) of the newly defined cell types 

were replicable and that these cell types were robustly identified across both sequencing 

technologies and clustering pipelines.

To further probe the basis of neuronal cell type identity, MetaNeighbor’s functional 

characterization identified gene families contributing to interneuron identity16, as well as 

conserved and divergent gene families across mouse, human and marmoset6,17. Applied to a 

hand-picked selection of cardinal interneurons, MetaNeighbor showed that identity of these 

cell types could be characterized by gene families related to synaptic communication, which 

could be further subdivided into 6 broad categories (cell-adhesion molecules, transmitter-

modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release 

components, transcription factors)16. Independently, MetaNeighbor was used to highlight 

conserved expression patterns between mouse and human neurons, showing that replicable 

cell types shared the same characteristic gene families in the two species17. These results 

were confirmed and extended in a cross-species analysis from the BICCN, where a 

MetaNeighbor analysis showed that the expression of genes relevant to neuron physiology 

(cadherins, ion channels, glutamate transporters) was preferentially conserved across human 

and marmoset compared to mouse6.

In the future, we believe that MetaNeighbor’s scalability will be further exploited to make 

accessible large consortium data (by querying pre-trained models) and meta-analyses (by 

enabling the comparison of large dataset compendia).
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Overview of the Protocol

We present 3 procedures that use MetaNeighbor to quantify and characterize cell type 

replicability. In Procedure 1, we use unsupervised MetaNeighbor to identify replicable cell 

types across 4 pancreas datasets (Fig. 1b). In Procedure 2, we show how to assess newly 

annotated cell types against a large reference taxonomy by pre-training a MetaNeighbor 

model (Fig. 1c). Finally, in Procedure 3, we use supervised MetaNeighbor to investigate the 

molecular basis of cell type identity by finding functional gene sets that contribute highly 

to cell type replicability (Fig. 1d). All code blocks can be run in R command line, Rstudio, 

RMarkdown notebooks or a jupyter notebook with an R kernel.

To illustrate the procedures, we have chosen two data compendia that sample widely 

across laboratories and technologies. The pancreas compendium is commonly used in 

dataset integration assessments, samples from 4 different single-cell protocols, resulting in 

composition variability (e.g., rare epsilon cells are not detected in all datasets). The BICCN 

compendium is unique with respect to the size of the data (around half a million cells from 

9 independent datasets targeting the same brain region), complexity of taxonomy (over a 

hundred cell types) and wide array of technologies used (single-cell transcriptomics, single-

nuclei transcriptomics, single-nuclei methylation and single-nuclei chromatin accessibility).

Comparison with other methods

MetaNeighbor is related to four families of techniques: integrative methods designed to 

merge multiple datasets, methods for cell type annotation, metrics evaluating the quality of 

dataset integration, and metrics evaluating clustering robustness.

Integrative methods combine multiple datasets to improve cell type characterization. 

Mathematically, the rationale of these methods is to find a joint space that maximally 

preserves shared biological variation and removes all other variation. Popular methods 

include MNN8, Seurat9,18, LIGER10, Harmony11, Scanorama12, and Conos13, which have 

been extensively reviewed19,20 and benchmarked21,22. The similarity with MetaNeighbor is 

the idea that batch effects are effectively attenuated by identifying mutual nearest neighbors. 

However, the aim is different: in integrative methods, mutual nearest neighbors are used to 

maximally correct and align datasets, while MetaNeighbor evaluates the similarity of nearest 

neighbors to quantify the amount of replicable signal. Methods for cell type annotation23 

(annotation of unlabeled cells by comparison with an annotated reference dataset), such as 

scmap24 or Seurat9, are based on the same rationale of nearest neighbors. Again, the key 

difference with MetaNeighbor is the intent and interpretability: annotation methods output 

cell type labels, while MetaNeighbor outputs a statistic that lets the user evaluate how much 

replicable signal there is to begin with, providing complementary information about the 

expected robustness of these methods.

To evaluate dataset proximity, integration methods use metrics that quantify how successful 

the integration was. Popular metrics21,22 include batch mixing metrics, such as kBET25 and 

LISI11, and cell type conservation metrics, such as ASW and ARI. Batch mixing metrics 

test whether datasets are well-mixed in the joint dataset space, which is seen as effective 

attenuation of technical variation. Cell type conservation metrics test whether biological 
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variation is conserved, for example ASW tests whether cell types are well separated in 

the joint space, ARI checks that cell types obtained by clustering the integrated data are 

consistent with annotations from the independent data. However, these metrics are used to 

assess the performance of dataset integration, rather than evaluating the amount of replicable 

signal. Furthermore, in cases where datasets have limited biological overlap, these mixing 

metrics can be difficult to interpret, particularly if they are seen as scores that methods try to 

optimize. By always keeping datasets and annotations independent, MetaNeighbor’s focus is 

on rapidly identifying where data structure agrees but also differs, i.e. when cell types do not 

align across datasets or clustering pipelines.

In its design, MetaNeighbor is closest to methods for the validation of sample clustering, 

where the reproducibility of cluster structure across independent datasets is interpreted as 

“biological significance”26, and which has been used to evaluate the reproducibility of 

cancer subtyping from microarray data26,27. MetaNeighbor extends this framework to single 

cell genomics data and enables direct interpretation of gene sets whose co-expression drives 

replicability. Consensus clustering methods, such as SC328 or scrattch.hicat29, are based on 

a similar idea, but the focus is on the quantification of robustness to clustering parameters 

or methods, while MetaNeighbor’s focus is on cross-dataset replicability, which includes 

variability due to clustering methods, but also lab-specific or conditional variability.

Experimental design

MetaNeighbor’s aim is to accurately estimate cell type replicability by preserving dataset 

independence. Consequently, we recommend using raw data and, if possible, cell type 

labels obtained by clustering each dataset independently (such as annotations from the 

original publication, if external data are used), which will help evaluate the robustness of 

cell types to the clustering procedure. If MetaNeighbor is run on data or labels that have 

been obtained through an integrative clustering technique, the user must be aware that 

dataset independence has been broken. Practically speaking, the integrative approach has 

a fitting step that will make datasets artificially similar, leading to optimistic replicability 

estimations. Similarly, even if datasets are truly independent, but MetaNeighbor is run in its 

unsupervised mode, replicability estimations will be slightly inflated, because the framework 

will automatically match the closest cell types.

Another problem that prevents accurate replicability estimation is the confounding of 

technical and biological variation, in the most extreme case when each cell type 

has been sequenced in a different batch. MetaNeighbor works best when batches are 

approximately balanced in terms of cell type composition, but can be adapted to confounded 

experimental designs. For example, MetaNeighbor has been adapted to an extreme case of 

confounding by replacing cross-dataset validation with simple cross-validation16. Results 

remain interpretable biologically but must be interpreted with greater care.

Thanks to its scalability, MetaNeighbor can be used to implement carefully designed control 

experiments. While we chose to output AUROCs because of its interpretability, its exact 

understanding depends on dataset composition and varies with cell type rarity and subtlety 

of transcriptomic differences between cell types. We proposed several control experiments 
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that are simple to implement and help pinpoint how much signal can be expected to be 

extracted from the datasets under investigation15.

Expertise needed to implement the protocol

All three procedures are based on running R functions and require familiarity with the 

RStudio integrated development environment (IDE) or the R command line.

Limitations

Classification problems, and AUROCs in particular, are known to be affected by class 

imbalance (cell type composition in our case). Overall, MetaNeighbor is robust to such 

imbalances, but we found that scores can be distorted when class imbalance becomes 

extreme, in particular when there is no overlap between datasets. Benchmarking and 

evaluation to explore variability in performance is of continued interest and likely increasing 

importance if sampled data becomes more targeted. MetaNeighbor can be used to compare 

transcriptomic and epigenomic data, such as chromatin accessibility and methylation 

assays, but, in our experience, results are harder to interpret, in particular because there 

is no consensus on how to map genome-wide measurements with transcriptomic-wide 

measurements (see “Multi-modal analyses” in the “Anticipated Results” section). For very 

large datasets, MetaNeighbor can be memory intensive: when comparing several hundred 

thousand cells, we recommend using compute units or clusters that have a high memory 

capacity (>50–100Gb).

Materials

Equipment

Hardware

• A personal computer with internet connection and at least 8GB of RAM, ideally 

16GB of RAM for Procedure 3.

Software

• RStudio (https://rstudio.com/products/rstudio/download/), Jupyter (https://

jupyter.org/install) or R command line with R version 3.6 or higher.

• Key R package: the MetaNeighbor library, available on Github (https://

github.com/gillislab/MetaNeighbor/) and Bioconductor version 3.12 or higher 

(https://doi.org/10.18129/B9.bioc.MetaNeighbor).

• Other R packages: scRNAseq, tidyverse, org.Hs.eg.db and UpSetR, available 

from Bioconductor (https://www.bioconductor.org/install/) and CRAN (https://

cran.rstudio.com/).

Datasets—All procedures are based on published and publicly available datasets:

• Human pancreas datasets, accessed through the R/Bioconductor scRNAseq 

package (https://doi.org/doi:10.18129/B9.bioc.scRNAseq), which makes 

available a collection of publicly available single-cell transcriptomics datasets.
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• The mouse primary visual cortex dataset, accessed through the scRNAseq 

package.

• The Brain Initiative Cell Census Network (BICCN) dataset for the mouse 

primary motor cortex. The full dataset is available on the NeMO archive (https://

assets.nemoarchive.org/dat-ch1nqb7), the relevant subset of the dataset is directly 

available on Figshare (https://doi.org/doi:10.6084/m9.figshare.13020569.v2).

Equipment setup

This section walks through the installation process of MetaNeighbor and the packages used 

in the protocol. The installation process takes 1–20 minutes, depending on the number of 

dependencies already available. All code blocks can be run in R command line, Rstudio, 

RMarkdown notebooks or a jupyter notebook with an R kernel. CRITICAL: the installation 

process may create conflicts in the notebook environment. We recommend running the 

installation process in a separate R shell or to restart the Rstudio R environment after the 

installation has completed and before starting one of the procedures.

Start by installing the latest MetaNeighbor package from the Gillis lab GitHub page.

Note that the latest stable version of MetaNeighbor is also available through Bioconductor 

by running BiocManager::install(“MetaNeighbor”). We recommend using the latest 

development version from Github, as some of the functionalities illustrated in this protocol 

require Bioconductor version 3.12 or higher to work (only available with R version 4.0 or 

higher).

?TROUBLESHOOTING

Next, install the following packages, which are not necessary to run MetaNeighbor itself, but 

are needed to run the protocol.

CRITICAL STEP: Don’t forget to restart the R session at this stage. ?

TROUBLESHOOTING

Procedure 1: assessment of cell type replicability with unsupervised MetaNeighbor

CRITICAL Procedure 1 demonstrates how to compute and visualize cell type replicability 

across 4 human pancreas datasets, detailing how to download and reformat the datasets 

with the SingleCellExperiment package and how to compute and interpret MetaNeighbor 

AUROCs.
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Creation of a merged SingleCellExperiment dataset (1–2 minutes)

1. We consider 4 pancreatic datasets along with their independent 

annotation (from the original publications). MetaNeighbor expects a gene-

by-cell matrix encapsulated in a SummarizedExperiment format. We 

recommend the SingleCellExperiment (SCE) package, an extension of the 

SummarizedExperiment class designed to efficiently store large single-cell 

datasets, as it is able to handle sparse matrix formats. Load the pancreas datasets 

using the scRNAseq package, which provide annotated datasets that are already 

in the SingleCellExperiment format:

Note that Seurat objects can easily be converted into SingleCellExperiment 

objects by using the as.SingleCellExperiment function for Seurat v3 objects and 

Convert(from = seurat_object, to = “sce”) for Seurat v2 objects.

2. MetaNeighbor’s mergeSCE function can be used to merge multiple 

SingleCellExperiment objects. Importantly, the output object will be restricted 

to genes, metadata columns and assays that are common to all datasets. Before 

using mergeSCE, make sure that gene and metadata information aligns across 

datasets.

Start by checking if gene information aligns (stored in the rownames slot of the 

SCE object):

Two datasets (Baron, Segerstolpe) use gene symbols, one dataset (Muraro) 

combines symbols with chromosome information (to avoid duplicate gene 

names) and the last dataset (Lawlor) uses Ensembl identifiers. Here we will 

convert all gene names to unique gene symbols. Start by converting gene names 

in the Muraro dataset by using the symbols stored in the rowData slot of the SCE 

object, and remove all duplicated gene symbols:

Next, convert Ensembl IDs to gene symbols in the Lawlor dataset, removing all 

IDs with no match and all duplicated symbols:
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3. We now turn our attention to metadata, which are stored in the colData slot of the 

SCE objects. Here, make sure that the column that contains cell type information 

is labeled identically in all datasets:

Two datasets have the cell type information in the “cell type” column, the other 

two in the “label” column. Add a “cell type” column in the latter two datasets:

4. Last, check that count matrices, stored in the assays slot, have identical names:

The count matrices are all stored in an assay named “counts”, no change is 

needed here.

5. Now that gene, cell type and count matrix information is aligned across datasets, 

create a merged dataset using mergeSCE, which takes a list of SCE objects as an 

input and outputs a single SCE object:

The new dataset contains 15,295 common genes, 15,793 cells and two metadata 

columns: a concatenated “cell type” column, and “study_id”, a column created 
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by mergeSCE containing the name of the original studies (corresponding to the 

names provided in the “my_data” list).

6. To obtain a cursory overview of cell type composition by study, cross-tabulate 

cell type annotations by study IDs:

Most cell types are present in all datasets, so we expect MetaNeighbor to find 

multiple high confidence matches across datasets. There are slight typographic 

differences in cell type annotations (e.g., ductal/Ductal), but we recommend 

keeping the author annotations at this stage. The only procedure that requires 

identical annotations across datasets is Procedure 3, where we perform functional 

characterization of replicating cell types.

7. To avoid having to recreate the merged object, save the R object to a file using 

R’s RDS format:

PAUSE POINT: the remaining sections of the procedure can be run at a later 

time in a new R session.

Hierarchical cell type replicability analysis (1 minute)

8. Start by loading the MetaNeighbor (analysis) and the SingleCellExperiment 

(data handling) libraries, as well as the previously created pancreas dataset:

9. To perform neighbor voting and identify replicating cell types, MetaNeighbor 

builds a cell-cell similarity network, which we defined as the Spearman 

correlation over a user-defined set of genes. We found that we obtained best 

results by picking genes that are highly variable across datasets, which can 

be done using the variableGenes function. Select highly variable genes for the 

pancreas datasets:
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The function returns a list of 600 genes that were detected as highly variable in 

each of the 4 datasets. In our experience, we obtained best performance for gene 

sets ranging from 200 to 1,000 variable genes. In general, using a larger number 

of datasets selects robustly varying genes, enabling high performance with a 

smaller number of genes. However, if variableGenes returns a gene set that is 

too small (in particular when you are comparing a large number of datasets), the 

number of genes can be increased by setting the “min_recurrence” parameter. 

For example, by setting “min_recurrence=2”, we keep all genes that are highly 

variable in at least 2 out of the 4 datasets. Additionally, genes are sorted by 

relevance in the latest version of MetaNeighbor, so it is always possible to select 

a smaller number of genes. For example, global_hvgs[1:500] selects the top 500 

highly variable genes that are recurrent across all 4 datasets. This option can be 

used to validate that performance is robust over gene sets of increasing size.

CRITICAL STEP: Variable genes are MetaNeighbor’s only parameter and must 

be selected with care (see Anticipated Results).

?TROUBLESHOOTING

10. The merged dataset and a set of biologically meaningful genes is all that is 

needed to run MetaNeighbor and obtain cell type similarities. Because the 

dataset is large (> 10k cells), run the fast implementation of MetaNeighbor 

(“fast_version=TRUE”):

MetaNeighborUS returns a cell-type-by-cell-type matrix containing cell type 

similarities. Cell type similarities are defined as an Area Under the ROC curve 

(AUROC), which range between 0 and 1, where 0 indicates low similarity and 

1 high similarity. Note that the “fast_version=TRUE” parameter uses a slightly 

simplified version of MetaNeighbor that is significantly faster and more memory 

efficient. It should always be used on large datasets (> 10k cells), but can 

also be run on smaller datasets and yields equivalent results to the original 

MetaNeighbor algorithm.

?TROUBLESHOOTING

11. For ease of interpretation, visualize AUROCs as a heatmap, where rows and 

columns are cell types from all the datasets:

In the heatmap (Fig. 2), the color of each square indicates the proximity of a 

pair of cell types, ranging from blue (low similarity) to red (high similarity). 

For example, “baron|gamma” (2nd row) is highly similar to “seger|gamma” (3rd 

column from the right) but very different from “muraro|duct” (middle column). 

To group similar cell types together, plotHeatmap applies hierarchical clustering 

on the AUROC matrix. On the heatmap, we see two large red blocks that 
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indicate hierarchical structure in the data, with endocrine cell types clustering 

together (e.g., alpha, beta, gamma) and non-endocrine cells on the other side 

(e.g., amacrine, ductal, endothelial). Note that each red block is composed 

of smaller red blocks, indicating that cell types can be matched at an even 

higher resolution. The presence of off-diagonal patterns (e.g., “lawlor|Gamma/

PP”, “lawlor|Delta”) suggests the presence of doublets or contamination, but the 

heatmap is dominated by the clear presence of red blocks, which is a strong 

indicator of replicability.

In the latest version of MetaNeighbor, we increased the flexibility of 

heatmaps. plotHeatmap internally relies on gplots::heatmap.2: you can pass any 

valid heatmap.2 parameter to plotHeatmap, for example the “ColSideColors” 

parameter can be used to annotate the columns of the heatmap (one color 

by dataset). Alternatively, the MetaNeighbor::ggPlotHeatmap function returns 

a customizable ggplot2 object.

?TROUBLESHOOTING

12. To identify pairs of replicable cell types, run the following function:

topHits relies on a simple heuristic: a pair of cell types is replicable if they 

are reciprocal top hits (they preferentially vote for each other) and the AUROC 

exceeds a given threshold value (in our experience, 0.9 is a good heuristic value). 

We find a long list of replicable endocrine cell types (e.g., epsilon, alpha and beta 

cells) and non-endocrine cell types (e.g. mast, endothelial or acinar cells) (Table 

1). This list provides strong evidence that these cell types are robust, as they are 

identified across all datasets with high AUROC.

13. In the case where there is a clear structure in the data (endocrine vs non-

endocrine here), we can refine AUROCs by splitting the data. AUROCs have 

a simple interpretation: an AUROC of 0.6 indicates that cells from a given cell 

type are ranked in front of 60% of other target cells. However, this interpretation 

is outgroup dependent: because endocrine cells represent ~65% of cells, even an 

unrelated pair of non-endocrine cell types will have an AUROC > 0.65, because 

non-endocrine cells will always be ranked in front of endocrine cells.

By starting with the full datasets, we uncovered the global structure in the data 

(endocrine vs non-endocrine). However, to evaluate replicability of endocrine 

cell types and reduce dataset composition effects, we can make the assessment 

more stringent by restricting the outgroup to close cell types, i.e. by keeping only 

endocrine subtypes. Split cell types in two by using the splitClusters function and 

retain only endocrine cell types:
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By outputting “level1_split”, we found that the cell types were nicely split 

between non-endocrine and endocrine, and that endocrine cell types were in the 

second element of the list. Note that splitClusters applies a simple hierarchical 

clustering algorithm to separate cell types, however cell types can be selected 

manually in more complex scenarios.

14. Repeat the MetaNeighbor analysis on endocrine cells only. First, subset the data 

to the endocrine cell types that were previously stored in “first_split”:

The new dataset contains the 9341 putative endocrine cells.

15. To focus on variability that is specific to endocrine cells, re-pick highly variable 

genes:

?TROUBLESHOOTING

16. Finally, recompute cell type similarities and visualize AUROCs:

The resulting heatmap (Fig. 3a) illustrates an example of a strong set of 

replicating cell types: when the assessment becomes more stringent (restriction 

to closely related cell types), the similarity of replicating cell types remains 

strong (AUROC~1 for alpha, beta, gamma, delta and epsilon cells) while the 

cross-cell-type similarity decreases (shift from red to blue, e.g. similarity of 

alpha and beta cell types has shifted from orange/red in the global heatmap to 

dark blue in the endocrine heatmap) by virtue of zooming in on a subpart of the 

dataset.

?TROUBLESHOOTING

17. We can continue to zoom in as long as there are at least two cell types per 

dataset. Repeat steps 13–16 to split the endocrine cell types:

Here we remove the alpha and beta cells (representing close to 85% of endocrine 

cells) and validate that, even when restricting to neighboring cell types, there is 
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still a clear distinction between delta, gamma and epsilon cells (AUROC ~ 1, 

Fig. 3b).

?TROUBLESHOOTING

Stringent assessment of replicability with one-vs-best AUROCs (1 minute)—
CRITICAL In the previous section, we created progressively more stringent replicability 

assessments by selecting more and more specific subsets of related cell types. As 

an alternative, we provide the “one_vs_best” parameter, which offers similar results 

without having to restrict the dataset manually. In this scoring mode, MetaNeighbor will 

automatically identify the two closest matching cell types in each target dataset and compute 

an AUROC based on the voting result for cells from the closest match against cells from the 

second closest match. Essentially, we are asking how easily a cell type can be distinguished 

from its closest neighbor.

18. To obtain one-vs-best AUROCs, run the same command as before with 

two additional parameters: “one_vs_best = TRUE” and “symmetric_output = 

FALSE”:

The interpretation of the heatmap is slightly different compared to one-vs-all 

AUROCs (Fig. 4). First, since we only compare the two closest cell types, most 

cell type combinations are not tested (NAs, shown in gray on the heatmap). 

Second, by setting “symmetric_output=FALSE”, we broke the symmetry of the 

heatmap: reference cell types are shown as columns and target cell types are 

shown as rows. Since each cell type is only tested against two cell types in each 

target dataset (closest and second closest match), we have 8 values per column (2 

per dataset).

This representation helps to rapidly identify a cell type’s closest hits as well 

as its closest outgroup. For example, ductal cells (2nd red square from the top 

right) strongly match with each other (one-vs-best AUROC>0.8) and acinar 

cells are their closest outgroup (blue segments in the same column). The non-

symmetric view makes it clear when best hits are not reciprocal. For example, 

mast cells (first two columns) heavily vote for “lawlor|Stellate” and “muraro|

mesenchymal”, but this vote is not reciprocal. This pattern indicates that the mast 

cell type is missing in the Lawlor and Muraro datasets: because mast cells have 

no natural match in these datasets, they vote for the next closest cell type (stellate 

cells). The lack of reciprocity in voting is an important tool to detect imbalances 

in dataset composition.

?TROUBLESHOOTING
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19. When using one-vs-best AUROCs, we recommend extracting replicating cell 

types as meta-clusters. Cell types are part of the same meta-cluster if they are 

reciprocal best hits. Note that if cell type A is the reciprocal best hit of B and 

C, all three cell types are part of the same meta-cluster, even if B and C are 

not reciprocal best hits. To further filter for strongly replicating cell types, we 

specify an AUROC threshold (in our experience, 0.7 is a strong one-vs-best 

AUROC threshold). To extract meta-clusters and summarize the strength of each 

meta-cluster, run the following functions:

The scoreMetaClusters function provides a good summary of meta-clusters, 

ordering cell types by the number of datasets in which they replicate, then by 

average AUROC. We find 12 cell types that have strong support across at least 2 

datasets, with 7 cell types replicating across all 4 datasets. 8 cell types are tagged 

as “outlier”, indicating they had no strong match in any other dataset. These cell 

types usually contain doublets, low quality cells or contaminated cell types. To 

rapidly visualize the number of robust cell types, the replicability structure can 

be summarized as an Upset plot with the plotUpset function (Fig. 5a).

To further investigate the robustness of meta-clusters, they can be visualized 

as heatmaps (called “cell-type badges”) with the plotMetaClusters function. 

Because the function generates one heatmap per meta-cluster, save the output 

to a PDF file to facilitate investigation:

Each badge shows an AUROC heatmap restricted to one specific meta-cluster. 

These badges help diagnose cases where AUROCs are lower in a specific 

reference or target dataset. For example, the “muraro|duct” cell type has 

systematically lower AUROCs, suggesting the presence of contaminating cells 

in another cell type (probably in the “muraro|unclear” cell type) (Fig. 5b).

20. The last visualization is an alternative representation of the AUROC heatmap as 

a graph, which is particularly useful for large datasets. In this graph, top votes 

(AUROC > 0.5) are shown in gray, while outgroup votes (AUROC < 0.5) are 

shown in orange. To highlight close calls, we recommend keeping only strong 

outgroup votes, here with AUROC >= 0.3. To build and plot the cluster graph, 

run the following functions:

We note that there are several orange edges, indicating that some cell types had 

two close matches (Fig. 5c). To investigate the origin of these close calls, we 

can focus on a cluster of interest (coi). Take a closer look at “baron|epsilon”, 
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query its closest neighbors in the graph with extendClusterSet, then zoom in on 

its subgraph with subsetClusterGraph:

In the “baron|epsilon” case, we find that the epsilon cell type is missing in the 

Lawlor dataset, so there is no natural match for the Baron epsilon cell type (Fig. 

5d). In such cases, votes are frequently non-reciprocal and equally split between 

two unrelated cell types, here “Lawlor|Gamma/PP” and “Lawlor|Alpha”. In 

general, the cluster graph can be used to understand how meta-clusters are 

extracted, why some clusters are tagged as outliers and diagnose problems where 

the resolution of cell types differs across datasets.

Procedure 2: Assessing cell type replicability against a pre-trained reference taxonomy

CRITICAL Procedure 2 demonstrates how to assess cell types of a newly annotated dataset 

against a reference cell type taxonomy. Pre-training a MetaNeighbor model provides a 

rigorous, fast and simple way to query a large reference dataset and obtain quantitative 

estimations of the replicability of newly annotated clusters. In Procedure 1, all datasets 

needed to be loaded simultaneously, which may be prohibitive when large datasets are 

involved. Pre-training a model enables to load large datasets only once, when the pre-trained 

model is generated. The pre-trained model only requires a small amount of memory, which 

makes it easy to share and query, particularly for large atlas taxonomies. In this procedure, 

we consider the cell type taxonomy established by the Brain Initiative Cell Census 

Network (BICCN) in the mouse primary motor cortex. The BICCN taxonomy was defined 

across a compendium of datasets sampling across multiple modalities (transcriptomics and 

epigenomics); it constitutes one of the richest neuronal resources currently available. When 

matching against a reference taxonomy, we assume that the reference is of higher resolution 

than the query dataset, i.e. the query dataset samples the same set or a subset of cells 

compared to the reference.

Pre-train a reference MetaNeighbor model (1–5 minutes)

1. Start by loading an already merged SCE object containing the BICCN dataset. 

The full code for generating the dataset is available on Github30, the dataset can 

be downloaded directly on FigShare31.
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The BICCN data contains 7 datasets totaling 482,712 cells. There are multiple 

sets of cell type labels depending on resolution (class, subclass, cluster) or type 

of labels (independent labels or labels defined from joint clustering). Note that, 

to reduce memory usage, we have already computed and restricted the dataset to 

a set of 319 highly variable genes.

2. Create pre-trained models with the trainModel function, which has identical 

parameters as the MetaNeighborUS function used in Procedure 1. Here, we 

choose to focus on two sets of cell types: subclasses from the joint clustering 

(medium resolution, e.g., Vip interneurons, L2/3 IT excitatory neurons), and 

clusters from the joint clustering (high resolution, e.g., Chandelier cells). Create 

and store pre-trained models at the subclass level, then at the cluster level:

For simplicity of use, we store the pretrained models to file using the write.table 

function.

PAUSE POINT: The remainder of the procedure is independent and can be run in 

a new R session.

Compare annotations to pre-trained taxonomy (1 minute)

3. Start by loading the query dataset (Tasic 2016, neurons from mouse primary 

visual cortex36, available in the scRNAseq package) and the pre-trained subclass 

and cluster taxonomies:
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We add a “study_id” column to the Tasic metadata, as this information will 

be needed later by MetaNeighbor. Note the “check.names = FALSE” argument 

when reading a pre-trained model, which is required to preserve the correct 

formatting of MetaNeighbor cell type names.

4. To run MetaNeighbor, we use the MetaNeighborUS function but, compared to 

Procedure 1, we provide a pre-trained model instead of a set of highly variable 

genes (which are already contained in the pre-trained model). Start by checking 

if Tasic cell types are consistent with the BICCN subclass resolution:

?TROUBLESHOOTING

5. Visualize AUROCs as a rectangular heatmap, with the reference taxonomy cell 

types as columns and query cell types as rows (Fig. 6a):

As in Procedure 1, we start by looking for evidence of global structure in the 

dataset. Here we recognize 3 red blocks, which correspond to non-neurons (top 

left), inhibitory neurons (middle) and excitatory neurons (bottom right). The 

presence of sub-blocks inside the 3 global blocks suggest that cell types can be 

matched more finely. For example, inside the inhibitory block, we can recognize 

sub-blocks corresponding to CGE-derived interneurons (Vip, Sncg and Lamp5 

in the BICCN taxonomy) and MGE-derived interneurons (Pvalb and Sst in the 

BICCN taxonomy).

6. Refine AUROCs by focusing on inhibitory neurons using the splitTrainClusters 

and splitTestClusters utility functions to select the relevant cell types:

The heatmap (Fig. 6b) suggests that there is a broad agreement at the subclass 

level between the BICCN MOp taxonomy and the Tasic 2016 dataset. For 

example, the Ndnf subtypes, Igtp and Smad3 cell types from the Tasic dataset 

match with the BICCN Lamp5 subclass.

?TROUBLESHOOTING
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7. The previous heatmaps suggest that all Tasic cell types can be matched with one 

BICCN subclass. We now go one step further and ask whether inhibitory cell 

types correspond to one of the BICCN clusters. Compute and visualize cell type 

similarity:

Here the heatmap is difficult to interpret due to the large number of BICCN cell 

types (Fig. 7a). Instead, investigate the top hits for each query cell type directly:

We note two properties of matching against a pre-trained reference. First, 

replicable cell types have a clear top match in each of the reference dataset. 

Sst Chodl (long-projecting interneurons) match to similarly named clusters in 

the BICCN with an AUROC > 0.9999, Pvalb Cpne5 (Chandelier cells) match 

with the Pvalb Vipr2_2 cluster with AUROC > 0.93. Second, we have to be 

beware of false positives. For example, Sst Chodl secondarily matches with the 

L6b Ror1 cell types with AUROC > 0.98, an excitatory cell type only distantly 

related with long-projecting interneurons. When we use the pre-trained model, 

we only compute AUROCs with the BICCN data as the reference data, so we 

cannot identify reciprocal hits. If we had been able to use “Tasic|Sst Chodl” as 

the reference cluster, its votes would have gone heavily in favor of the BICCN’s 

Sst Chodl, making L6b Ror1 a low AUROC match on average. Because of the 

low dimensionality of gene expression space, we expect false positive hits to 

occur just by chance (e.g., cell types reusing similar pathways) when a cell 

type is missing in the query dataset. Here L6b Ror1 (an excitatory type) had no 

natural match with the Tasic inhibitory cell types and voted for its closest match, 

long-projecting interneurons.

There are three alternatives to separate true hits from false positive hits. First, 

if a cell type is highly replicable, it will have a clear top matching cluster in 

the reference dataset. Second, if the query dataset is known to be a particular 

subset of the reference dataset (e.g., inhibitory neurons, as is the case here), we 

recommend restricting the reference taxonomy to that subset. Third, if the first 

two solutions don’t yield clear results or cannot be performed, it is possible to 
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go back to reciprocal testing by using the full BICCN dataset instead of the 

pre-trained reference.

?TROUBLESHOOTING

8. We illustrate the first solution in the case of Chandelier cells (Fig. 7b). Visualize 

the strength of the best hits by running the following:

To illustrate AUROC differences, we chose a logarithmic scaling to reflect 

that AUROC values do not scale linearly: when AUROCs are close to 1, a 

difference of 0.05 is substantial. Here, the best matching BICCN cluster (“Pvalb 

Vipr2_2”) is orders of magnitude better than other clusters, suggesting very 

strong replicability.

9. The second solution to avoid false positive hits is to subset the reference to cell 

types that reflect the composition of the query datasets. Since we are looking at 

inhibitory neurons, restrict the BICCN taxonomy to inhibitory cell types, whose 

names all start with “Pvalb”, “Sst”, “Lamp5”, “Vip” or “Sncg”:

Again, we note that there is a significant gap between the best hit and the 

secondary hit, but now secondary hits are closely related cell types (Sst subtype 

for Sst Chodl, secondary Chandelier cell type Pvalb Vipr2_1 for Pvalb Cpne5).

?TROUBLESHOOTING

10. To obtain a more stringent mapping between the query cell types and reference 

cell types, compute one-vs-best AUROC, which will automatically match the 

best hit against the best secondary hit:
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Now the hit structure is much sparser, which helps identify 1:1 and 1:n hits (Fig. 

8). The heatmap suggests that most Tasic cell types match with one or several 

BICCN clusters. Inspect the top hits for 3 cell types from the Tasic dataset:.

Using this more stringent assessment, we confirm that Sst Chodl strongly 

replicates inside the BICCN (one-vs-best AUROC ~ 1, best secondary hit = 

0.41), and observe the same for Pvalb Cpne5 (one-vs-best AUROC > 0.74, best 

secondary hit = 0.63), while for example Sst Tacstd2 corresponds to multiple 

BICCN subtypes (including Sst C1ql3_1, Sst C1ql3_2, AUROC > 0.95).

Procedure 3: Functional characterization of replicating clusters

CRITICAL Procedure 3 demonstrates how to characterize functional gene sets contributing 

to cell type identity. Once replicating cell types have been identified with unsupervised 

MetaNeighbor (as in Procedures 1 and 2), supervised MetaNeighbor enables the functional 

interpretation of the biology contributing to each cell type’s identity. In this procedure, we 

will focus on the characterization of inhibitory neuron subclasses from the mouse primary 

cortex as provided by the BICCN. The BICCN has shown that subclasses are strongly 

replicable across datasets and provided marker genes that are specific to each subclass. 

MetaNeighbor can be used to further quantify which pathways contribute to the subclasses’ 

unique biological properties.

Creation of biologically relevant gene sets (1 minute)

1. To compute the functional characterization of clusters, we first need an ensemble 

of gene sets sampling relevant biological pathways. In this procedure we will 

consider the Gene Ontology (GO) annotations for mouse. The scripts used to 

build up-to-date gene sets can be found on Github30 and gene sets can be 

downloaded directly on FigShare31. Start by loading the GO sets:

Gene sets are stored as a named list, where each element of the list corresponds 

to a gene set and contains a vector of gene symbols.
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2. Load the dataset containing inhibitory neurons from the BICCN. The scripts 

used to build the dataset can be found on Github30 and the dataset can be 

downloaded on FigShare31.

3. Next, restrict the gene sets to genes that are present in the dataset. Then, filter 

gene sets to keep gene sets of meaningful size: large enough to learn expression 

profiles (> 10), small enough to represent specific biological functions or 

processes (< 100):

Functional characterization with supervised MetaNeighbor (30–90 minutes)

4. Once the gene set list is ready, run the supervised MetaNeighbor function. Its 

inputs are similar to MetaNeighborUS, but it assumes that cell types have already 

been matched across datasets (i.e., they have identical names). Here we use 

joint BICCN subclasses, for which names have been normalized across datasets 

(“Pvalb”, “Sst”, “Sst Chodl”, “Vip”, “Lamp5”, “Sncg”). Note that, because we 

are testing close to 6,500 gene sets, this step is expected to take a long time 

for large datasets. We recommend using this function inside a script and always 

saving results to a file as soon as computations are done by using the write.table 

function.

Later, results can be retrieved with the read.table function:

?TROUBLESHOOTING

5. Use the plotBPlot function on the first 100 gene sets to visualize how 

replicability depends on gene sets (Fig. 9).

In this representation, large segments represent average gene set performance 

and short segments represent the performance of individual gene sets. We note 

that most gene sets contribute moderately to replicability (AUROC ~ 0.7), 
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numerous gene sets have a performance close to random (AUROC ~ 0.5 – 0.6) 

and some gene sets have exceedingly high performance (AUROC > 0.8).

6. To focus on gene sets that contribute highly to cell type specificity, create a 

summary table containing, for each gene set, cell type specific AUROCs, average 

AUROCs across cell types and gene set size:

Then, order gene sets by average AUROC and look at the top scoring gene sets 

(Table 2).

Without surprise, replicability is mainly driven by gene sets related to neuronal 

functions that are immediately relevant to the physiology of inhibitory neurons, 

such as “glutamate receptor signaling pathway”, “regulation of synaptic 

transmission, glutamatergic”, or “chemical synaptic transmission, postsynaptic”. 

Note that most of the top scoring gene sets have a large number of genes, as 

larger sets of genes make it easier to learn generalizable expression profiles.

To obtain even more specific biological functions, further filter for gene sets that 

have fewer than 20 genes (Table 3).

Again, the top scoring gene sets are dominated by biological functions 

immediately relevant to inhibitory neuron physiology, such as “ionotropic 

glutamate receptor signaling pathway”, “positive regulation of synaptic 

transmission, GABAergic”, or “GABA-A receptor complex”.

7. To understand how individual genes contribute to gene set performance, use the 

plotDotPlot function, which shows the expression of all genes in a gene set of 

interest, averaged over all datasets (Fig. 10):

High scoring gene sets are characterized by the differential usage of genes from 

a given gene set. For example, when looking at the GABA-A receptor complex 

composition, Lamp5 preferentially uses the Gabrb2 and Gabrg3 receptors, Pvalb 

the Gabra1 receptor, and Sst Chodl the Gabra2, Gabrb1 and Gabrg1 receptors 

(Fig. 10b).
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Timing

The expected timing for the procedures is as follows:

• Procedures 1 and 2: 1 to 5 minutes each.

• Procedure 3: 30 to 90 minutes.

The first two procedures (assessment of cell type replicability) can be run interactively: 

once the data are loaded, every call to MetaNeighbor returns within seconds, which enables 

looking at the data in different ways, for example by zooming in on different parts of the 

dataset. In contrast, procedure 3 (functional characterization of replicability) is intended to 

be run as a script, allowing testing thousands of gene sets and analyzing results within a day.

Note that the exact timing depends on the hardware and software used, notably the amount 

of memory and the BLAS (Basic Linear Algebra Subprograms) library used. MetaNeighbor 

relies heavily on matrix operations, leading to large speed-ups when using the Intel MKL 

(Math Kernel Library) BLAS or openBLAS instead of R’s native BLAS library.

Troubleshooting

Troubleshooting guidance can be found in Table 4.

Anticipated results

Because MetaNeighbor is non-parametric, there is no fine-tuning to be done for any of the 

procedures presented here. Over time, we have identified two sources of potential error: 

bad highly variable gene selection and coding or formatting errors, which can be easily 

diagnosed by looking at AUROC heatmaps. As a rule of thumb, we expect AUROCs to 

correctly represent global relationships between cell types, contain replicable cell types 

(dark red squares or rectangles on heatmaps) and generalize across studies. In the examples 

below, we illustrate the most common places where these errors are found by presenting a 

side-by-side comparison of correct and problematic code.

Bad gene set selection

The most common problem is to forget to select a set of highly variable genes, which is 

expected to dampen the impact of technical variability on neighbor voting (Procedure 1, 

Steps 9–11). First, we present an example of a correct analysis, where we load the BICCN 

GABAergic neurons, select highly variable genes, and compute cluster similarities (see 

Procedure 1 for more details).
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We recognize strong replicability structure, evidenced by the presence of dark red blocks 

(Fig. 11a). When we repeat the analysis with random genes, the replicability structure is 

still present, but we recognize two signatures of bad gene set selection: (a) AUROCs are 

low overall (shift to light red and orange), (b) within red blocks, there is a clear gradient 

structure (Fig. 11b). In our experience, there are 3 scenarios that lead to bad gene selection: 

errors in gene symbol conversion, errors when genes are stored as factors in R (that are 

implicitly converted to numerical values during indexing), and forgetting to select highly 

variable genes altogether.

No overlap between datasets

The second problem occurs when there is no overlap between datasets, which can be 

detected in Procedure 1 at Step 11 or Procedure 2 at Step 5–7. We illustrate this problem 

with the data from Procedure 2, where we expect all cell types from the Tasic dataset to 

be present in the pre-trained BICCN model. According to our expectations, all cell types 

have strong hits with BICCN clusters, and we see a hierarchical structure that is consistent 

with prior biological knowledge: lighter red blocks corresponding to Medial Ganglionic 

Eminence (MGE) and Caudal Ganglionic Eminence (CGE)-derived inhibitory neurons (Fig. 

12a). We compare with the same block of code, where we “mistakenly” keep non-neurons 

from the BICCN taxonomy instead of inhibitory neurons. The lack of biological overlap can 

be deduced from 3 factors (Fig. 12b): (a) low AUROC values overall, (b) almost no strong 

hits (contrary to expectations), (c) lack of expected hierarchical structure (MGE and CGE 

derived inhibitory neurons).
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Pretrained MetaNeighbor: bad name formatting

The third problem we have encountered is a mistake that occurs when loading a pre-trained 

model in Step 3 of Procedure 2 and forgetting to specify “check.names = FALSE”, which is 

essential to preserve correct formatting of cell type names. Below, we present an example of 

correct code based on data from Procedure 2. We obtain the expected replicability structure, 

with evidence of strong hits across all cell types (Fig. 13a, see Procedure 2 for further 

details and analyses). When we forget “check.names = FALSE”, MetaNeighbor is unable 

to correctly recognize dataset names and cell type names in the pre-trained model, the 

similarity computations become meaningless, leading to AUROC values that are essentially 

0.5 (Fig. 13b). This problem is easy to diagnose and fix but can be very confusing when it 

occurs.

Impact of batch effects on cell type matching

The voting scheme used by MetaNeighbor is naturally robust to batch effects, as it relies 

on identifying nearest neighbors (which are approximately conserved in the presence of 

batch effects) rather than transcriptional similarity. Because cell type matching is determined 

based on reciprocal best hits (similar to BLAST), we expect MetaNeighbor results to be 

robust to a large range of batch effects and recommend using MetaNeighbor on unaligned 

datasets to obtain more accurate replicability values. As we show here, batch effects mainly 

affect the range of AUROC values, and should be considered when interpreting heatmaps 
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(Procedure 1 Step 11, Procedure 2 Steps 5–7) and replicability strength (Procedure 1 Step 

12, Procedure 2 Steps 8–10, Procedure 3 Steps 5–6).

To illustrate the expected drop in AUROC with data quality, we simulated two types of 

batch effects in the pancreas compendium presented in the protocol: lower sensitivity and 

higher noise level. To simulate low sensitivity, we downsampled counts in endocrine cells 

of the Baron dataset and recorded the AUROCs of best hits in the 3 remaining datasets. 

AUROCs progressively declined, dropping below 0.9 around 250 UMIs per cell (Fig. 14a) 

and stabilizing around 0.8 for nearly-empty cells. Reciprocal top hits remained perfectly 

conserved, except for epsilon cells (the rarest cell type), where performance started to 

degrade around 100 UMIs per cell, which represents exceptionally low sensitivity (Fig. 

14b). In the second batch effect simulation, we subset the Baron dataset to highly variable 

genes, then added gaussian noise with mean 0 and standard deviation f*average UMIs per 

cell, where f is the “fraction” of noise. We observed a similar pattern to downsampling 

experiments: AUROC progressively declined, dropping below 0.9 when the noise level 

reached around 10% of the average count value and progressively declined towards 0.8 

(Fig. 14c). Again, reciprocal top hits were perfectly conserved, with a slight degradation for 

epsilon cells beyond 25% noise (Fig. 14d). In the original MetaNeighbor publication, we 

further showed that AUROCs are robust to cell type rarity and the presence of closely related 

cell types15.

In practice, we found that our AUROC guidelines (AUROC > 0.9, 1-vs-best AUROC > 0.7) 

held on datasets that spanned a wide range of quality and batch effects and should thus apply 

to most recently generated single cell datasets. For example, the BICCN datasets used in 

this protocol includes multiple types of batch effects, as it uses a large array of sequencing 

protocols4: differences in sensitivity (2,000 to 6,000 detected genes per cell), differences 

in cell type composition (L5 ET cells survive better in single nuclei protocols), systematic 

differences in expression profiles (PCR-amplification bias for Smart-Seq, higher expression 

of nuclear genes for nuclei protocols). However, if one of the datasets is known to be 

particularly noisy or low quality, the AUROCs for this dataset can be expected to be lower 

than the guidelines suggested in this manuscript, but we recommend using AUROC>0.8 and 

1-vs-best AUROC>0.6 as a minimum.

Multi-modal analyses

MetaNeighbor can be applied to multi-modal analyses, but requires a gene by cell matrix 

for all modalities (all steps remain identical to the protocol presented here). In particular, 

modalities such as chromatin accessibility and methylation data require a mapping of peaks 

or reads to individual genes. This mapping is currently unclear, as many peaks are related to 

regulatory elements such as enhancers and cannot be attributed to individual genes, resulting 

in an important loss of signal. As discussed in the previous section, such losses can be seen 

as “batch effects” and result in lower AUROC values in some modalities (Procedure 1 Step 

11–12, Procedure 2 Steps 5–10, Procedure 3 Steps 5–6).

We illustrate the results of a multi-modal analysis in the BICCN data for the mouse 

primary motor cortex4. The full multi-modal data include the 7 singe-cell and single-nucleus 

RNA-sequencing (scRNAseq) datasets presented in the protocol, a single-nucleus Assay for 
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Transposase-Accessible Chromatin (ATAC) using sequencing dataset (“atac”) and a single-

nucleus methylation dataset (“snmc”). The initial analysis reveals a difference in resolution 

between modalities: while there is a single cell type for L2/3 IT and L5 IT excitatory 

neurons in the scRNAseq datasets (at the “subclass” annotation level), there are multiple 

matching cell types in the ATAC and methylation annotations (Fig. 15a). The presence 

of clear red blocks (high AUROC with primary match, lower AUROC with secondary 

match) suggests that, for example, L23.a, L23.b and L23.c in ATACseq all correspond 

to the L2/3 IT type in scRNAseq. After merging L2/3 IT and L5 IT cell types under 

a single annotation, we find an excellent mapping between all modalities, resulting in a 

clear separation of individual cell types (Fig. 15b). Almost all extracted meta-clusters span 

all 9 datasets (Fig. 15c), with only a handful of cell types missing in one of the other 

modalities, such as L6b (missing in ATAC), non-neuron subclasses (unannotated in the 

methylation data) or L6 IT Car3 (missing in several datasets). All modalities share the 

same range of reciprocal top hits (Fig. 15d), suggesting that the same cell types have been 

successfully identified in all datasets. However, AUROC values are significantly lower in the 

ATAC data (Fig. 15e), suggesting that gene-level quantification only imperfectly captures 

the variability of the modality and a slightly more lenient AUROC threshold may be applied 

(e.g., AUROC>0.85). Note that MetaNeighbor can also be used for cross-species analyses6, 

and that similar considerations may apply. As more distant species are included in the 

analyses, expression signatures are expected to diverge, resulting in lower AUROC values 

overall.

Generalizable quantification of cell type similarities

In their computation, MetaNeighbor’s AUROCs are directly related to Spearman 

correlations. More precisely, all computations are based on average Spearman correlations 

between cells from two cell types, but include an additional prediction step that alleviates 

batch effects, while keeping an interpretability power that is comparable to correlations 

(where AUROC = 0 maps to correlation = −1, AUROC = 0.5 maps to correlation = 0, 

AUROC = 1 maps to correlation = 1).

To appreciate how the additional prediction step enables us to obtain “batch free 

correlations”, we compare MetaNeighbor’s output (Procedure 1 Step 11, Procedure 2 Steps 

5–7) with a more naive similarity output, where we compute the Spearman correlation 

between cell type centroids (Fig. 16a). Centroid correlations display two desirable patterns: 

centroids cluster primarily by cell type (then by dataset) and global hierarchical structure 

is preserved (we can distinguish MGE-derived interneurons vs CGE-derived interneurons). 

However, batch effects are clearly visible throughout the heatmap. For example, within each 

cell type, Chromium-based datasets tend to cluster on one side, Smart-Seq-based datasets 

on the other side. In contrast, for an equivalent computation time, all the “good” patterns 

(cell types and hierarchical structure) are made pristinely clear with MetaNeighbor AUROCs 

(Fig. 16b), while technical substructure has been lost: technologies mix well within cell-

types, homogenous cell groupings look uniform, and biological relationships between cell 

types are correctly displayed.
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Compared to correlations, AUROCs have one additional “parameter”: the outgroup used 

for the prediction task. In Procedure 1, we illustrated how the outgroup can be controlled 

and interpreted. A deviation from AUROC = 1 can thus be interpreted as a combination 

of two factors: lack of similarity between cell types and choice of outgroup (difficulty of 

prediction task). If the outgroup is well controlled, AUROC values will generalize across 

studies and fundamentally indicate the quality of the clustering. For a given cell type in a 

given background (for example Sst cells in an unbiased sample of primary motor cortex 

inhibitory neurons), the similarity to Sst cells in another dataset (or any other inhibitory type 

for that matter) should be in the range of similarity observed within the BICCN.

As a robust alternative to centroid correlations, MetaNeighbor AUROCs can be applied to 

simple preprocessing tasks, such as identifying and selecting cell types that overlap between 

datasets before applying a merging framework. However, beyond the purely applicative 

viewpoint, we believe that MetaNeighbor-style AUROCs are a stepping stone toward a 

generalizable formalization of cell type similarity.
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Data availability

The datasets analyzed in the protocol are all previously published and publicly available:

• Human pancreas datasets: from Baron et al.32 (GEO accession code GSE84133), 

Lawlor et al.33 (GEO accession code GSE86473), Muraro et al.34 (GEO 

accession code GSE85241), and Segerstolpe et al.35 (ArrayExpress accession 

code E-MTAB-5061). These datasets are accessed through the Bioconductor 

scRNAseq library in the protocol.

• Mouse primary visual cortex dataset from Tasic et al.36 (GEO accession code 

GSE71585), accessed through the Bioconductor scRNAseq library.

• The Brain Initiative Cell Census Network (BICCN) dataset for the mouse 

primary motor cortex from Yao et al.4 is available on the NeMO archive 

(https://assets.nemoarchive.org/dat-ch1nqb7). The subset of the BICCN data 

necessary to run the protocol is also available on FigShare at https://
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doi.org/10.6084/m9.figshare.13020569 (R version) and https://doi.org/10.6084/

m9.figshare.13034171 (Python version).
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Figure 1. MetaNeighbor quantifies and characterizes cell type replicability.
a Schematic of MetaNeighbor. MetaNeighbor uses a cross-dataset neighbor voting 

framework to compute cell type similarities. Cells from a reference cell type (A1) vote 

for cells in a target dataset according to their similarity (Spearman correlation). Votes can 

be summarized at the cell type level as an Area Under the Receiver Operating Characteristic 

curve (AUROC), reflecting the similarity of the reference and target cell types. Formally, 

the AUROC is computed for each pair of cluster by setting up the following classification 

problem: “can cells from the reference cluster (A1) predict which cells belong to the target 

cluster (e.g., D2)?”, where target cells are ranked according to their average similarity 

to A1 cells, cells from D2 are treated as positives, and all other cells from the target 

dataset are treated as negatives. An AUROC of 1 indicates perfect performance (all D2 

cells ranked at the top). This procedure is repeated for all possible reference and target 

combinations: replicating cell types are identified as reciprocal top hits with high average 

AUROC. For example, D2 was A1’s top hit, reciprocally A1 was D2’s top hit, and the 

average AUROC of these hits exceeded 0.9. In AUROC graphs, TPR=True Positive Rate, 

FPR=False Positive Rate. b-d Schematic of the 3 MetaNeighbor procedures. Procedure 1 

shows how to assess cell type replicability by considering all possible pairs of reference 

and target datasets: highly replicating cell types are identified as recurrent reciprocal top 
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hits across datasets. Procedure 2 shows how to pre-train MetaNeighbor on large reference 

compendia, enabling rapid identification of reference cell types that are present in a given 

target dataset. Procedure 3 shows how to functionally characterize replicating cell types by 

identifying functional gene sets (such as Gene Ontology gene sets) that contribute most to 

replicability.
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Figure 2. Cell types from 4 pancreas datasets cluster according to their biological similarity.
Heatmap based on MetaNeighbor AUROCs. Red indicates high similarity, blue indicates 

low similarity. By applying hierarchical clustering, replicating cell types group together 

(dark red squares), biologically related cell types (e.g. endocrine cell types, such as alpha, 

beta, gamma cells) form secondary groups (large light red squares).
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Figure 3. Restricting the 4 pancreas datasets to endocrine subtypes allows for a more stringent 
replicability assessment.
a Heatmap based on MetaNeighbor AUROCs applied to endocrine cell types, where cell 

types are grouped by applying hierarchical clustering. Red squares represent replicating cell 

types (alpha, beta, gamma, delta and epsilon cells). b AUROCs can be refined as long as 

there are two cell types per dataset. Heatmap based on MetaNeighbor AUROCs applied 

to gamma, delta and epsilon cells, where cell types are grouped by applying hierarchical 

clustering. Red squares represent replicating cell types (gamma, delta and epsilon cells).
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Figure 4. 1-vs-best AUROCs automatically identify each cell type’s closest outgroup.
Heatmap based on MetaNeighbor 1-vs-best AUROCs, where cell types are grouped by 

applying hierarchical clustering. Reference cell types are shown as columns, target cell types 

are shown as rows. Red values indicate each reference cell type’s best hit, blue values the 

closest outgroup (one value per target dataset). All other cell type combinations are shown in 

gray.
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Figure 5. Replicating cell types can be extracted as meta-clusters.
a The Upset plot breaks down cell-type replicability by dataset. Meta-clusters (groups of 

replicating cell types) are organized according to the datasets in which they replicate. For 

example, there are two cell types that replicate in the Baron, Muraro and Seger datasets, but 

are missing in the Lawlor dataset. b “Cell type badges” help identify datasets where cell 

type replicability is weaker. 1-vs-best AUROC heatmap for meta-cluster corresponding to 

ductal cells. The cell type is detected across all 4 datasets, but AUROCs are systematically 

weaker when testing in the Muraro dataset, indicating that the cell type is not as clearly 

defined in that dataset. c The cluster graph enables the rapid visualization of replicating 

cell types. Each node of the graph represents a cell type, colored by dataset of origin. Best 

hits (strong 1-vs-best AUROC) are shown by gray directed edges (oriented from reference 

cell type toward target cell type). Outgroups are shown by orange directed edges (reference 

toward target) for 1-vs-best AUROC > 0.3. Ideally replicating cell types form cliques (every 
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pair of a cell type is connected, e.g., alpha cells). d Subsetting the cluster graph enables the 

investigation of close calls. Same representation as c, centered on the “epsilon” cell type 

from the Baron dataset, which had two close matches in the Lawlor dataset (“Alpha” and 

“Gamma/PP”), as the epsilon cell type is missing in the Lawlor dataset.
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Figure 6. Assessment of cell type annotations from the mouse primary visual cortex against 
reference neuron taxonomy from the primary motor cortex (medium resolution).
a Heatmap based on MetaNeighbor AUROCs. Reference cell types are shown as columns, 

query cell types as rows. Reference cell types are grouped by hierarchical clustering, 

query cell types according to the strongest matching reference cell type. b Assessment 

of inhibitory cell types from the mouse primary visual cortex against reference inhibitory 

cell types (medium resolution). Same representation as a. Red rectangles indicate groups of 

related cell types: Sncg, Vip, Lamp5, Sst and Pvalb inhibitory neurons.
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Figure 7. Assessment of inhibitory cell types from the mouse primary visual cortex against 
reference inhibitory cell types (high resolution).
a Heatmap based on MetaNeighbor AUROCs. Reference cell types are shown as columns, 

query cell types as rows. Global red rectangles indicate good replicability structure, 

suggesting replicability for Sncg, Vip, Lamp5, Sst and Pvalb inhibitory subtypes. b 
Distribution of AUROC scores for the “Pvalb Cpne5” cell type from the primary visual 

cortex (query cell type) against all reference cell types. Best hits (against the “Pvalb 

Vipr2_2) are shown by red lines, all other hits are shown as a gray background distribution. 

Replicating cell types have substantially higher AUROC scores than background cell types.
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Figure 8. 1-vs-best AUROCs enable rapid identification of 1:1 hits and 1:n hits.
Heatmap is based on MetaNeighbor 1-vs-best AUROCs. Reference cell types are shown as 

columns, query cell types as rows. In this representation, the best hits are shown in red, the 

outgroup hit is shown in blue, all other values are gray.
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Figure 9. A small fraction of functional gene sets contributes highly to cell type replicability.
For each cell type, large ticks represent the average AUROC across gene sets. Each smaller 

tick represents an individual gene set, the envelope is a violin-plot style approximation of the 

distribution of performance across gene sets.

Fischer et al. Page 42

Nat Protoc. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. Top scoring gene sets can be broken down into characteristic genes for each cell type.
a Dot plot of genes from the “Glutamate receptor signalling pathway” Gene Ontology term, 

where cell types are shown on the x-axis and genes are shown on the y-axis. For each cell 

type, the dot size corresponds to the fraction of cells expressing a given gene, the color 

corresponds to the z-scored average expression level, averaged across datasets. b Same as a, 

for the “GABA-A receptor complex” Gene Ontology term.
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Figure 11. Selection of a bad highly variable gene set leads to suboptimal performance and 
obscures biological signal.
a Anticipated result: AUROC heatmap based on a set of highly variable genes selected by 

MetaNeighbor. The heatmap has clear replicating clusters (dark red squares) and known 

secondary biological relationships (e.g., similarity of CGE-derived interneurons Vip, Sncg 

and Lamp5). b Possible issue: AUROC heatmap based on a set of random genes (same 

number of genes as the correctly selected highly variable gene set in a). Replicability 

patterns become weaker: lower performance, gradients within replicating cell types, weaker 

secondary relationships.
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Figure 12. Absence of biological overlap between datasets leads to almost random performance 
and lack of hierarchical cell type structure.
a Anticipated result: AUROC heatmap with inhibitory neuron cell types as query (rows) 

and inhibitory neuron cell types as reference (columns). b Possible issue: same as a, but 

with non-neuronal cell types as reference (columns). The heatmap lacks clear replicating 

clusters (dark red rectangles) and known secondary biological relationships (e.g., similarity 

of CGE-derived interneurons Vip, Sncg on the query side).
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Figure 13. Disrupting formatting of cell type names in pre-trained models leads to random 
performance.
a Anticipated result: AUROC heatmap with cell types from primary visual cortex as query 

(rows) and cell types from primary motor cortex as reference (columns). The heatmap shows 

evidence of replicating cell types (dark red rectangles) and global structure (larger rectangles 

corresponding to non-neurons, excitatory neurons and inhibitory neurons). b Possible issue: 

same as a, but with incorrect formatting of reference cell types (due to an error while 

reading the pre-trained model), leading to completely random performance.
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Figure 14. MetaNeighbor results are robust to batch effects.
a Replicability (MetaNeighbor AUROC) of endocrine cell types in the Baron pancreas 

dataset after downsampling the number of Unique Molecular Identifiers (UMIs) per cell. 

“original” corresponds to the replicability in the original dataset, without downsampling 

(~ 5000 UMIs per cell). Line types represent the Highly Variable Gene (HVG) selection 

strategy: full lines indicate that the initial set of HVG (based on the full dataset) is conserved 

(“static”), dashed lines indicate that HVG are re-picked after downsampling (“variable”). b 
Stacked barplot showing the number of reciprocal top hits for each endocrine cell type after 

downsampling. The height of the bars indicates the number of datasets in which the cell type 

was found to replicate. c Replicability (MetaNeighbor AUROC) of endocrine cell types in 

the Baron pancreas dataset after the addition of noise to original counts. d Stacked barplot 

showing the number of reciprocal top hits for each endocrine cell type after the addition 

of noise. In all panels, statistics are averaged over 10 independent experiments and colors 

represent cell types.
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Figure 15. MetaNeighbor finds replicable cell types in a multi-modal dataset of the mouse 
primary motor cortex.
a Heatmap based on MetaNeighbor AUROCs for Intra-Telencephalic (IT) projecting cell 

types, where cell types are grouped by applying hierarchical clustering. Column annotation 

colors indicate the sequencing modality (expression, chromatin accessibility or methylation). 

b Heatmap based on MetaNeighbor AUROCs for excitatory cell types, where cell types are 

grouped by applying hierarchical clustering. Column annotation colors as in a. c Upset plot 

showing the number of cell types that replicate across given combinations of datasets (meta-

clusters). For example, 9 cell types were found to replicate across all datasets. d Number of 

reciprocal best hits for each dataset in the primary motor cortex compendium. The height 

of each bar indicates the average number of hits across cell types, the line indicates the 

standard deviation. e Boxplot showing the strength of cluster replicability (MetaNeighbor 

AUROC) across cell types for each dataset in the primary motor cortex compendium. The 

lower and upper hinges of the boxplots represent the first and third quartile, the central line 

represents the median, the upper (resp. lower) whisker extends to the largest (resp. smallest) 
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value within 1.5 IQR (Inter-Quartile Range) of the hinge. All points beyond 1.5 IQR are 

drawn individually.
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Figure 16. MetaNeighbor AUROCs offer a generalizable and batch-effect-free quantification of 
cell type similarity
a Possible issue: Spearman correlation of cell type centroids is affected by technical 

variability. The heatmap shows some evidence of replicating cell types (light red rectangles), 

but is dominated by batch effects, largely obscuring secondary relationships between cell 

types. Red colors correspond to datasets using the Smart-Seq technology, blue colors to 

datasets using the 10x technology, light colors to single nuclei datasets, dark colors to single 

cell datasets. b Anticipated result: MetaNeighbor AUROCs alleviate most of the concerns 

seen in a, with clear groups of replicating cell types (dark red squares, AUROC ~ 1) and 

clear secondary relationships (e.g., similarity of CGE-derived interneurons Vip, Sncg and 

Lamp5).
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Table 1.
Reciprocal top hits with high AUROC identify replicating cell types.

Pairs of cell types that meet the following criteria: reciprocal top hits (the cell types preferentially vote for 

each other in the cross-dataset voting framework) or average AUROC > 0.9 (average taken by switching 

reference and target dataset).

Study_ID|Celltype_1 Study_ID|Celltype_2 Mean_AUROC Match_type

seger|epsilon cell muraro|epsilon 1.00 Reciprocal_top_hit

seger|epsilon cell baron|epsilon 1.00 Above_0.9

baron|mast seger|mast cell 1.00 Reciprocal_top_hit

seger|endothelial cell muraro|endothelial 1.00 Reciprocal_top_hit

lawlor|Stellate seger|PSC cell 1.00 Reciprocal_top_hit

baron|macrophage seger|MHC class II cell 1.00 Reciprocal_top_hit

muraro|endothelial baron|endothelial 1.00 Above_0.9

lawlor|Stellate baron|activated_stellate 1.00 Above_0.9

baron|acinar lawlor|Acinar 1.00 Reciprocal_top_hit

seger|PSC cell muraro|mesenchymal 1.00 Above_0.9

baron|alpha lawlor|Alpha 1.00 Reciprocal_top_hit

lawlor|Acinar seger|acinar cell 1.00 Above_0.9

baron|schwann seger|unclassified cell 1.00 Reciprocal_top_hit

seger|acinar cell muraro|acinar 0.99 Above_0.9

lawlor|Beta seger|beta cell 0.99 Reciprocal_top_hit

baron|ductal seger|ductal cell 0.99 Reciprocal_top_hit

lawlor|Beta baron|beta 0.99 Above_0.9

baron|ductal lawlor|Ductal 0.99 Above_0.9

seger|MHC class II cell baron|t_cell 0.99 Above_0.9

baron|gamma lawlor|Gamma/PP 0.99 Reciprocal_top_hit

lawlor|Beta muraro|beta 0.98 Above_0.9

seger|ductal cell muraro|duct 0.98 Above_0.9

lawlor|Alpha muraro|alpha 0.98 Above_0.9

seger|PSC cell baron|quiescent_stellate 0.98 Above_0.9

lawlor|Gamma/PP seger|gamma cell 0.98 Above_0.9

seger|delta cell muraro|delta 0.98 Reciprocal_top_hit

lawlor|Gamma/PP muraro|pp 0.98 Above_0.9

muraro|alpha seger|alpha cell 0.98 Above_0.9

muraro|delta baron|delta 0.96 Above_0.9

baron|beta seger|co-expression cell 0.95 Above_0.9

seger|ductal cell muraro|unclear 0.93 Above_0.9

baron|delta lawlor|Delta 0.92 Above_0.9

baron|ductal lawlor|None/Other 0.91 Above_0.9
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Table 4.

Troubleshooting table.

Step Problem Possible reason Solution

Equipment Setup Installation failed: package 
could not be downloaded.

Running command in the 
notebook fails because user 
input is expected.

Run command directly as R command line instead 
of notebook.

Procedure 1 - Step 
9, 15, 17

variableGenes returns
“Cholmod error ‘problem 
too large’”

Matrix is too large to be properly 
handled.

Downsample datasets with “downsampling_size” 
parameter or manually downsample datasets.

Procedure 1 - Step 
10, 16, 17, 18
Procedure 2 - Step 
4, 6, 7, 9, 10
Procedure 3 - Step 
4

MetaNeighbor returns
“Cholmod error ‘problem 
too large’”

One of the datasets is too large 
to be properly handled.

Use smaller gene sets, downsample largest dataset 
or run on batches of datasets, then combine 
AUROC matrices.

MetaNeighbor returns 
“Error: cannot allocate 
vector of size XXX Gb”

Legacy MetaNeighbor was used 
on a large dataset (>10k cells)

Use “fast_version = TRUE”. If this does not solve 
the problem, see above.

MetaNeighbor returns rows 
or columns that contain only 
NAs.

One dataset contains only one 
cell type.

This is expected behavior (no outgroup 
to compare against). Ignore NAs, use 
“symmetric_output=FALSE” or make sure to 
keep at least two cell types when subsetting 
datasets.

Procedure 1 - Step 
11, 16, 17, 18

plotHeatmap returns “Error 
in M + t(M): non-
conformable arrays”

plotHeatmap has been applied 
to non-square AUROC matrix, 
likely because MetaNeighbor 
was run on a pre-trained model.

Use plotHeatmapPretrained instead.

In Rstudio, plotHeatmap 
causes “Error in plot.new() : 
figure margins too large”

The default Rstudio resolution 
is too low to correctly display 
heatmap.

In the code block options, increase “fig.width” 
and “fig.height” until resolved.
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