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Abstract

Introduction: Numerous studies have shown that the oral rotavirus vaccines are less effective in 

infants born in low income countries compared to those born in developed countries. Identifying 

the specific factors in developing countries that decrease and/or compromise the protection that 

rotavirus vaccines offer, could lead to a path for designing new strategies for the vaccines’ 

improvement.

Areas covered: We accessed PubMed to identify rotavirus vaccine performance studies 

(i.e., efficacy, effectiveness and immunogenicity) and correlated performance with several 

risk factors. Here, we review the factors that might contribute to the low vaccine efficacy, 

including passive transfer of maternal rotavirus antibodies, rotavirus seasonality, oral polio vaccine 

(OPV) administered concurrently, microbiome composition and concomitant enteric pathogens, 

malnutrition, environmental enteropathy, HIV, and histo blood group antigens.

Expert commentary: We highlight two major factors that compromise rotavirus vaccines’ 

efficacy: the passive transfer of rotavirus IgG antibodies to infants and the co-administration of 

rotavirus vaccines with OPV. We also identify other potential risk factors that require further 

research because the data about their interference with the efficacy of rotavirus vaccines are 

inconclusive and at times conflicting.
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1. Introduction

Rotavirus is the most important cause of severe gastroenteritis in children worldwide 

[1]. The main symptoms of rotavirus gastroenteritis are low-grade fever, vomiting, and 

acute watery diarrhea. Vaccines represent the optimal practice for preventing the severe 
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consequences of rotavirus infection, especially in impoverished regions where resources 

and access to medical care are usually limited. Two live attenuated oral rotavirus vaccines 

were licensed in 2006. Rotarix (RV1, GSK Biologics) is a two-dose monovalent (G1P[8]) 

human rotavirus vaccine. RotaTeq (RV5, Merck & Co.) is a three-dose pentavalent vaccine 

consisting of a mixture of bovine-human mono-reassortants carrying the genes encoding 

the human G1, G2, G3, G4, and P[8] in the genetic background of a bovine rotavirus 

WC3 (G6P[5]) [2]. In 2009, the WHO recommended implementation of rotavirus vaccines 

worldwide. Rotavirus vaccine is recommended to be administered in infancy concurrently 

with polio, diphtheria-tetanus-pertussis, and pneumococcal (PCV) vaccines as early as 6 

weeks of age [3,4]. Currently, rotavirus vaccines are introduced into national immunization 

programs of 85 countries and in a phase introduction of 7, including 41 GAVI-eligible 

countries with financial support for vaccine procurement [5]. Implementation of rotavirus 

vaccines into national vaccination programs has led to substantial declines in the burden of 

severe gastroenteritis in several countries [5-7].

RV1 and RV5 were preceded by RotaShield® (RRV-TV, Wyeth, U.S.A.), the first live 

attenuated oral rotavirus vaccine based on a Rhesus monkey rotavirus strain (RRV) that 

was reassorted with human rotavirus VP7 proteins representing the G-types G1, G2, and 

G4 [8]. With RRV as G-type 3, this was called ‘tetravalent’ or RRV-TV vaccine. However, 

this vaccine was withdrawn from the market after it was found to be associated with 

intussusception, a rare form of intestinal invagination [9]. Four other oral rotavirus vaccines 

are currently licensed in national markets: Lanzhou lamb rotavirus vaccine (LLR, Lanzhou 

Institute of Biological Products, China) containing a live attenuated lamb rotavirus strain, 

G10P[10], Rotavin-M1 (POLYVAC, Vietnam) containing a live attenuated human rotavirus 

strain, G1P[8], ROTAVAC (Bharat Biotech, India) containing a live attenuated neonatal 

rotavirus strain, G9P[11] (aka 116E), and ROTASIIL (Serum Institute, India) containing 

five bovine-human reassortant rotavirus strains (G1, G2, G3, G4, G9) [10]. In April 2016, 

ROTAVAC was launched in the routine immunization programs in four states in India and 

has been expanded to an additional five states in 2017. LLR and Rotavin-M1 are only 

available on the private market in China and Vietnam, respectively [10]. In two recent phase 

3 trials in Niger and India, ROTASIIL showed efficacies of 67% and 39.5%, respectively 

[11,12]. Results for other two rotavirus vaccines were favorable for a neonatal dose in stage 

II clinical trials. In New Zealand, one neonatal dose with two additional infant doses of 

RV3-BB, a monovalent human rotavirus vaccine, performed comparably to a three-dose 

infant schedule [13]. In Ghana, one neonatal dose followed by one infant dose of RRV-TV 

had a vaccine efficacy of 63% [14]. Estimates suggest that rotavirus vaccines have the 

potential to prevent 2.46 million childhood deaths and 83 million disability-adjusted life-

years between 2011 through 2030 [15].

Additionally, inactivated rotavirus particles and subunit rotavirus proteins have been 

proposed as an alternative to the current live oral vaccines [16,17]. First, the P2-VP8* 

candidate (PATH), a truncated recombinant VP8* protein of human rotavirus genotypes P[8] 

expressed in Escherichia coli, was tested and found to be safe and immunogenic in phase 

I and II clinical trials [18-21]. A trivalent P2-VP8-P[8]/P[6]/P[4] vaccine is being tested to 

determine its safety and immunogenicity in South African children. Second, the inactivated 

rotavirus vaccine (IRV), CDC-9 strain (G1P[8]) is being developed for intramuscular and 
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intradermal vaccination by US Centers for Disease Control and Prevention (CDC, U.S.A.). 

Studies showed that this monovalent IRV was effective in inducing homotypic (against the 

vaccine-type strain) and heterotypic (against non-vaccine-type strain) neutralizing antibody 

to different human strains, and protection against an oral challenge with a virulent human 

virus in animals [22,23]. The CDC researchers have prepared a pilot vaccine and are 

planning the first-in-human studies. Third, other subunit approaches include virus-like 

particles (VLPs) [24] in various formats—usually the inner capsid VP6 antigen, with or 

without the outer capsid proteins VP7 and/or VP4, and in some platforms combined with 

norovirus VLPs [25]. Both of these strategies are in early preclinical R&D.

High vaccine efficacy (85–98%) against severe rotavirus disease has been reported for both 

RV1 and RV5 in high- and middle-income settings with sustained protection until 2 years 

of age [26]. High levels of both homotypic and heterotypic protection are induced by both 

vaccines in such settings [27]. However, the majority (>90%) of childhood deaths due to 

rotavirus gastroenteritis occur in low-income countries in Africa and Asia [1], and clinical 

trials have shown lower efficacy (50–64%) in these settings. These differences in efficacy 

are not explained by strain variation in these environments [27-37]. Moreover, striking 

reductions in efficacy were reported in the second year of life compared with the first 

year [33], particularly in sub-Saharan Africa where rotavirus is still a significant pathogen 

at that age [38]. Despite lower efficacy in developing countries, the mortality rate from 

rotavirus-associated disease was lowered in 27 countries that introduced rotavirus vaccine 

into their national routine [39]. Similar reductions were seen across mortality strata.

Many oral vaccines, primarily live ones, have shown reduced immunogenicity and efficacy 

when used in low-income compared with high-income countries. Reduced performance 

of oral polio vaccine (OPV) in developing countries is well recognized as a significant 

obstacle for the eradication of polio by vaccination [40-45]. Also, CVD 103-HgR live 

cholera vaccine 4144, B subunit-inactivated Vibrio cholera whole cell combination vaccine 

[46], and SC602 live Shigella flexneri 2a vaccine [47] were less effective in low-income 

settings. This gradient immunogenicity or protection has been seen in all age groups, from 

young infants to adults. The causes for reduced efficacy are likely multifactorial and their 

identification could allow the design of strategies for vaccine improvement. Because of the 

high burden of rotavirus disease, even a modest improvement in vaccine effectiveness in the 

individual could nonetheless have significant overall public health impact. In this review, 

we aim to systematically describe biological and environmental factors associated with low 

performance of rotavirus vaccines by reviewing the current literature.

2. Passive transfer of maternal rotavirus antibodies

2.1. Breastmilk rotavirus antibodies

We assessed the effect of breastfeeding on the response to two- or three-dose oral rotavirus 

vaccines (Table 1). Information of history of infants’ feeding practices was obtained from 

parents or guardians in all the studies. Seven studies analyzed the effect of breastfeeding 

as a factor protecting against rotavirus gastroenteritis. In Germany, the researchers observed 

a statistically significant association between breastfeeding and rotavirus vaccines’ (RV1/

RV5) failure [48]. Two pooled analyses from Africa (Ghana, Kenya, and Mali) and Asia 
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(Bangladesh and Vietnam) showed a slightly decreased efficacy of RV5 in children with 

exclusive breastfeeding, compared with children with nonexclusive breastfeeding who were 

immunized, but this difference was not statistically significant [49]. Also, in Europe, 

marginally decreased efficacy was observed in infants who were breastfed after 2 years of 

RV1, which was not statistically significant, either [50]. On the other hand, the efficacies of 

RRV-S1, RRV-TV, or WC3 in the U.S.A., and RV1 in Botswana were similar in infants 

who were breastfed and non-breastfed [35,51,52]. Four studies analyzed the effect of 

breastfeeding on the immunogenicity of rotavirus vaccines. In Mexico (RV1), breastfeeding 

was significantly associated with reduction of both IgA seroresponse and vaccine shedding 

[53]. In Israel, an analysis with RRV-TV showed a decreased IgA seroconversion in children 

who were breastfed compared with non-breastfed were immunized, but this difference was 

not statistically significant [54]. However, in the U.S.A. (RRV-S1, RRV-TV) and Europe 

(RV1) the immunogenicity was similar in infants who were breastfed and non-breastfed 

[50,52]. Thus, in the majority of studies, breastfeeding did not interfere significantly with 

rotavirus vaccine performance.

We analyzed the levels of breastmilk or colostrum’ RV IgA and corresponding infants’ 

IgA seroconversion post dose 1 or 2 of rotavirus vaccines in mother–infant pairs (Table 2) 

[55-59]. In India and Zambia, higher breastmilk IgA titers were significantly associated with 

non-IgA seroconversion to RV1. The same tendency was found in two studies in Nicaragua 

(RV5) and New Zealand (RV3-BB), but the differences were not statistically significant.

To investigate whether a transient abstention from breastfeeding at the time of vaccination 

would improve the immunogenicity of RV1, three randomized control trials were performed 

in South Africa, Pakistan, and India (Table 3) [55,60,61]. Lactating women and their infants 

were recruited and randomly allocated to groups that withheld breastfeeding for 1 h (South 

Africa and Pakistan) or 30 min (India) before and after RV1 vaccination. Control groups 

breastfed normally. Despite high compliance of the mothers, none of the three studies 

reported significantly higher IgA seroconversion post dose 2 in infants who had breastmilk 

withheld around vaccination compared to those who did not.

We hypothesize that rotavirus IgA present in the breastmilk may diminish the rotavirus 

vaccine response when infant breastfeeding is a common practice. We concluded that 

breastmilk anti-rotavirus IgA levels negatively impact the immunogenicity of rotavirus 

vaccines in some studies. In human colostrum and mature milk, IgA is the predominant 

immunoglobulin, accounting for 88–90% of its immunoglobulins [62]. The antibodies found 

in breast milk occur as a result of antigenic stimulation of maternal mucosa-associated 

lymphoid tissue and bronchial tree (broncho mammary pathway) [63]. These antibodies 

target the infectious agents encountered by the mother during the perinatal period, 

meaning that they also target the infectious agents most likely to be encountered by the 

infant. On the other hand, transient withholding of breastfeeding does not improve the 

immunogenicity of rotavirus vaccines. Antibodies or other immune factors may persist in 

infants’ gastrointestinal tract for longer periods than the interval during which breastfeeding 

was withheld in these studies. An infant’s gastric half-emptying time is between 47 and 56 

minutes [64-66]. Therefore, despite withholding of breastfeeding before immunization, the 

vaccine still may have come into contact with breastmilk in the stomach or the intestines.
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2.2. Transplacentally acquired rotavirus IgG

Three studies in Nicaragua (RV5), India (RV1), and South Africa (RV1) found that 

higher levels of pre dose 1 mothers’ RV-IgG were significantly associated with non-IgA 

seroconversion in vaccinated infants (Table 4(a)) [55,57,58]. Five studies analyzed the 

interference of transplacentally acquired RV-IgG with IgA seroconversion to rotavirus 

vaccines in infants (Table 4(b)). High titers of preexisting RV-IgG were significantly 

associated with non-IgA seroconversion to the 116E in India and to RV1 in South Africa 

[57,67]. The same trend was observed in Nicaragua (RV5), Zambia (RV1), and New Zealand 

(RV3-BB), although in these studies, trends lacked statistical significance [56,58,59].

The negative effect of both mothers’ and infants’ pre dose 1 anti-rotavirus-IgG on the 

immunogenicity of rotavirus vaccines was seen in several geographic locations. Even with 

the neonatal rotavirus strain RV3-BB, the nonresponders had higher titers of pre dose 1 

RV-IgG, although the difference was not significant. In South Africa and Nicaragua, a 

significant correlation was found between levels of RV-IgG in sera of mother–infant pairs 

before their first rotavirus immunization, suggesting direct transplacental transmission of 

this antibody from mothers to infants [57,58]. During pregnancy, maternal IgG is transported 

over the placenta (transplacental transport) by an active, FcRn receptor mediated process 

and protects infants against different infections during the first months of life [68]. This 

transplacentally acquired RV-IgG is also one of the proposed factors for reduced infant 

vaccine efficacy in other pediatric vaccines [69], such as measles [70,71], tetanus [72], and 

pneumococcal vaccines [72,73].

3. Rotavirus seasonality

In Zambia, IgA seroconversion post RV1 was lower in children receiving their first vaccine 

dose during a rotavirus season, although with a marginal level of significance (Figure 

1(a)) [56]. The same trend was found in Bangladesh and South Africa, but none of the 

studies detected significantly smaller IgA sercoconversion values in children receiving their 

first vaccine dose during a rotavirus season [57,74]. Additionally, in five studies from the 

Americas, the effectiveness of RV1 and RV5 was lower for children born during rotavirus 

season, but the effect was not significant in any single country (Figure 1(b)) [75-78]. The 

definition of a rotavirus season for Zambia, Bangladesh, and South Africa was based on data 

previously published [79-83]. The definition of a rotavirus season for each Latin American 

countries, rotavirus seasons was based on data from the WHO’s global surveillance network 

for rotavirus [84]. For the U.S.A., the rotavirus season was defined based on data from the 

National Respiratory and Enteric Virus Surveillance System [85]. We observed a pattern 

of lower rotavirus vaccine performance in children either born or receiving their first dose 

during rotavirus season. However, there are a few factors that vary seasonally and could 

support the observed patterns. First, maternal rotavirus-antibody levels in mothers are likely 

to be much higher during the rotavirus season [60]. These passively acquired antibodies, 

which are transferred from mother to child either transplacentally or through breastfeeding, 

could potentially influence rotavirus vaccine immune response by neutralizing the vaccine 

and decreasing the response of rotavirus vaccine in children receiving their first dose or born 

during months with higher rotavirus activity [86]. A second possibility relates to an active 
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ongoing rotavirus infection during the rotavirus season that could interfere with rotavirus 

vaccine performance due to the damage to the intestinal epithelium and the ongoing 

immune response. Third, infections with multiple enteric pathogens are very common in 

many developing settings [87,88]. Infection with other enteric pathogens at the time of 

immunization could interfere and impair response to vaccine [89]. If enteric pathogens do 

interfere with vaccine performance, then, norovirus, which tend to co-circulate during the 

rotavirus season, could be more likely to interfere with vaccine performance than bacterial 

enteric pathogens, which are more prevalent during the non-rotavirus season.

4. Changes in rotavirus vaccination schedules

In Ghana, Kenya, and Mali, significantly higher pooled vaccine efficacy was observed in 

infants receiving their first dose at ages of 8 weeks or older compared with those receiving 

first dose before 8 weeks of age (Figure 2) [49]. The same trend was observed in pooled data 

from Bangladesh and Vietnam, but without statistical significance [49].

Immunogenicity studies specifically with Rotarix in Africa and Asia suggest a slight benefit 

in modulating dose schedule (Figure 3) [31,32,90-93]. In a post-licensure study from Ghana 

[91], the authors tested the immunogenicity after an additional, third dose of RV1 given 

at 14 weeks of age versus the standard two-dose schedule at 6 and 10 weeks of age. IgA 

seroconversion was significantly higher in the three-dose arm, but still low in absolute terms. 

A lesser benefit in IgA seroconversion was seen using a delayed two-dose schedule at 10 

and 14 weeks of age, which did not reach statistical significance. These data are in line 

with findings from a clinical trial of RV1 from South Africa and Malawi performed prior to 

vaccine introduction. That study compared three doses given at 6, 10, and 14 weeks of age 

with two doses at ages 10 and 14 weeks to placebo. The IgA seroconversion and efficacy 

increased with the three-dose schedule over that provided by two doses, though the study 

was underpowered to analyze each separate schedule [31,32]. On the other hand, trials from 

Pakistan and India did not show higher IgA seroconversion with a three-dose or five-dose 

RV1 schedule [90,92]. In Vietnam, a later second dose schedule of RV1 showed a higher 

IgA seroconversion (although not statistically significant). Additionally, in Philippines, a 

later first dose showed a higher IgA seroconversion (also not statistically significant) [93].

An even later delay of dosing was tested in Bangladesh, in a controlled efficacy trial of RV1 

given at 10 and 17 weeks after birth. In this study, effectiveness against severe rotavirus 

gastroenteritis was 74% (95% CI, 46–87%) [94], higher than the RV1 effectiveness of 41.4% 

(95% CI, 23–55%), reported in that country when vaccine doses were given at 6 and 10 

weeks of age [95].

Both, delaying the rotavirus vaccination schedule and giving additional doses slightly 

improved vaccine immunogenicity. These schedules might decrease the impact of maternal 

antibody in reducing immune responses when vaccine is administered in early infancy 

as described before. There are high levels of circulating rotavirus antibodies in mothers 

living in developing countries. Another reason could be that the infant immune system 

is more immature at earlier time points and capable of more robust memory responses 

with age. Many studies have shown that the primary t-cell-dependent antibody responses 
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induced in the neonatal period differ from adult responses [96]. Neonatal antibody responses 

are delayed in beginning, reach lower peak levels, are of shorter duration, differ in the 

distribution of IgG isotypes (with neonates showing lower IgG2 than adults), and are of 

lower average affinity and reduced heterogeneity. Reduced antibody responses might be 

partially caused by the presence of maternal antibodies.

In order to address the problem of reduced duration of protection, in a trial in Bangladesh, 

a third dose of RV1 was given at 9 months of age [97]. The third dose of RV1 enhanced 

its immunogenicity, mostly among those infants who were either seronegative or had low 

antibody titers prior to the third dose. In the previously mentioned two trials of alternate 

schedules (Malawi and South Africa), no adverse effects were attributed to RV1. Both trials 

were too small to detect intussusception [98]. Since the relative risk of intussusception was 

considered to be higher between those receiving the first dose after 3 months of age [99], age 

restrictions were placed on the timing of immunization with RV1 and RV5. Initially, WHO 

recommended that the first dose should be given by 15 weeks of age and the last dose by 32 

weeks of age [100]. Post-introduction studies have shown that RV1 and RV5 were associated 

with an increased risk of intussusception primarily right after the first dose, but at a much 

lower level than that associated with RRV-TV [101]. Infants in low-income countries often 

do not receive prompt vaccination, and because any increase in deaths from intussusception 

is expected to be far outweighed by rotavirus deaths prevented through vaccination, the 

age restriction recommendation was consequently abandoned by the WHO to maximize the 

opportunity for infants to be immunized [98].

The vaccination later in infancy is expected to decrease the effect of maternal antibody in 

reducing immunogenicity as opposed to when the vaccine is administered in early infancy 

as described before. However, a timely vaccination in low-income countries is recommended 

because of the early natural exposure to rotavirus [102]. Early rotavirus vaccination could 

decrease the burden of rotavirus gastroenteritis in the first year of life, when infants are 

the most vulnerable to the symptomatic disease [4]. Immunization with the neonatal RV3-

BB strain during the first 7 days of life generated immunogenicity comparable to the 

conventional vaccination schedule [13]. In developing countries, reinfection is common and 

is, in general, associated with milder disease [102-104]. However, an Indian cohort study has 

shown that infants can be symptomatically infected multiple times, even with a strain closely 

related to that of previous infections [102].

5. OPV administered concurrently

We reviewed several studies from various regions of the world that evaluated the influence 

of OPV on the immunogenicity of rotavirus vaccines (Figure 4) [74,105-112]. Five studies 

[South Africa (RV1), Bangladesh (RV1), Chile (RV1), and Latin America (RV1 or RV5)] 

found that co-administration of an OPV with rotavirus vaccines significantly decreased 

RV-IgA seroconversion. One of those, in South Africa [105], suggests that this effect may 

be more relevant at the time of the first dose of RV1. Also, in Bangladesh and Chile, both 

monovalent and bivalent OPV have shown significant reduction of IgA seroconversion to 

RV1 [74,109]. Three studies with RV1 in South Africa, Bangladesh, and China also found 

that infants that had co-administration of OPV with RV1 had lower RV-IgA seroconversion, 
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but the difference was not statistically significant. Emperador et al, reported an inhibitory 

effect of OPV on RV1 in early stages of virus replication, although the mechanism of 

interference still needs to be defined [74]. Despite the lower immunogenicity, one efficacy 

study in middle-income Latin American countries showed no decrease in efficacy of RV1 in 

infants receiving concurrent OPV [110,111].

6. Microbiome composition and concomitant intestinal infections

We reviewed studies evaluating the interactions of the gut microbiome with rotavirus 

vaccines immunogenicity (Table 5) [113-115]. In Ghana, researchers explored differences 

in pre-vaccination fecal microbiota composition between infants with and those without 

IgA seroconversion following RV1 vaccination and healthy, rotavirus-unvaccinated, Dutch 

infants of the same age, who were assumed to be rotavirus vaccine responders [113]. The 

authors found that RV1 response correlated with an increased abundance of Streptococcus 
bovis and a decreased abundance of the Bacteroidetes phylum in comparisons between 

both Ghanaian RV1 responders and nonresponders, and Dutch infants and Ghanaian 

nonresponders. In Pakistan, the authors found that RV1 immunogenicity correlated with 

a higher abundance of bacteria belonging to Clostridium cluster XI and Proteobacteria, 

including bacteria related to Serratia and Escherichia coli. Surprisingly, abundance of 

these Proteobacteria was also significantly higher in Dutch infants when compared 

to Pakistanian RV1-nonresponders [116]. Additionally, concurrent enterovirus infections 

correlated significantly with poor IgA seroconversion to RV1 in Bangladesh [114]. A study 

in Ecuador showed higher plasma IgA responses to rotavirus vaccine and OPV in children 

of helminth-infected mothers, compared to that of children of helminth-uninfected mothers 

[115]. However, the pathogenic mechanism for the observed difference is unclear, but may 

involve the transfer of helminth-induced cytokines (e.g. IL-10) across the placenta or in 

breastmilk. Additionally, the helminth infections were not associated with reduced immune 

responses to other infant vaccines.

Regarding the microbiome studies in Ghana and Pakistan, the authors speculate that they 

may complement one another—Proteobacteria and E. coli-derived lipopolysaccharide (LPS) 

might boost RV1 responses in some populations whereas Bacteroidetes-derived LPS might 

inhibit RV1 responses in others. Also, because the intestinal microbiome differs significantly 

in different geographic populations, hypothesis are arising that differences in the intestinal 

microbiome may help explain this gradient in RV vaccine immunogenicity. In humans, 

the intestinal microbiota does not become stable and mature until about 2 years of age 

(post-weaning), and several studies have shown the microbial composition prior to this 

time period is highly variable and sensitive to environmental exposures [117,118]. Given 

the central role that microbiota have on immune system development, it is a natural 

extension that the microbiota will impact upon live vaccine efficacy [119]. Additionally, 

recent work in animal models has demonstrated the significance of the microbiota and 

associated products (e.g. bacterial LPS) for the replication of enteric viruses [120]. Acute 

and persistent infections with diverse pathogens in the intestine and their interactions with 

microbiome can affect immune homeostasis and gut health, which could have a direct 

effect on vaccine performance [121,122]. Enteric live attenuated vaccines replicate and may 

interact with the gut microbiota in the intestinal tract. Therefore, the microbiota is also likely 
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to directly and/or indirectly affect efficient vaccine strain replication, which is necessary to 

elicit a protective local immune response. The microbiota of children living in low-income 

countries has been shown to be more diverse in its composition, and more variable over 

time, compared with the microbiota of children living in high-income countries [123-125].

7. Probiotics

We found two studies that examined the impact of supplementation with Lactobacillus 
rhamnosus GG (LGG) on the immunogenicity to rotavirus vaccines (Table 6). In India, 

daily supplementation with a LGG in conjunction with zinc resulted in a significant rise 

in IgA seroconversion compared with infants receiving placebo in a cohort of infants 

immunized with RV1 [126]. In a small study in Finland, LGG supplementation resulted in a 

significant increase in IgA seroconversion post RRV-S1 [127]. The two intervention studies 

with probiotics that increased the immunogenicity of rotavirus vaccines had small sample 

size and were different in study design (e.g. administration schedule, dose, and probiotic 

strain used), population-specific microbiota, and gut health. Combined supplementation of 

probiotic and zinc deserves further investigation. Additionally, studies in gnotobiotic pigs 

showed that LGG, B. lactis Bb12 (Bb12), and L. acidophilus (LA) probiotics had beneficial 

effects on AttHRV vaccine protective efficacy and immunogenicity and they moderated the 

severity of diarrhea, but only when given at least 21 days prior to human rotavirus challenge 

[128-130]. Severe rotavirus diarrhea in children has also been successfully treated using 

antibodies derived from hyperimmune bovine colostrum of immunized cows [131-133].

8. Undernutrition

Undernutrition, which is prevalent in the world’s most impoverished regions, has been 

associated with failure of resisting infections and recovering from disease, especially in 

children under the age of 5 [134,135]. Studies on undernutrition and rotavirus vaccines 

response showed heterogeneous and non-consistent effects. Gastanaduy et al, showed a 

significant correlation between undernutrition (weight for length z score < −2, based on the 

WHO growth standards) and low effectiveness of RV1 in Botswana after 1ne or 2 years 

of follow-up [35] (Table 7). Also, underweight infants (weight for age z score < −2) from 

three African countries (RV5) had a nonsignificant trend toward lower combined efficacy 

after 1 and 2years [49]. In pooled data from Bangladesh and Vietnam (RV5), undernourished 

infants (weight for age z score < −2) had slightly higher efficacy in the first year of 

follow-up, however, after the second year they showed lower efficacy [49]. In Latin America 

(RV1), however, undernutrition status (weight for age z score < −22) did not affect vaccine 

efficacy [136]. Additionally, in Bangladesh, IgA seroconversion post RV1 was not affected 

by the undernutrition status (weight for length z score < −2) of the children [74].

We discovered that there is conflicting evidence on the impact of nutritional status 

on the performance of rotavirus vaccines in developing countries. Nutrition can impact 

the function of the mammalian adaptive immune system, and therefore, the responses 

to vaccines in children [137]. Several micronutrients are relevant for immune role and 

vaccine efficacy, including vitamins A and D, and zinc [138,139]. For example, vitamin 

A deficiency in mice has been shown to modulate trafficking of vaccine-specific CD8+T 
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cells to the gastrointestinal tract in an ovalbumin/simian immunodeficiency virus vaccine 

model by interfering with retinoic acid-dependent upregulation of mucosal homing integrins 

in vaccine-specific CD8+T cells [140]. Several in vivo studies comprising adult mice 

vaccinated subcutaneously or intramuscularly with inactivated vaccines co-administered 

with 1,25-(OH)2D3 (the most active form of vitamin D that is transported to target tissues) 

showed the production of antigen-specific mucosal immunity and enhanced systemic 

immune responses [141-143]. The studies included IPV [141], Haemophilus influenzae type 

b oligosaccharide conjugated to diphtheria toxoid vaccine [142], and hepatitis B surface 

antigen [143]. The observation of induction of mucosal immunity is significant, as the 

traditional paradigm suggests this requires direct antigen presentation at the mucosal surface 

[144]. However, whether vitamin D will prove to be an adjuvant for rotavirus vaccination 

will require further study. Considering the effect of diet to the composition of the intestinal 

microbiome, it is possible that malnutrition modifies the microbiome significantly [145]. 

However, it is still unknown how these diet-driven microbiota changes affect rotavirus 

vaccine efficacy. Additionally, zinc plays a key role in the adaptive immune system, and 

deficiency is associated with depressed T cell function [146]. Studies have tested the effect 

of supplementation with zinc on the response to vaccination, including OPV and inactivated 

oral cholera vaccine [137,147-150]. In a study in rural Pakistan, supplementation with 10 mg 

zinc daily from birth to 18 weeks of age had no impact on seroconversion after four doses 

of trivalent OPV [147]. Zinc supplementation did increase serum vibriocidal antibody titers 

in children and adults following administration of inactivated oral cholera vaccine, although 

this effect was not apparent in infants 6–9 months old [148-150].

9. Environmental enteropathy markers

Environmental enteropathy (EE)—also referred as ‘environmental enteric dysfunction’—is 

a subclinical condition characterized by histological and functional abnormalities in the 

small intestine, which seem to be almost ubiquitous in children living in resource-poor 

settings [151]. A prospective longitudinal study of infants in an urban slum from Bangladesh 

showed that fecal alpha-1-antitrypsin and IL-10 (biomarkers of enteric and systemic 

inflammation, respectively) were significantly correlated with non-IgA seroconversion after 

RV1 vaccination (Table 8) [152]. In Nicaragua, the researchers found that two fecal 

biomarkers of EE: myeloperoxidase (MPO) and calprotectin (CAL) were statistically 

associated with diminished IgA seroconversion post RV5 [153]. The two studies have shown 

that EE biomarkers were associated with lower rotavirus vaccine immunogenicity.

10. HIV

Diarrheal disease is a major cause of sickness and death in HIV-infected (HIV+) children; 

some studies reported more severe rotavirus infection in HIV+ children [154-158]. Two 

studies in Botswana and South Africa measured the RV1 effectiveness in HIV-exposed-

uninfected compared to HIV-unexposed-uninfected children and found no statistical 

difference between the groups (Table 9) [35,159]. In Zambia, the researchers measured 

the IgA seroconversion post RV1 in HIV-exposed-uninfected compared to HIV-unexposed-

uninfected children and found no statistical difference between the groups either [56]. 

The evidence available to date showed no impact of HIV-exposure on the performance 
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of RV1 in African countries. Additionally, one placebo-controlled trial of the safety and 

immunogenicity of RV5 administered to HIV+ and HIV-exposed-uninfected infants was 

performed in four African countries [160]. RV5 showed an IgA seroconversion of 85% 

in both HIV+ and HIV-exposed-uninfected infants, regardless of significant differences in 

inflammation and immune activation at the start of the immunization series in both groups 

[160,161].

Unfortunately, the small sample size of this study and its absence of an HIV-unexposed 

control group limit their ability to make conclusive statements about RV5 in HIV+ infants. 

Nevertheless, in perinatally infected infants, they demonstrated no effect of HIV-associated 

inflammation and immune activation on the immunogenicity to RV5. Although many 

HIV+ infants have received live rotavirus vaccines since the WHO recommended them, 

information on the safety and immunogenicity of rotavirus vaccines in HIV+ infants is 

limited to approximately 100 infants who received RV1 [159,162], and less than 50 infants 

who received RV5 [29,163]. Despite HIV+ infants may benefit from rotavirus vaccines, 

these vaccines have been implicated in prolonged gastroenteritis with persistent shedding of 

vaccine-strain virus in infants with severe combined immunodeficiency, and other live viral 

vaccines have caused disease in infants with advanced HIV infection [164-167].

11. Histo-blood group antigens

Certain histo-blood group antigens (HBGAs) expressed on enterocytes have been proposed 

as receptors for the VP8* of rotaviruses (VP8* is the globular head fragment of the spike 

protein, VP4) [168,169]. Additionally, several studies demonstrated an HBGA correlation 

with rotavirus disease [170-174]. HBGAs are synthesized by glycosyltransferases encoded 

by ABO, Lewis, and secretor gene families. Recent investigations have suggested that 

the sialic acid-independent human rotaviruses recognize certain HBGAs in a P genotype-

dependent manner. VP8* sequencing identified segregation of animal and human rotaviruses 

into five P genogroups, and researchers have hypothesized that strains within a genogroup 

may interact with a specific HBGA epitope [169]. HBGA phenotype correlates significantly 

with rotavirus vaccine IgA seroconversion. In Pakistani infants, the IgA seroconversion after 

three doses of RV1 differed significantly by salivary HBGA phenotype, with the lowest 

rate (19%) among infants who were nonsecretors (i.e. who did not express the carbohydrate 

synthesized by FUT2), an intermediate rate (30%) among secretors with non-blood group 

O, and the highest rate (51%) among secretors with O blood group [175]. How this lower 

seroresponse impacts on clinical protection is not yet clear and may require additional 

studies. For instance, while nonsecretors may be less prone to respond to vaccination, 

they will also be less susceptible to natural infection with certain genotypes. The study 

in Pakistan showed that secretor and salivary ABO blood group antigen status predicted 

rotavirus vaccine IgA seroconversion. This finding is consistent with an in vitro data that 

showed recombinant VP8* and cell-culture-adapted P[8] strains interacted with Lewis b 

and H type 1 antigens [168] and that RV1 VP8*-GST fusion protein bound to saliva 

samples from secretors but not those from nonsecretors [176]. Epidemiological studies with 

some population diversity have found that children with rotavirus disease from P[8] strains 

are significantly more likely to be secretors, compared with the general population [177]. 
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Epidemiological data from one location have also suggested that children with rotavirus 

disease from P[6] strains are more likely to be Lewis negative [170].

12. Conclusions

There was a nonsignificant trend of lower rotavirus vaccines performance in breastfed 

infants. The rotavirus IgG transplacentally transferred was negatively associated with 

vaccine response. We show a nonsignificant trend of lower rotavirus performance in children 

either born or receiving their first dose during a rotavirus season. Both delaying the rotavirus 

vaccination schedule and giving additional doses slightly improved vaccine immunogenicity. 

This might be due to the fact that the baseline antibodies have waned in those infants, 

and also that the infant immune system is capable of more robust memory responses 

with age. Co-administration with the OPV also decreases vaccine immunogenicity. In 

addition, intestinal microbiome differs significantly in rotavirus vaccines’ responders and 

nonresponders and in different geographic populations. On the other hand, the role of 

undernutrition still remains controversial and further studies are needed. Two clinical 

trials have shown that L. rhamnosus GG increased immunogenicity of rotavirus vaccines. 

Furthermore, EE biomarkers were associated with lower rotavirus vaccine immunogenicity, 

but HIV status appeared to have no impact on the performance of RV1 in Africa. Recent 

data suggest potential roles of host genetic factors (e.g. HBGA) in rotavirus vaccine 

response. Understanding the risk factors for low rotavirus vaccines’ performance is critical 

for maximizing the public health impact of the current oral vaccines and developing the next 

generation of rotavirus vaccines.

13. Expert commentary

Since rotavirus vaccines were introduced into routine national immunization programs in 

2006, it had a tremendous public health impact, as evidenced by reductions in diarrhea-

associated mortality in low and middle-income settings, and reductions of hospitalizations in 

high-income settings. However, in low-income settings, the lower vaccine efficacy and initial 

indications that rotavirus vaccine protection might decline beyond the first year of life pose 

ongoing challenges to sustainability of early vaccine success. Consequently, mechanisms 

for lower vaccine efficacy in low-income countries and practical strategies to modify 

contributing factors are being explored. IgG rotavirus antibodies passively transferred to 

the infants and co-administration with OPV were generally associated with the reduced 

rotavirus vaccine’s immunogenicity.

Despite a nonsignificant interaction between breastfeeding practices and rotavirus 

vaccination in some studies, breastfeeding should be strongly recommended during 

immunization counseling. The still maturing immunologic systems of infants benefit 

greatly from breastfeeding’s modulating effect on responses to pathogen challenges. Ideally, 

accurate descriptions of breastfeeding practices should be included in research databases of 

vaccine efficacy and safety trials. Randomized trials could evaluate the impact of vaccine 

administration schedule on efficacy in Africa and Asia with a high disease burden.
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There is a need for an understanding of the relationship between the composition of 

microbiota to responses to rotavirus vaccines. For instance, studies correlating the use of 

antibiotics (that cause a major effect on microbial diversity) before vaccination, followed by 

analysis of vaccine-responses, would provide major insights into changes in the microbiota 

and rotavirus vaccine responses. Furthermore, additional research and analysis is needed on 

the role of particular species within communities and their correlation with rotavirus vaccine 

responses. And, the tools are now readily available (community sequencing, metagenomics, 

metabolomics, bioinformatics, etc.). Also, it is essential to further explore the importance of 

the whole microbiome in the gut as a potential modulator of responses to rotavirus vaccines 

and evaluating the impact of nutritional status of the infants on the performance of rotavirus 

vaccines in developing countries. More in vivo studies are needed to comprehend the role of 

probiotics’ impact and its applications as a vaccine adjuvant.

Additional information about rotavirus vaccines in HIV-positives and immunocompromised 

infants is desirable because protective antibody responses can be impaired in infants with 

untreated HIV infection, and robust responses may not be achieved even when vaccine 

is administered after initiating antiretroviral therapy early in life. In the future, accurate 

assessment of the safety of rotavirus vaccines in HIV-exposed-uninfected and HIV+ 

infants will require larger-scale effectiveness studies because performing placebo-controlled 

efficacy trials are not deemed to be ethical. Additionally, it is important to understand if 

and how the expression of HBGAs in different populations influences the performance of 

rotavirus vaccines. More data is required to answer the question of whether the expression of 

particular HBGAs in infants will determine their susceptibility to RV infections and interfere 

with the uptake of RV vaccines. While we analyzed the data of the individual risk factors 

affecting the vaccines’ efficacy, the impact of the combination of the specific risk factors has 

yet to be explored.

Parenterally administered, nonreplicating rotavirus vaccines could provide a valuable 

addition to the current range of available rotavirus vaccines and may elude some of the 

barriers discussed here. In addition to improved efficacy in developing countries, these 

vaccines might be produced at a low cost and can potentially be combined with other 

childhood vaccines, thus facilitating the vaccine delivery. Further, parenteral vaccines may 

avoid concerns about replicating vaccines and the associated risk of intussusception and 

possible vaccine strain transmission.

14. Five-year view

Adjustment of vaccine schedules may be implemented in low-resource areas if considered 

effective, including earlier and additional booster doses. Hopefully, ongoing large-scale 

vaccination campaigns that are already in place can be exploited to evaluate the link between 

microbiome composition and rotavirus vaccine effectiveness. The potential role of infant 

nutritional status and host genetic factors (as HBGA) on the vaccine performance should 

continue to be assessed for potential enhancement of vaccine’s performance in resource-

poor settings. Parenteral rotavirus vaccines currently under development may be licensed 

and available to possibly overcome the barriers to orally administered vaccines in developing 

countries.
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Key issues

• Two rotavirus vaccines, Rotarix (RV1) and RotaTeq (RV5), were licensed for 

global use since 2006.

• After clinical trials showed high efficacy (85–98%) of both vaccines in 

high-income and upper-middle-income countries in the Americas, Asia, and 

Europe, many countries in these regions implemented national rotavirus 

vaccination programs.

• Subsequent clinical trials conducted in low-income countries of Africa and 

Asia showed modest efficacy (50–64%). The reasons for this phenomenon 

have not been fully elucidated.

• Infants who were breastfed had a non-significant lower protection compared 

to non-breastfed infants (ranges: 28–86% vs. 39–91% after 1 year, and 29–

69% vs. 37–89% after 2 years). However, 3 trials showed that a transient 

abstention from breastfeeding did not improve the immunogenicity of 

rotavirus vaccines.

• Titers of RV IgG at pre dose 1 in either the infants or their mothers was about 

two times higher in non-vaccine seroresponders compared to responders.

• There was a non-significant trend of lower protection in children born during 

a RV season compared with children born in other months (~72 vs. ~84%).

• Delaying the rotavirus vaccination schedule and/or giving additional doses of 

vaccine slightly improved vaccine immunogenicity.

• Infants who had co-administration with OPV had generally lower 

seroresponse to RV vaccination than infants without OPV (~59 vs. ~68%).

• Intestinal microbiome differs significantly in RV1’ responders and non-

responders.

• Undernutrition does not have a significant impact on the vaccine performance.

• Biomarkers of environmental enteropathy were associated with lower 

rotavirus vaccine immunogenicity.

• There was no impact of HIV-exposure on the performance of RV1 in African 

countries.
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Figure 1. Rotavirus vaccines IgA seroconversion by season of their first dose (a) and rotavirus 
vaccine effectiveness in the first year of life by season of birth (b).
Abbreviations: SC: seroconversion, RV1: Rotarix, RV5: Rotateq * statistically significant at 

p < 0.1; 1[56,57,74]; 2[75-78]; 3against RVGE; € World Bank list of economies (December 

2016) low-income (L); lower middle-income (LM); upper middle-income (UM); high-

income (H).
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Figure 2. Rotateq efficacy by age at first dose.
Abbreviations: SC: seroconversion, RV5: Rotateq; †Statistically significant (p < 0.05); 

*Statistically significant at p < 0.1; 1against RVGE; 2[49].
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Figure 3. Rotarix IgA seroconversion by number of doses and schedules1.
Abbreviations: SC: seroconversion, RV1: Rotarix; †Statistically significant (p < 0.05); 
1[31,32,90-93]; € World Bank list of economies (December 2016) low-income (L); lower 

middle-income (LM); upper middle-income (UM); high-income (H).
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Figure 4. Rotavirus vaccine IgA seroconversion with and without OPV concurrently.
Abbreviations: SC: seroconversion, RV1: Rotarix, RV5: Rotateq † Statistically significant 

(p < 0.05); 1[75,106-113]; 22 doses at 6 and 10 weeks of age; 32 doses at 10 and 14 

weeks of age; € World Bank list of economies (December 2016) low-income (L); lower 

middle-income (LM); upper middle-income (UM); high-income (H).
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