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Abstract

Efficient biomarker-driven randomized clinical trials are a key tool for implementing precision oncology. A commonly used
biomarker phase III design is focused on testing the treatment effect in biomarker-positive and overall study populations.
This approach may result in recommending new treatments to biomarker-negative patients when these treatments have no
benefit for these patients.

Advancing treatment in the era of precision medicine requires
randomized clinical trial (RCT) designs that can identify bio-
markers that can select patients for whom new therapies have
favorable risk-to-benefit ratios. These biomarker RCT designs
range from enrichment trials, which restrict eligibility to the
biomarker-positive patient subgroup, to biomarker-stratified
trials, which are designed to perform formal evaluation of the
treatment effect in the biomarker-positive and biomarker-
negative subgroups separately. The choice of design should
generally ensure a rigorous validation of a biomarker’s clinical
utility, that is, the biomarker’s ability to accurately distinguish
patients who benefit from the experimental treatment vs
patients who do not benefit (1). Unfortunately, one commonly
used biomarker design is flawed in that respect: the bio-
marker-positive/overall design is based on formal evaluation of
the treatment effect in the biomarker-positive subgroup as
well as in the overall population (combining biomarker-
positive and biomarker-negative subgroups). The noted prob-
lem with biomarker-positive/overall design is that a treatment
effect present only in a biomarker-positive subgroup can lead
to an observed positive treatment effect in the overall popula-
tion (2–4). This is due to the fact that when the treatment effect
in biomarker-positive subgroup is sufficiently large and/or the
biomarker-positive population is sufficiently prevalent, esti-
mates of the treatment effect in the overall population are
driven by the biomarker-positive treatment effect. The design
could then erroneously recommend the new therapy for the
biomarker-negative subgroup when it is not beneficial or is
even harmful for these patients. For example, this design was
used to compare letrozole plus lapatinib vs letrozole plus pla-
cebo in breast cancer in the HER2-positive and overall

population (5). The trial reported statistically significant results
in the HER2-positive and overall populations, thus allowing
formal recommendation of the therapy to the HER2-negative
population. However, because there was no clinically meaning-
ful benefit observed in the HER2-negative population, the
investigators overruled their prespecified statistical trial design
and rightfully concluded that the benefit was limited to HER2-
positive patients.

Many biomarkers are measured on an ordinal or continuous
scale, with the magnitude of the treatment benefit expected to
increase with higher biomarker values. For practical applica-
tions where the biomarker is used to guide patient treatment,
one needs to define and validate biomarker cutoffs that corre-
spond to distinct treatment decisions. For these biomarkers, the
biomarker-positive/overall designs typically evaluate several
nested biomarker subgroups defined by increasing values of
biomarker cutoffs. For example, for a checkpoint inhibitor, pro-
grammed death-ligand 1 (PD-L1) combined positive score
(CPS)�10 and CPS�1 subgroups as well as the overall population
could be tested; often these analyses are done sequentially
starting with the highest biomarker subgroup. That is, first the
treatment effect is evaluated in the CPS�10 subgroup. If this is
statistically significant (at level a), then the treatment effect is
evaluated in the CPS�1 subgroup; and if this is statistically sig-
nificant (at level a), then the treatment effect is evaluated in the
overall population (at a statistical significance level a).

For a graphical illustration of the potential problem with bio-
marker-positive/overall designs, consider the KEYNOTE-119
trial (6) of pembrolizumab vs chemotherapy in metastatic
triple-negative breast cancer, which was designed to sequen-
tially test CPS�10, CPS�1, and the overall populations, with
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exploratory analysis performed for CPS�20. Overall survival
outcomes from KEYNOTE-119 are summarized in Table 1.
Although the formal trial results were negative , the following
thought experiment can be useful to demonstrate the problem
with the biomarker-positive/overall trial design. Suppose that
the true benefit of pembrolizumab was limited to the CPS�20
subgroup (and was equal to the benefit observed in KEYNOTE-
119 in that subgroup). That is, the hazard ratio (HR) is 0.58 for
patients with CPS�20 and 1 (no benefit) for patients with
CPS<20 (Figure 1). Then using the observed proportions of
deaths in each of the subgroups in the trial, we can approxi-
mately estimate what the hazard ratios would be in each sub-
group (see Figure 1 legend for details). We estimate that the
hazard ratios would have been 0.74, 0.87, and 0.91 for the
CPS�10, CPS�1, and overall populations, respectively, consis-
tent with the hazard ratios observed in KEYNOTE-119: 0.78, 0.86,
and 0.97. The formal results of the KEYNOTE-119 did not reach
statistical significance because the P values for the CPS�10 and
CPS�1 subgroups were not sufficiently small (0.057 and 0.073,
respectively). However, one can imagine that with a slightly
larger sample size, the trial would have concluded that pembro-
lizumab was beneficial for patients with CPS�1, even though
the results could be explained by a model where pembrolizu-
mab had no benefit in the 20>CPS� 1 subgroup.

Potentially misleading conclusions drawn from a biomarker-
positive/overall design are not only a theoretical concern. For
example, the investigators of the IMpassion130 trial concluded
“Atezolizumab plus nab-paclitaxel prolonged progression-free
survival among patients with metastatic triple-negative breast
cancer in both the intention-to-treat population and the PD-L1–
positive subgroup,” even though the hazard ratio for the PD-L1–
negative subgroup was 0.95 (95% confidence interval [CI] ¼ 0.79
to 1.15) (7). Another example is given by the report (8) of
IMpower110 assessing atezolizumab in non-small-cell lung can-
cer (NSCLC), which initially did not report the hazard ratios for
the low or intermediate PD-L1 expression subgroups, but only
for these subgroups combined with the high PD-L1 subgroup
where the treatment was very effective (9). A third example is
given by KEYNOTE-042 (10), which assessed pembrolizumab vs
chemotherapy in metastatic NSCLC, where the potential pem-
brolizumab benefits were seen in the sequentially tested PD-L1
tumor proportion score (TPS)� 50%, TPS�20%, and TPS�1% pop-
ulations. The conclusion that pembrolizumab should be recom-
mended for all patients with TPS�1% was questioned (11)
because the hazard ratio was 0.92 (95% CI ¼ 0.77 to 1.11) for the
TPS 1%–49% subgroup. These trials are not isolated examples:
the biomarker (PD-L1)–positive/overall design has been used 20
times in trials published within the last 5 years evaluating pem-
brolizumab (KEYNOTE-series) and atezolizumab (IM-series).

If the biomarker-positive/overall design is not to be used,
what should be done instead? At a minimum, the treatment ef-
fect must be assessed in the biomarker-negative subgroup, even

if not a properly powered part of the formal statistical design.
However, this informal approach can lead to an unfortunate
disconnect between the formal statistical conclusion (“the new
treatment works for all”) and the informal assessment (“the
new treatment works only in the biomarker-positive subgroup”)
as illustrated by the lapatinib example above. Another example
is given by conflicting regulatory decisions in NSCLC following
KEYNOTE-042, with the US Food and Drug Administration
expanding the first-line pembrolizumab indication to patients
with TSP in the 1%-49% range while the European Medicines
Agency declined to do so (12).

Definitive biomarker RCTs should be formally designed to
provide adequate assessment of the treatment effect in each
relevant biomarker subgroup. In practice, what constitutes ade-
quate assessment and the corresponding design would depend
on the overall incidence of the specific cancer type and the
prevalence of the relevant biomarker subgroups. With the ex-
ception of rare disease settings, a biomarker-stratified trial
designed for independent assessment of the treatment effect in
each biomarker subgroup should be used. Unlike the bio-
marker-positive/overall design, the biomarker-stratified

Table 1. Outcomes observed in KEYNOTE-119 trial (6)a

PD-L1 CPS subgroup Sample size No. of deaths Overall survival HR (95% CI)

CPS� 20 109 88 0.58 (0.38 to 0.88)
CPS� 10 194 161 0.78 (0.57 to 1.06)
CPS� 1 405 354 0.86 (0.69 to 1.06)
CPS< 1 217 185 1.27 (0.95 to 1.70)
Overall 622 539 0.97 (0.82 to 1.15)

aCI ¼ confidence interval; PD-L1¼ programed death-ligand 1; CPS ¼ PD-L1 combined positive score; HR ¼ hazard ratio.

Figure 1. Estimated hazard ratios (HR) for three PD-L1 subgroups and the overall

population under the model that the new over standard treatment hazard ratio

is 0.58 for the PD-L1 combined positive score (CPS)�20 subpopulation (blue in

the bars) and the hazard ratio is 1.00 (no effect) in the CPS<20 subpopulation

(yellow in the bars). The number of patients and number of deaths in each CPS

subgroup as well as the value of the hazard ratio for the CPS�20 subpopulation

are taken from the KEYNOTE-119 trial (see Table 1). Hazard ratios are estimated

as weighted averages on the log scale of the individual subgroup hazard ratios

weighted by the number deaths in each subgroup. The PD-L1 CPS values on the

left-hand vertical axis are scaled to the percentiles of the PD-L1 CPS distribution.
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design ensures rigorous, adequately powered treatment as-
sessment in each relevant biomarker subgroup by specifying
separate sample sizes and analysis plans for each subgroup
(note that this may require keeping accrual and/or follow-up
open to some subgroups after other subgroups are completed).
For example, this approach should be feasible in relatively
high-incidence diseases such as breast cancer for biomarkers
with subgroup prevalences above 10%-15%. In the lapatinib ex-
ample where the HER2-positive subpopulation constituted
17.0% of the population, instead of the 1280-patient trial, a
biomarker-stratified design of approximately one-half that
size could have been used (Table 2). The design would enroll
218 patients in the HER2-postive subgroup targeting a hazard
ratio of 0.645 (same target and sample size as used in the ac-
tual trial design) and 430 patients in the HER2-negative sub-
group targeting a hazard ratio of 0.7. This would have allowed
a much more efficient elucidation of the role of lapatinib and
the HER2 biomarker. Note that the proposed design targets a
hazard ratio of 0.7 in the HER2-negative population (instead of
HR¼ 0.769 targeted for overall population in the actual design)
because a hazard ratio of 0.7 represents a more meaningful

clinical benefit in this population with a median progression
free survival (PFS) of approximately 4 months; targeting a haz-
ard ratio of 0.769 in the HER2-negative subgroup would have
required 800 HER2-negative patients but could arguably lead to
a statistically significant result that is not clinically meaning-
ful, a different important clinical trial issue.

In the KEYNOTE-119 setting where the potential role of the
CPS score had been known before trial initiation (13), a
biomarker-stratified trial designed to provide separate evalua-
tions in the CPS�20, 20>CPS� 1, and CPS<1 subgroups could
have been used. For example, a trial that randomly assigns 194,
420, and 360 patients in the CPS�20, 20>CPS� 1, and CPS<1
subgroups, respectively, would have been feasible (Table 3).
This 974-patient biomarker-stratified design, although larger
than the KEYNOTE-119 622-patient biomarker-positive/overall
design, would have provided rigorous validation of the clinical
utility for the CPS-score–guided treatment in this setting.

For practical reasons, in rare disease settings and/or for bio-
markers with low prevalence, some compromises in evidentiary
standards are necessary to have RCT designs that minimize the
probability of incorrectly recommending a new treatment for a

Table 2. Actual and alternative biomarker-stratified trial design of lapatinib trial (5)

Patient population

Actual designa Biomarker-stratified designb

Actual
sample

size

Target HR
(power,

%)
Formally

tested
Target sample

size

Target HR
(power,

%)
Formally

tested

Biomarker-positive:
HER2-positive

218 0.645 (80) Yes 218 0.645 (80) Yes

Biomarker-negative:
HER2-negative

— — No 430 0.700 (90) Yes

Overall 1280 0.769 (90) Yes 648 — No

aSequential biomarker-positive/overall design; sequential testing (a¼ 0.025): first test the biomarker-positive subgroup at the statistical significance threshold level a

(with the treatment declared ineffective if the test is not statistically significant). If the biomarker-positive subgroup test is statistically significant then test the overall

population at the same statistical significance level a; the treatment is recommended for both biomarker-positive and biomarker-negative subgroups if the overall test

is statistically significant and only for the biomarker-positive subgroup otherwise. (This procedure controls the overall type I error of the design at level a). CPS¼PD-L1

combined positive score; HR ¼ hazard ratio.
bSequential biomarker-stratified design; sequential testing (a¼0.025): first test the biomarker-positive subgroup at the statistical significance threshold level a (with

the treatment declared ineffective if the test is not statistically significant). If the biomarker-positive subgroup test is statistically significant, then test the biomarker-

negative subgroup at the same statistical significance level a; the treatment is recommended for both biomarker-positive and biomarker-negative subgroups if the bio-

marker-negative test is statistically significant and only for the biomarker-positive subgroup otherwise. (This procedure controls the overall type I error of the design

at level a).

Table 3. Actual and alternative biomarker-stratified trial design of KEYNOTE-119 (6)

Patient population

Actual designa Biomarker-stratified designb

Actual sample size
Target HR
(power, %) Formally tested Target sample size

Target HR
(power, %) Formally tested

CPS� 10 194 0.6 (85) Yes — — No
CPS� 1 405 0.7 (90) Yes — — No
CPS� 20 — — No 194 0.6 (85) Yes
20 > CPS� 1 — — No 420 0.7 (90) Yes
CPS< 1 — — No 360 0.7 (85) Yes
Overall 622 0.78 (80) Yes 974 — No

aSequential biomarker-positive/overall design: initial a allocation 0.017 and 0.008 to CPS�10 and CPS�1 subgroups, respectively, with sequential testing of the overall

population if the CPS�1 subgroup is statistically significant. (This procedure controls the overall type I error of the design at level a). CPS ¼ PD-L1 combined positive

score; HR ¼ hazard ratio.
bSequential biomarker-stratified design; fully sequential testing with a¼0.025: first test CPS�20 subgroup; if statistically significant, then test the 20>CPS�1 subgroup,

and if statistically significant, then test the CPS<1 subgroup. (This procedure controls the overall type I error of the design at level a).
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biomarker-negative subgroup (3). This can be achieved by using
a relaxed statistical significance threshold, for example, with a
1-sided statistical significance level a of 0.05, 0.10, or even 0.15
(instead of the typical a¼ 0.025), allowing reduction of the re-
quired subgroup sample size by 18%, 37%, and 49%, respectively.
Furthermore, for settings where the lowest prevalence sub-
group(s) is the subgroup(s) with the highest expected benefit (ie,
a biomarker-positive subgroup), the required sample size can be
reduced by targeting higher treatment effects: for example, tar-
geting a hazard ratio equal to 0.6 (0.5) instead of 0.7 would re-
duce the required sample size by 50% (74%). In some
circumstances, model-based approaches (14) could further as-
sist in elucidating the biomarker and treatment–effect associa-
tion with reasonable sample sizes.

To sustain precision medicine in oncology, properly powered
biomarker-stratified trials designed to assess treatment effects
across relevant biomarker subgroups should be used. This would
enable validation of the biomarker’s clinical utility and minimize
the probability of incorrectly recommending ineffective treatments
to patients for whom these treatments are not beneficial.
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