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Abstract

The inositol 1,4,5-trisphosphate receptor (InsP3R) is up-regulated in patients with atrial fibrillation 

(AF) and InsP3-induced Ca2+ release (IICR) is linked to pro-arrhythmic spontaneous Ca2+ release 

events. Nevertheless, knowledge of the physiological relevance and regulation of InsP3Rs in 

atrial muscle is still limited. We hypothesize that InsP3R and NADPH oxidase 2 (NOX2) form 

a functional signaling domain where NOX2 derived reactive oxygen species (ROS) regulate 

InsP3R agonist affinity and thereby Ca2+ release. To quantitate the contribution of IICR to atrial 

excitation-contraction coupling (ECC) atrial myocytes (AMs) were isolated from wild type and 

NOX2 deficient (Nox2−/−) mice and changes in the cytoplasmic Ca2+ concentration ([Ca2+]i; 

fluo-4/AM, indo-1) or ROS (2’,7’-dichlorofluorescein, DCF) were monitored by fluorescence 

microscopy. Superfusion of AMs with angiotensin II (AngII: 1 μmol/L) significantly increased 

diastolic [Ca2+]i (F/F0, Ctrl: 1.00±0.01, AngII: 1.20±0.03; n=7; p<0.05), the field stimulation 

induced Ca2+ transient (CaT) amplitude (ΔF/F0, Ctrl: 2.00±0.17, AngII: 2.39±0.22, n=7; p<0.05), 

and let to the occurrence of spontaneous increases in [Ca2+]i. These changes in [Ca2+]i 

were suppressed by the InsP3R blocker 2-aminoethoxydiphenyl-borate (2-APB; 1 μmol/L). 

Concomitantly, AngII induced an increase in ROS production that was sensitive to the NOX2 

specific inhibitor gp91ds-tat (1 μmol/L). In NOX2−/− AMs, AngII failed to increase diastolic 

[Ca2+]i, CaT amplitude, and the frequency of spontaneous Ca2+ increases. Furthermore, the 

enhancement of CaTs by exposure to membrane permeant InsP3 was abolished by NOX inhibition 

with apocynin (1 μM). AngII induced IICR in Nox2−/− AMs could be restored by addition of 

exogenous ROS (tert-butyl hydroperoxide, tBHP: 5 μmol/L). In saponin permeabilized AMs InsP3 

(5 μmol/L) induced Ca2+ sparks that increased in frequency in the presence of ROS (InsP3: 9.65 
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±1.44 sparks*s−1*(100 μm)−1; InsP3 + tBHP: 10.77 ± 1.5 sparks*s−1*(100 μm)−1; n=5; p<0.05). 

The combined effect of InsP3 + tBHP was entirely suppressed by 2-APB and Xestospongine C 

(XeC). Changes in IICR due to InsP3R glutathionylation induced by diamide could be reversed 

by the reducing agent dithiothreitol (DTT: 1 mmol/L) and prevented by pretreatment with 2-APB, 

supporting that the ROS-dependent post-translational modification of the InsP3R plays a role 

in the regulation of ECC. Our data demonstrate that in AMs the InsP3R is under dual control 

of agonist induced InsP3 and ROS formation and suggest that InsP3 and NOX2-derived ROS 

co-regulate atrial IICR and ECC in a defined InsP3R/NOX2 signaling domain.
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1. Introduction

Atrial fibrillation is the most common cardiac rhythm disorder. Its prevalence increases in 

conjunction with aging, obesity, diabetes, and other cardiovascular diseases (hypertension, 

diastolic dysfunction, heart failure) yet the mechanisms that promote atrial arrhythmia 

are incompletely understood. Atrial arrhythmia can be induced by the development of 

spontaneous, propagating trigger events that are generated in atrial muscle cells outside 

the sino-atrial node and/or by the development of re-entrant excitation due to a shortened 

refractory period, an attenuated conduction velocity, or obstacles in the conduction path (e.g. 

fibrosis) [1,2]. The mechanism for triggered events has been linked to the spontaneous 

release of Ca2+ from the sarcoplasmic reticulum (SR). The spontaneous rise in the 

intracellular Ca2+ concentration ([Ca2+]i) promotes the activation of the sodium-calcium 

exchanger (NCX) which extrudes Ca2+ from the cytoplasm to the extracellular space. Due 

to its electrogenicity (3 Na+ ions in exchange for 1 Ca2+), NCX activity can lead to a 

depolarization of the membrane potential and thereby can trigger action potentials (APs) 

[2]. The occurrence of spontaneous Ca2+ release events can increase due to an enhanced SR 

Ca2+ load, or an increased open probability of the ryanodine receptor (RyR) or the inositol 

1,4,5-trisphosphate (InsP3) receptor (InsP3R), the two Ca2+ release channels in the SR. RyRs 

are the predominant Ca2+ release channels in atrial myocytes responsible for Ca2+ release 

during atrial excitation-contraction coupling (ECC). Ca2+ release from RyRs is triggered by 

Ca2+ induced Ca2+ release (CICR) through voltage dependent Ca2+ influx through L-type 

Ca2+ channels (LTCCs) [3,4].

In atrial tissue InsP3Rs, the second SR Ca2+ release channel of which the type 2 isoform 

is most prominently expressed, are out-numbered by RyRs [5]. Opening of the channel 

requires the second messenger InsP3 which together with diacyl-glycerol (DAG), is the 

product of the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase 

C (PLC) in response to an agonist dependent activation of inhibitory G-proteins (e.g. Gαq) 

[6,7]. Due to its dependence on InsP3 and low expression level, InsP3Rs are not believed 

to contribute directly to the elevation of [Ca2+]i in a substantial way during atrial ECC. 

Nevertheless, InsP3 induced Ca2+ release (IICR) [8] was shown to result in an increase 
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in diastolic [Ca2+]i, Ca2+ transient (CaT) amplitude [9–11], nuclear [Ca2+]i [12,13], and 

transcription factor activation [14,15]. Most importantly, IICR has been linked to an increase 

in spontaneous Ca2+ release events [11,16,17] including spontaneous APs in isolated atrial, 

ventricular, and stem cell derived myocytes [9–11]. Due to the low density of InsP3Rs, 

IICR is believed to induce these events by sensitizing RyR channels to Ca2+ and thereby 

facilitating RyR mediated Ca2+ release events [11,18].

InsP3Rs were shown to be upregulated in atrial tissue of patients and animal models with 

AF [5,19], where agonists that activate signal transduction pathways linked to an increase 

in InsP3 production are found at higher levels [20]. Enhanced IICR therefore represents 

a potential target to attenuate triggered activity in the atrial muscle. Besides its activation 

through agonist induced second messenger production, little is known about the regulation 

of InsP3Rs through post-translational protein modifications and its relevance for IICR in 

atrial tissue under physiological and pathophysiological conditions. A regulation of InsP3Rs 

has been demonstrated through Ca2+ as well as the Ca2+-regulated proteins calmodulin 

(CaM) and CaM kinase II (CaMKII) [21–23]. Both exhibit a negative effect on the open 

probability of the InsP3R channel [22,23]. A reactive oxygen species (ROS) dependent 

regulation of InsP3R has been described in endothelial cells, platelets, and COS cells [24–

26] and was linked to an increase in InsP3Rs affinity to InsP3 [27,28] through receptor 

glutathionylation [27,29,30], however such regulation has not been described for cardiac 

muscle.

In atrial myocytes, activators of IICR are agonists of the Gαq coupled receptors like 

Angiotensin II (AngII) and Endothelin-1 (ET-1), both of which increase the CaT amplitude 

and the propensity of arrhythmic Ca2+ release events [16]. Interestingly, both agonists also 

activate NADPH oxidase 2 (NOX2) and thereby promote an increase in the production 

of ROS [31,32]. ROS in itself are potent regulators of Ca2+ handling proteins and a 

ROS dependent increase in LTCC and RyR open probability as well as attenuation of 

SERCA activity have been described [32,33]. However, it remains unknown whether NOX2 

dependent ROS production affects InsP3Rs in atrial myocytes and if there is an interplay 

between the agonist induced ROS production and IICR that affects ECC and Ca2+ release 

regulation. In this study we tested the hypothesis that NOX2 and InsP3Rs form a functional 

signaling domain where NOX2 derived ROS regulates InsP3R through post-translational 

modification and thereby represents a secondary control mechanism for IICR.

2. Materials and Methods

2.1 Cell isolation

Atrial myocytes (AMs) were isolated from 3 to 6 month old male WT (C57/BL6) and 

NOX2 deficient mice (gp91phox deficient: NOX2−/−; The Jackson Laboratory, Bar Harbor, 

ME USA [34]). The isolation was performed as previously described [31,35]. Isolated cells 

were plated on laminin (1 mg/ml, Sigma Aldrich) coated glass coverslips in standard tyrode 

solution (in mmol/L: NaCl 130, KCl 5.4, CaCl2 1, MgCl2 1.5, Glucose 10, HEPES 5; 

pH 7.4). Animal procedures were performed with the approval of the IACUC of Rush 

University and in accordance with the National Institute of Healths’ Guide for the Care and 

Use of Laboratory Animals.
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2.2 Fluorescent imaging of [Ca2+]i and ROS production

To visualize changes of [Ca2+]i, AMs were incubated (15 min) at room temperature 

with fluo-4 acetoxymethyl ester (fluo-4/AM: 10 µmol/L; excitation/emission 494/506 

nm). For ROS measurements cells were loaded with 5-(6)-chloromethyl-2′,7′-
dichlorodihydrofluorescein diacetate (DCF: 10 μmol/L for 30 min at 37°C; excitation/

emission 494/506 nm). Changes in [ROS] are presented as F/F0 where F0 represents 

the DCF signal measured at the beginning of an experiments before agonist stimulation. 

Confocal [Ca2+]i and epifluorescent ROS measurements were performed and analyzed 

as previously described [31,35]. Ca2+ transients are presented as background-subtracted 

fluorescence normalized to the diastolic fluorescence (F0) at the beginning of the recording. 

CaT amplitudes were quantified as ΔF/F0, where ΔF=F-F0. AMs were field stimulated at 0.5 

Hz for the duration of the experiments. Experiments were performed at room temperature 

(~22 °C). To compare Ca transient and Caffeine transient amplitudes, AMs were loaded (20 

min) with the membrane permeable form of the ratiometric dye indo-1/AM (5 μM). After 

twenty minutes were allowed for de-esterification, field stimulated cells were excited at 360 

nm and emission was collected at 410 nm (F410) and 485 nm (F485) using photomultiplier 

tubes. Fluorescence signals were background subtracted and [Ca2+]i changes expressed as 

changes in the fluorescent ratio R = F410/F485 [36].

2.3 Permeabilized cells and spark analysis

For membrane permeabilization freshly isolated AMs were exposed to saponin (0.005 %, 

30 s) after which the cells were washed and maintained in an internal solution composed 

of (mmol/L): K aspartate 100, KCl 15, KH2PO4 5, MgATP 5, EGTA 0.35, CaCl2 0.12, 

MgCl2 0.75, phosphocreatine 10, HEPES 10, fluo-4 pentapotassium salt 0.03, creatine 

phosphokinase 5 U/ml, dextran (MW: 40,000) 8 %. The pH was adjusted to 7.2 (KOH) 

[37]. Experiments were performed at room temperature and free [Ca2+]i and [Mg2+]i were 

calculated to be 150 nmol/L and 1 mmol/L, respectively (Maxchelator, Stanford Univ. 

Standford, CA USA) [38]. Ca2+ spark events were detected and analyzed using SparkMaster 

at a threshold of 3.8 times the standard deviation of the background noise [39].

2.4 Quantitative polymerase chain reaction (qPCR)

Total RNA was extracted from mouse atrial tissue using Trizol (Thermo Fisher 

Scientific)/chloroform and a Beadbug homogenizer. Extracted RNA was dissolved in 

diethylpyrocarbonate-treated water, stored at −80 °C and used as a template for cDNA 

synthesis within 24 h. Total RNA (1 μg) was used for cDNA synthesis with the iScript 

gDNA Clear, cDNA Synthesis Kit (Bio-Rad). The qPCR was performed using a Bio-

Rad CFX96 qPCR Instrument. Primers were designed and tested for efficiency prior to 

quantitation experiments. PCR reactions consisted of first-strand cDNA template, forward 

and reverse primers (100 nmol/L final concentration) and iQ SYBR Green Supermix (BIO-

RAD) in a total volume of 10 μl. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

hypoxanthine guanine phosphoribosyl transferase 1 (HPRT-1), and Peptidylprolyl Isomerase 

A (PPIA) transcript levels were used as housekeeping genes [31]. For every mRNA 

quantitation triplicates were obtained as well as a technical repeat. Standard control PCR 

reactions were carried out to test for contamination. Data analysis was performed using 
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the relative expression software tool (REST 2009, Quiagen) for group-wise comparison 

and statistical analysis of relative expression levels. Primer sequences for InsP3R2 (Itpr2) 

are: forward: TGAGTCGGAGAACAGGAAAC; reverse: CTTGTTCACCGTCAGGTACT. 

Primers for GAPDH, PPIA, HPRT-1 have been previously published [31].

2.5 Chemicals

Saponin, 2-aminoethoxydiphenyl borate (2-APB), Xestospongine C (XeC), tert-butyl 

hydroperoxide (tBHP), AngII, apocynin (Apo) and dithiothreitol (DTT) were purchased 

from Sigma Aldrich. Fluo-4/AM, DCF and Indo-1/AM were purchased from Thermo Fisher 

Scientific (Waltham MA, USA) and diamide was purchased from Tokyo Chemical Industry 

Co., Tokyo, Japan. gp91ds-tat was purchased form Anaspec Inc, Fremont CA, USA.

2.6 Statistics

All summary data are presented as data cloud plots together with the mean plus standard 

error of the mean (SEM). The number of experiments (n) refers to the number of cells 

examined. For each experimental group, cells from at least 2 different cell isolations/animals 

were used. Significance was evaluated by paired and unpaired t-test or with one-way 

ANOVA with Dunnette’s or Tuckey’s multiple comparison test. The tests used are stated 

in the figure legend.

3. Results

3.1 AngII induced increase in Ca2+ transient amplitude and ROS production

Angiotensin II type 1 receptor (AT 1R) couples to Gαq which activates PLC and generates 

InsP3 and DAG through hydrolysis of PIP2 [40]. Through an alternative pathway AngII also 

stimulates NOX2 [31]. To determine the effect of AngII on [Ca2+]i, cellular ROS production, 

and the interdependence of these two signaling pathways, isolated single AMs were loaded 

with fluo-4 AM or DCF, respectively. Superfusion of atrial myocytes with AngII (1 μmol/L, 

Fig. 1A) induced a time dependent increase of diastolic [Ca2+]i and CaT amplitude, and an 

increase of the frequency of spontaneous rises of [Ca2+]i during the declining phase of the 

CaT (Fig. 1C–E). Treatment of the cells with the InsP3R blocker 2-APB (1 μmol/L) during 

(Fig. 1A) or prior to AngII superfusion (Fig. 1) reversed (A) or prevented (B) the increase 

in diastolic [Ca2+]i, CaT amplitude, and frequency of spontaneous [Ca2+]i release events 

(Fig. 1C–E). In DCF loaded AMs, AngII superfusion increased the production of ROS, 

reflected in the increase of the slope of the increase of DCF fluorescence (Fig. 2A, 2B). This 

AngII induced ROS production was prevented by the NOX2 specific inhibitor gp91ds-tat 

(1 μmol/L; Fig. 2A, 2C). The results support that AngII induces an increase in [Ca2+]i by 

stimulating IICR concomitant with increased ROS production through activation of NOX2.

3.2 Interdependence of AngII induced ROS production and changes in [Ca2+]i

The ROS dependent modulation of cardiac ECC is well established [33] and increased 

[Ca2+]i can promote GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) and 

subsequently lead to NOX2 activation [41]. To determine if the AngII induced increase in 

[Ca2+]i is a modulator or prerequisite for NOX2 dependent ROS production, we suppressed 

IICR in atrial myocytes by 2-APB (1 μmol/L) before AngII stimulation (Fig. 2A, 2C). 
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AngII induced ROS production was sustained in the presence of 2-APB suggesting that 

IICR is not a requirement. To determine if the AngII induced ROS production affects or 

amplifies AngII induced changes in [Ca2+]i, we used AMs isolated from NOX2 deficient 

(NOX2−/−) mice, that lack AngII-dependent ROS production [31]. In NOX2−/− AMs AngII 

(over 15 min) failed to induce an increase in diastolic [Ca2+]i and CaT amplitude, and 

to trigger spontaneous Ca2+ release events (Figs. 3A, 4E). In NOX2−/− AMs, the AngII 

induced changes in ECC could be recovered when AMs were superfused with low levels 

of the organic ROS compound tert-butyl hydroperoxide (tBHP: 5 μmol/L, 10 min) after 

(Fig. 3A) or prior (Fig. 3B) to AngII stimulation. Pretreatment of AMs with tBHP alone 

(10 min) did not have an effect on [Ca2+]i (Fig. 3D). The messenger RNA level for 

InsP3R2 (ITPR2) in NOX2−/− atrial tissue was comparable to that in WT atria (Fig. 

4D) suggesting similar receptor expression levels. Superfusion of NOX2−/− AMs with the 

membrane permeable InsP3R agonist InsP3-AM (1 μmol/L) induced an increase in diastolic 

[Ca2+]i, CaT amplitude, and spontaneous Ca2+ release events (Fig. 4A–C,E), comparable to 

InsP3-AM effects on diastolic [Ca2+]i and CaT amplitude in WT AMs (Fig. 5). Interestingly, 

pre-treatment of WT cells with the NOX inhibitor apocynin (1 μM/L, 5 min) attenuated 

the InsP3-AM induced increase in [Ca2+]i (Fig. 5B–D). These experimental data support 

the conclusion that the lack of AngII induced IICR in NOX2−/− AMs was not due to an 

attenuation of InsP3R2 expression or impaired IICR machinery, rather that NOX2 dependent 

ROS formation is a prerequisite for an AngII- or InsP3 induced increase in [Ca2+]i through 

IICR.

3.3 Glutathionylation mimics IICR induced changes of [Ca2+]i

Previous reports demonstrated a regulation of RyRs and InsP3Rs through ROS-dependent 

glutathionylation [29]. To determine the effect of glutathionylation on atrial Ca2+ release 

and ECC we superfused AMs with the thiol-oxidizing agent diamide (100 μmol/L, 15 

min) which increases protein S-glutathionylation in a concentration-dependent manner 

[42]. Diamide induced an increase in diastolic [Ca2+]i and the frequency of spontaneous 

Ca2+ release events (Fig. 6A,C–E). The CaT amplitude initially remained constant but 

significantly decreased after 15 min of superfusion (Fig. 6D), concomitant with the increase 

of diastolic [Ca2+]i. Application of the reducing agent dithiothreitol (DTT: 1 mmol/L, 5 min) 

reversed the effect (Fig. 6A). Diamide induced glutathionylation is unspecific and can affect 

multiple protein targets. To determine if InsP3R contributes to the diamide induced changes 

in ECC, AMs were treated with 2-APB (10 min) before diamide superfusion (Fig. 6B). 

Block of InsP3R prevented the diamide induced changes in ECC (Fig. 6C–E), supporting the 

conclusion that diamide induced effects are predominantly mediated by the InsP3R.

3.4 IICR depends on basal cellular ROS production

To distinguish whether the ROS mediated regulation of IICR occurs at the level of PLC 

or InsP3R, we circumvented potential differences in InsP3 production and superfused 

permeabilized AMs directly with InsP3 (5 µmol/L) in the presence and absence of ROS 

(tBHP, 5 μmol/L; Fig. 7A). In permeabilized cells spontaneous spatially restricted Ca2+ 

release events were characterized by their frequency (Fig. 7B), amplitude, full width at 

half maximum (FWHM) and full duration at half maximum (FDHM) (Suppl. Fig 1). 

Based on their amplitude, kinetics, and sensitivity to tetracaine (not shown) these events 
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were identified as Ca2+ sparks, i.e. as elementary Ca2+ release events originating from 

RyR clusters. InsP3 superfusion induced an increase in spark frequency which was further 

enhanced by exposure to tBHP (Fig. 7AB). The InsP3- and tBHP induced increase in Ca2+ 

spark frequency was completely reversed to control levels independently by two different 

InsP3R blockers, 2-APB or Xestospongin C (XeC: 5 µmol/L). The spark amplitude and 

kinetics did not change throughout the experiment and neither tBHP nor 2-APB at the 

concentrations used, had an impact on SR Ca2+ load, as determined by caffeine application 

(Suppl. Fig.1). The experimental results are in support of a ROS dependent regulation of 

IICR at the level of the InsP3R.

4. Discussion

Previous reports, including our work, demonstrated that AngII induces a NOX2 dependent 

increase in ROS production and an increase in [Ca2+]i in atrial and ventricular myocytes 

[31,35,43]. Our new data show a novel interdependence of these two trajectories of 

AngII induced signaling. While during AngII stimulation NOX2dependent ROS production 

persists in the absence of IICR, AngII failed to elicit changes in [Ca2+]i in the absence of 

NOX2/ROS. Here we propose that NOX2, in a functional signaling domain with InsP3Rs, is 

a prerequisite for AngII induced Ca2+ mobilization and amplifies IICR by increasing InsP3R 

open probability through ROS-dependent post-translational modification.

4.1 The AngII induced signal transduction pathway

AngII induced signaling in the heart has been linked to pathophysiologial conditions such 

as fibrosis, hypertrophy, as well as atrial and ventricular arrhythmia [31,44]. In cardiac 

muscle AngII binds to AT1R, the predominantly expressed receptor isoform [40,45]. 

AT1R activation leads to G protein and non-G protein-mediated signaling that results in 

the generation of second messengers such as InsP3, DAG, ROS, arachidonic acid, and 

phosphatidic acid [44]. InsP3 production depends on the activation of Gαq [45] and leads, 

as we and others have demonstrated, to an increase of [Ca2+]i (Fig. 1) [31,37]. The 

mechanism of AngII induced ROS generation is complex and can involve multiple parallel 

and complementary signaling pathways [46]. We and others have demonstrated that in atrial 

and ventricular myocytes AngII induces an increase in ROS production, diastolic [Ca2+]i and 

CaT amplitude, and facilitates spontaneous increase of [Ca2+]i (Fig. 1) [31,35,47]. However, 

different mechanisms have been proposed leading to the increase of ROS and [Ca2+]i.

4.2 Sources of ROS production

In mouse atrial myocytes we have established an AngII dependent activation of NOX2 by 

demonstrating a lack of ROS production in the presence of a NOX2 specific inhibitor (Fig. 

2), or in the absence of NOX2 (NOX2−/− mice) [35]. An amplification of the AngII induced 

ROS production has been postulated through NOX4 and mitochondria [Ho:2014ds; 48]. We 

did not further explore sources of ROS downstream of NOX2 [46], because most relevant 

for the interpretation of our data was the observation of the complete suppression of AngII 

induced ROS production with the block or loss of NOX2 activity. Thus, any potential ROS 

sources downstream of NOX2 hinge entirely on NOX2 activity.

Varma et al. Page 7

J Mol Cell Cardiol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In cells overexpressing signaling components of the PLC pathway, stimulation of PLC 

contributed to the activation of NOX2 through a DAG-dependent increase in PKC 

activity [49]. We did not determine if PLC inhibition affects ROS production but tested 

experimentally ROS production in response to stimulation with the DAG analog 1-oleoyl-2-

acetyl-sn-glycerol (OAG) (Suppl. Fig. 3). In line with the previous findings OAG increased 

cellular ROS production. However, the induced ROS production by itself did not affect 

[Ca2+]i, further supporting the notion that both ROS and InsP3 are required to induce 

changes of [Ca2+]i by AngII.

4.3 Effect of ROS on [Ca2+]i

AngII induced changes of [Ca2+]i have been proposed as a consequence of changes in 

Ca2+ influx as well as SR Ca2+ load and Ca2+ release [43]. As mechanisms underlying 

the increase of [Ca2+]i the activation of InsP3R, a ROS dependent increase in TRP channel 

activity, and a ROS dependent activation of the cAMP dependent protein kinase A (PKA) 

have been proposed [35,43,50]. The latter leads to an enhanced Ca2+ influx through LTCCs 

and enhanced Ca2+ release through RyRs. The ROS dependent activation of CaMKII could 

further amplify the AngII induced change of [Ca2+]i by activating the late Na+ current 

[47]. We reported earlier for mouse and canine atrial myocytes [31], that AngII superfusion 

increased diastolic [Ca2+]i, the CaT amplitude, SR Ca2+-load, and accelerated CaT decay. 

The sensitivity of the change of [Ca2+]i to 2-APB supports IICR as the cause of these [Ca2+]i 

changes. Interestingly, the elimination of NOX2/ROS in mouse AMs prevented also the 

AngII induced changes of [Ca2+]i. This could indicate that ROS i) increases PLC-dependent 

InsP3 and DAG production, ii) enhances InsP3R agonist affinity or open probability, and/or 

iii) modifies other Ca2+ handling proteins and their regulation downstream of IICR (e.g. 

CaM, CaMKII) [47].

In cardiac tissue the PLC isoforms PLCβ and PLCγ are implicated downstream of 

AngII stimulation, and a ROS-dependent stimulation of PLCγ has been reported in rat 

cardiomyocytes [51]. We rule out a significant increase in PLC activity through NOX2/ROS 

given that an increase in ROS production through the DAG analog OAG (Suppl. Fig. 3), or 

stimulation of cells with tBHP alone (Fig. 3B) failed to induce changes of [Ca2+]i. Also, 

the ROS induced increase in Ca2+ spark frequency depended on the presence of InsP3 

(Fig. 7), suggesting a direct action of ROS on the InsP3R. A ROS dependent regulation of 

InsP3Rs has been demonstrated in unexcitable cells [27,30] and glutathionylation of thiol 

residues in the InsP3R type 1 and type 2 isoforms has been demonstrated [29,52]. Hu et 

al. [24] attributed the ROS dependent increase in IICR to an increase in InsP3R agonist 

affinity. In our experiments a regulation of InsP3R through glutathionylation is supported 

by the prevention of diamide induced changes of [Ca2+]i in the presence of an InsP3R 

inhibitor (Fig. 6) and the restoration of AngII induced IICR in NOX2−/− myocytes by tBHP 

superfusion (Fig. 3).

In atrial myocytes InsP3Rs are outnumbered by RyRs [17]. It is therefore believed that IICR 

rather than contributing directly to the CaT in a quantitatively significant way, sensitizes 

RyRs to Ca2+ induced Ca2+ release and thereby indirectly increases beat-to-beat changes 

in [Ca2+]i [9,11,53]. In our study we did not directly show Ca2+ release from InsP3Rs. 
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IICR in cardiomyocytes is difficult to measure directly due to the low expression level of 

InsP3Rs and the low amplitude of the elementary InsP3R Ca2+ release events, also known 

as ‘Ca2+ puffs’ [11,37]. Overall this leaves the possibility that AngII induced changes of 

[Ca2+]i while initiated by IICR, are enhanced by a ROS dependent regulation of RyRs. 

ROS has been described to increase RyR open probability directly through glutathionylation 

and indirectly through CaMKII activation and subsequent RyR phosphorylation [54]. Our 

experiments do not support a direct regulation of RyR by ROS, given that tBHP alone (Fig. 

3) did not induce changes in CaT amplitude, spontaneous Ca2+ release events, or SR Ca2+ 

load (Suppl. Fig.1, 4E) in the absence of IICR. We did not rule out an IICR- or ROS induced 

CaMKII activation and RyR phosphorylation, however a substantial CaMKII activation 

seems unlikely as it would through InsP3R phosphorylation attenuate IICR [23,55,56].

4.4 Localization of a InsP3R/NOX2/ROS signaling domain

ROS dependent post-translational modifications have been described for almost all proteins 

relevant to cardiac ECC [33]. These modifications are often induced experimentally by 

superfusion of cells with membrane permeable oxidizing agents (e.g. H2O2, tBHP or 

thimerosal) which can be expected to affect proteins throughout the cytoplasm [57]. 

However, given the fact that NOX2 and InsP3 production by PLC is restricted to the plasma 

membrane, and in atrial cells due to the lack or paucity of t-tubules further restricted to 

the cell periphery, we propose that InsP3Rs and NOX2 are organized in a circumscribed 

signaling domain where InsP3 and ROS co-regulate InsP3R activity and IICR. We might 

speculate that this putative signaling domain is located to caveolae given the fact that 

AngII dependent NOX2 signaling [58], stretch dependent NOX2 activation [59,60], as well 

as InsP3R [61] have been linked to caveolae signaling platforms that are implicated in 

numerous signaling activities [62,63].

5. Conclusion

We have demonstrated here for the first time that in atrial myocytes InsP3R is under dual 

control of InsP3 and ROS. AngII induced InsP3 production in this system is not sufficient 

to promote a significant inotropic response in the absence of NOX2 stimulation which 

can occur only through a concomitant activation of NOX2 and ROS production. This dual 

control mechanism would allow that at constant InsP3 concentrations, local changes in ROS 

and the redox environment can lead to a spatially variable activation of InsP3Rs through 

modulation of its agonist affinity. Our experimental data offer a new perspective into the 

mechanism of InsP3R regulation in atrial myocytes and the fine-tuned regulation of IICR in 

potential signaling domains.
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Highlights

• Modulation of atrial ECC by IICR enhances Ca2+ release and has positive 

inotropic effects, but also leads to pro-arrhythmic Ca2+ signaling

• In atrial myocytes IICR is under a dual control by InsP3 and ROS

• InsP3R and NOX2 form a functional signaling domain for the co-regulation of 

IICR by InsP3 and ROS
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Figure 1: AngII induced increase in [Ca2+]i depends on InsP3R.
Representative ΔF/F0 plots of AMs during superfusion with AngII (1 μmol/L, 20’) before 

(A) or after (B) exposure to the InsP3R blocker 2-APB (1 μmol/L; 10’). Time dependent 

change in diastolic [Ca2+]i (C), the CaT amplitude (D), and the frequency of spontaneous 

Ca2+ release events (arrows; E) induced by AngII in absence (●) or presence (○) of 2-APB 

where time 0 is ctrl or ctrl + 2-APB before AngII superfusion. (*: p < 0.05 ANOVA, 

multiple comparison to time 0)
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Figure 2: AngII induces NOX2 dependent ROS production independent of IICR.
Time dependent change in DCF fluorescence during superfusion of WT cells with AngII 

in the presence of 2-APB (1 μmol/L; A) or with AngII (1 μmol/L) in presence (●) and 

absence (■) of gp91ds-tat (1 μmol/L; B). (C) Data cloud plot shows the rate of fluorescence 

change (obtained over a period of 10 min) in AMs under ctrl (●) conditions and after 10 

min of AngII (▼), gp91-ds-tat (■) or 2-APB (◆) superfusion. Or after 10 min of AngII 

superfusion in the presence of gp91ds-tat (□,10 min) or 2-APB (◇, 10 min). (horizontal 

lines indicate statistical significance at p < 0.05; ANOVA, multiple comparison).
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Figure 3: In NOX2−/− AMs the AngII induced increase in [Ca2+]i requires ROS.
Representative ΔF/F0 plots obtained in AMs isolated from NOX2−/− mice after 15 min of 

superfusion with (A) AngII (1 μmol/L) and subsequent 10 min of tBHP (5 μmol/L) or 

(B) 10 min of tBHP and subsequent 15 min of AngII. Data cloud plots show the percent 

change in diastolic [Ca2+]i and CaT amplitude for (C) AngII + tBHP or (D) tBHP + AngII 

treated cells. (horizontal lines indicate statistical significance at p < 0.05; ANOVA, multiple 

comparison).
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Figure 4: InsP3R induced Ca2+ release is functional in NOX2−/− AMs.
Representative ΔF/F0 plots obtained in AMs isolated from NOX2−/− mice after 10 min of 

superfusion with (A) InsP3AM (1 μmol/L). Data cloud plots show the percent change in 

diastolic [Ca2+]i (B) and CaT amplitude (C) after 10 min InsP3AM. (D) Atrial mRNA levels 

presented as the difference between the threshold cycles of ITPR2, and the average of the 

housekeeping genes for WT and NOX2−/− mice. (E) Frequency of spontaneous Ca2+ release 

events during control conditions (●) treatment with AngII (□), InsP3AM (▽) or tBHP 

(◆); or during treatment with AngII in presence (◇) or after pretreatment with tBHP (■) 

(horizontal lines indicate statistical significance at p < 0.05; paired t-test (B,C); ANOVA, 

multiple comparison to ctrl (E)).
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Figure 5: In AMs IICR is facilitated by basal ROS production.
Representative ΔF/F0 plots obtained AMs isolated from control mice after InsP3AM 

superfusion (15 min; 1 μmol/L) in absence (A) and presence of the NOX inhibitor apocynin 

(1 μmol/L, B). Data cloud plots show the percent change in diastolic [Ca2+]i (C) and 

CaT amplitude (D). (horizontal lines indicate statistical significance at p < 0.05; ANOVA, 

multiple comparison).
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Figure 6: Diamide induced changes in atrial [Ca2+]i are mediated by IICR.
Representative ΔF/F0 plots obtained AMs isolated from control mice after after Diamide 

(100 μmol/L,15 min) and subsequent DTT (1 mmol/L) superfusion (A). Pretreatment with 

2-APB (10 min) prevents the Diamide induced change in [Ca]i (B). Data cloud plots 

show the percent change in diastolic [Ca2+]i (C), CaT amplitude (D), and spontaneous 

Ca2+ release events. (horizontal lines indicate statistical significance at p < 0.05, ANOVA, 

multiple comparison).
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Figure 7: InsP3 induced spark frequency is enhanced by ROS.
Representative line scan images under control conditions and the conditions indicated above 

the images (A). Data cloud plots show the spark frequency (B) induced by InsP3 (5 µmol/L), 

ROS (tBHP: 5 μmol/L), and InsP3R inhibitors 2-APB (5 μmol/L) and Xestospongin C (XeC: 

5 μmol/L); number of experiments is listed in brackets. horizontal lines indicate statistical 

significance at p < 0.05; ANOVA, multiple comparison).
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