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Abstract

The combination of diverse data types and analysis tasks in genomics has resulted in the 

development of a wide range of visualization techniques and tools. However, most existing 

tools are tailored to a specific problem or data type and offer limited customization, making it 

challenging to optimize visualizations for new analysis tasks or datasets. To address this challenge, 

we designed Gosling—a grammar for interactive and scalable genomics data visualization. 

Gosling balances expressiveness for comprehensive multi-scale genomics data visualizations 

with accessibility for domain scientists. Our accompanying JavaScript toolkit called Gosling.js 

provides scalable and interactive rendering. Gosling.js is built on top of an existing platform 

for web-based genomics data visualization to further simplify the visualization of common 

genomics data formats. We demonstrate the expressiveness of the grammar through a variety of 

real-world examples. Furthermore, we show how Gosling supports the design of novel genomics 

visualizations. An online editor and examples of Gosling.js, its source code, and documentation 

are available at https://gosling.js.org.
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1 INTRODUCTION

Established and emerging technologies for genomic analysis enable the study of evolution, 

population diversity, and human health [26]. The broad spectrum of data types generated 

by these technologies has led to new insights into the impact of genomic mutations [24], 

the spatial organization of genomes [45], epigenomic modifications, and other aspects 

of molecular function [49] and organization. A principal challenge in interpreting these 

data is that patterns can arise at multiple levels of scale (multi-scale), across many 

different locations on the genome (multi-focus), and between several datasets (multi-modal). 
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Moreover, the integration of multiple data types is a requirement for interpretation. 

Combined with the diverse audiences involved in the analysis and interpretation of genomics 

data, like experimental researchers and computational biologists, a critical need for a 

wide range of visualization tools and techniques arises. Previous studies have contributed 

hundreds of visualization tools to address the varied needs in genomics data visualization, 

as surveyed by Nusrat et al. [53]. However, most existing tools are tailored to a specific 

set of problems and offer limited flexibility to adjust the tools as questions change and 

new data becomes available. This makes it challenging to optimize visualizations for new 

analysis tasks and datasets, and having to switch between multiple tools further complicates 

the already complex analysis process. The need to support new data and additional 

analysis tasks arises as the field overall evolves but may also occur within the scope of 

individual projects, due to the exploratory nature of scientific discovery. Several tools have 

been proposed to support a broader set of genomics analyses, but they provide limited 

customizability. The most widely used visualization tools for genomic data are genome 

browsers [10,28,32,34,67,73,75,79,89], which usually support a range of visual encodings 

for common genomic data types and allow users to switch between them easily. However, 

because genome browsers are template-based [84], i.e., they provide a list of predefined 

visualization types only, their capability to customize visualizations is limited [50]. Some 

browsers support user extensions or can be embedded into other applications [34], but those 

require considerable coding efforts (e.g., Epilogos [51] based on HiGlass [34]).

In data visualization, several grammar-based approaches have been proposed to overcome 

the limitations of template-based approaches and increase the expressiveness of visualization 

tools (i.e., to support creation of more diverse visualizations). For example, inspired by 

Wilkinson’s Grammar of Graphics [83], ggplot2 [82] and Vega-Lite [70] use primitive 

building blocks, such as visual marks and scales, for creating a wide range of general-

purpose visualizations. In the genomics field, Yin et al. [87] developed an extension 

of ggplot2 [82] called ggBio to support static genomics visualizations for R-based data 

analysis workflows. Adopting the grammar of Vega-Lite, Lavikka et al. [39] implemented 

GenomeSpy to enable the creation of WebGL-based interactive genomics visualizations. 

However, most of these tools cannot handle genomics datasets across multiple scales, are 

unable to operate on common genomic file formats, lack support for the diverse types of 

layouts found in genomic visualizations (e.g., circular and linear), or do not provide linked 

multi-view visualizations. The latter is particularly important for multi-scale genomic data 

analysis [53,54].

To design a visualization grammar for genomics data visualizations, we identified multiple 

design principles that need to be balanced. First, the ideal tool for creating genomics 

visualizations should be expressive enough to cover the wide range of different visualization 

types. For example, while a circular layout (e.g., displaying visual representations in a 

polar coordinate system) is less common in other fields, it is frequently used in genomics 

[36,52,54], for example, to show the overview of visual patterns across disconnected 

regions. Second, given the multi-scale nature of genomic data, the ideal tool should support 

multi-scale encodings for semantic zooming to ensure effective exploration across scales. 

Third, the accompanying rendering pipeline should be highly scalable to enable smooth 
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navigation across multiple datasets and foci. Forth, to enable efficient navigation, multiple 

genomic visualizations should support coordinated interactivity like zooming, panning, and 

brushing. And finally, to increase accessibility by domain users, the grammar should be 

domain specific by reflecting the domain language wherever appropriate to offer shortcuts 

to frequently used configurations like layout types and file formats.

To provide a unified approach that addresses those limitations, we designed Gosling—

short for “Grammar Of Scalable Linked Interactive Nucleotide Graphics”—a grammar 

for interactive and scalable genomics data visualization in eukaryotic and prokaryotic 

species. Gosling balances expressiveness for comprehensive multi-scale genomics data 

visualizations with accessibility for domain scientists. Our accompanying JavaScript toolkit 

called Gosling.js provides scalable and interactive rendering. Gosling.js is built on top of 

an existing platform for web-based genomics data visualization [34] to provide access to 

common genomics data formats. We demonstrate the expressiveness of the grammar through 

various usage scenarios and show how Gosling supports the design of novel genomics 

visualizations using semantic zooming [58].

2 BACKGROUND

The genome of an organism encodes the blueprints of its proteins and RNA molecules—

key molecular building blocks of life. The genome can be thought of as a long sequence 

consisting of the letters A, C, G, and T (i.e., nucleotides), which make up the genomic 

alphabet. Genomes can be anywhere between a few hundreds of thousands to many billion 

nucleotides long. As illustrated in Fig. 2, the genome sequence may be divided into several 

separate chromosomes, although many species have only a single chromosome.

Genome-Mapped Data

In order to understand how organisms work at the molecular level, biologists have developed 

hundreds of methods to measure the biochemical properties of their genomes on a genome-

wide scale. These methods can, for instance, determine the sequence of nucleotides in the 

genome [24], measure gene expression levels [38,47,49], identify chemical modifications 

of the nucleotides across the genome [4], or probe the spatial folding of DNA molecules 

[35,45] and the accessibility of folded DNA for proteins [12,23]. Large-scale data 

repositories [3,28,71] and initiatives [5,14,19] provide access to thousands of datasets 

covering hundreds of species, cell types, tissues, and experimental conditions, such as 

disease states or drug treatments.

For each species, the research community designates a so-called “reference genome” 

sequence to compare data from multiple such methods. Specific releases of such reference 

genomes are called genome assemblies—because whole-genome sequences are generally 

assembled from many shorter sequences—and identified using names such as “hg38” for 

human genomes or “mm10” for mouse genomes. The reference genome of a species 

determines the nucleotide sequence and chromosome order and can be considered a one-

dimensional coordinate system. In this 1-based genomic coordinate system, positions are 

typically specified by the chromosome name and relative chromosomal position (e.g., 
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chr10:81229116 refers to the 81,229,116-th position on chromosome 10). Ranges are 

specified as pairs of positions on a chromosome (e.g., chr10:75711216–86747015).

Genome-mapped data is data generated by experimental methods such as the ones 

mentioned above and mapped into the reference genome coordinate system. The properties 

measured by these methods can be considered genomic features [53]. As described in detail 

by Nusrat et al. [53], genomic features can either be sparse (e.g., gene annotations) or 

continuous (e.g., DNA accessibility or evolutionary sequence conservation). The attributes 

can either be nominal (e.g., genetic mutations), ordinal (e.g., chromatin subcompartments 

[63]), or continuous (e.g., gene expression). Note that we are using the term “genomic data” 

interchangeably with “genome-mapped data” in this text for the sake of simplicity.

Genome-Mapped Data Visualization

Nusrat et al. [53] introduce the visual representation of a dataset as a unit building 

block in the visualization of genome-mapped data and refer to it as a track. Due to 

the complexity of genome-mapped data and the need for contextual information, analysts 

frequently explore genomic regions of interest by looking at multiple tracks concurrently 

to identify correlations and find corroborating evidence [40]. For example, gene annotations

—the positions, structures, and names of genes—are commonly visualized together with 

other information, providing contextual information about important genomic locations to 

assist data interpretation. Therefore, to make the exploration process more efficient, multiple 

tracks are typically grouped into views and navigated synchronously. In other words, a view 

defines the genomic location for all the tracks it contains, and the tracks define the data to be 

visualized (Sect. 3.2).

Multi-scale and Multi-focus Exploration

Common challenges in the sensemaking of genome-mapped data are that patterns can 

arise at multiple scales that span many orders of magnitude [34]. For instance, at the 

highest resolution are the individual nucleotides, then come DNA binding sites (size 

in humans: 5–30 nucleotides), regulatory elements like enhancers (0.1–1K), genes (10K–

15K), topologically-associated domains (0.1M–1M), compartments (>1M), and finally 

chromosomes (>10M). Further, genomic regions that are located far apart from each other 

along the genomic coordinate system can be linked through physical [15] or functional [77] 

interactions, requiring support for viewing data at multiple foci, i.e., genomic positions, 

simultaneously. For a detailed description of genomic visual analysis tasks, we refer to 

Nusrat et al. [53].

3 RELATED WORK

Visualization authoring libraries and the interfaces they provide can be categorized by 

their level of abstraction [25,50,84]. On one end of the spectrum, users are provided with 

graphical elements (e.g., rectangles, circles, and lines) that need to be composed from the 

bottom up to construct visualizations (e.g., Processing [64] and D3 [7]). This approach is the 

most expressive way to create a wide variety of visualizations but, at the same time, makes 

the construction process time-consuming and laborious. Visualization tools on the opposite 
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end of the spectrum are often called template-based [50] (or chart typologies [69,83]) which 

provide a list of visualization types that users can select. Since many design decisions are 

predetermined and fixed in the templates by developers, template-based tools have shown 

to be less expressive but more accessible to use [50]. In the middle of this continuum are 

visualization grammars which have been adopted widely in the visualization community 

[30,57,62,70,82,87] due to their strength in balancing the expressiveness and ease-of-use.

3.1 Visualization Grammars

Wilkinson’s Grammar of Graphics (GoG) [83] introduces a conceptualization of the 

primitive building blocks for constructing visualizations, such as marks, scales, and 

channels. The GoG has broadly influenced the design of visualization grammars for general-

purpose visualizations [70, 82, 85], as well as the visualizations for more specialized use 

cases [30,43,62,78]. For example, ggplot2 [82] is a widely used visualization package for R 

that directly implements the GoG. Based on its ability to generate custom visualizations, 

this package has been extended to support specialized use cases, such as uncertainty 

visualizations [62] and genomics visualizations [87]. While these packages enable the 

creation of visualizations tightly coupled to the data analysis workflow, they were designed 

to create static visualizations. Based on the GoG, Satyanarayan et al. presented Vega-Lite 

[70], a visualization grammar that supports fluent user interactions, such as brushing, 

zooming, and panning. Focusing on specific visualization types, Jo et al. [30] presented 

a grammar for multiple density maps, Li et al. [43] developed GoTree for tree visualizations, 

and Park et al. [57] introduced ATOM for unit visualizations. For visualizing scatterplots 

with large data, Tao et al. [78] proposed a visualization grammar called kyrix-S. Finally, 

based on the grammar of Vega-Lite, Lavikka et al. [39] implemented a WebGL-accelerated 

toolkit for genomics visualizations.

While these grammars provide expressive ways to generate visualizations for their diverse 

target use cases, there are several limitations in the context of genomics visualizations. For 

example, they do not directly support common genomic file formats. Also, diverse layouts of 

genomic coordinates that are observed in existing genomics visualizations are not supported 

(e.g., circular layouts of Circos [36]). Moreover, they do not support coordinated multiple 

view visualizations, which is critical in exploring genomics visualizations [54]. Our goal is 

to make the grammar expressive enough to cover the wide range of genomics visualizations 

reported by Nusrat et al. [53] and make it accessible for our target audience.

3.2 Visualization Tools for Genomic Data

Over the last two decades, many tools for the visualization of genomic data have been 

developed. The majority of these tools, particularly those that are modeled after genome 

browsers, plot data along the genome sequence to highlight linear patterns. A subset of tools 

also supports the visual exploration of patterns across disconnected regions.

Visualization of Patterns in a Single Region—Genome browsers and other similar 

tools that use a single view of stacked tracks plot genomic data along the genome 

sequence on the x-axis. The most commonly used genome browsers are the UCSC 

Genome Browser [32], Ensembl [28], and the Integrated Genomics Viewer [68] (IGV). 
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Initially, genome browsers focused on visualizing regional annotations like genes [28,32,75]. 

Later on, more specialized browsers were developed to provide better support for data 

types like epigenomic [10,89,90] or chromosome conformation capture data [18,34]. In 

parallel, genome browsers evolved from static server-side rendering tools to interactive web-

based visualizations offering continuous zooming and panning [73] and better support for 

embedding into other tools [8,17]. To provide better integration into interactive data analysis 

workflows, visualization tools for Python [48,61] and R [22] were developed as well. Some 

tools also integrate complementary visual analytics approaches to better support exploratory 

analysis [13] or guide the visual exploration through interactive machine learning [42].

Visualization of Patterns across Disconnected Regions—Beyond the focus on 

patterns that arise along the linear genome sequence, several visualization tools were 

developed to support the exploration of non-linear patterns stemming from discontinuous 

events, structural variation, synteny, the spatial organization of the genome, or functional 

relationships between disconnected genomic intervals. For instance, Variant View [20] is 

a tool for visualizing genetic variants in the discontinuous biological scales, like the gene 

or protein sequence. Circos [36] is a tool for studying positional relationships between 

genomic intervals using a circularized layout approach. Following a similar approach, Meyer 

et al. [52] developed MizBee—a tool for multi-scale comparative genomics that combines 

circular and linear layouts for the study of synteny data across biological scales. Given 

the multi-scale nature of the genome (Sect. 2), O’Brien et al. [54] developed interactive 

approaches for integrative exploration of multiple levels of scale using predefined linked 

views. Extending this work to genome-wide interaction matrices, Kerpedjiev et al. [34] 

developed a genome browser with coordinated multiple views that supports authoring views 

with 1D and 2D tracks (i.e., matrices that have two genomic coordinate axes). Finally, 

Lekschas et al. [40] proposed a pattern-driven exploration approach using interactive small 

multiples for visually analyzing sparsely-distributed DNA folding patterns across a whole 

genome.

However, most of these tools are template-based, meaning that they allow the user to only 

adjust and switch (if at all) between predefined templates of visualizations (e.g., line or 

bar charts). Developing new visualization is often time-consuming and requires advanced 

coding skills and in-depth knowledge about the visualization tool. The goal of Gosling is 

to offer more flexibility in terms of visualization designs [50] while building on top of a 

modern genome browser [34].

4 DESIGN PRINCIPLES

The main goal for Gosling and Gosling.js is to support the flexible specification and 

rapid construction of specialized visualizations for effective multi-scale and multi-focus 

exploration of multi-modal genome-mapped data (Sect. 2). The target audience for Gosling 

are computational biologists, bioinformaticians, and software developers who create ad 
hoc visualizations or visualization tools for genomics data analysis. With this goal and 

target audience in mind, we identified the following five design principles through iterative 

discussions based on our domain knowledge and research papers in genomics visualizations 

[36,52–54] and programming languages [6, 56]. We also had informal weekly discussions 
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with all co-authors and an additional genomics visualization developer, i.e., a collaborator 

who frequently implements HiGlass custom tracks, during the design process of Gosling to 

improve the domain-specificity of the grammar.

Expressiveness

The grammar should be expressive to cover a wide range of genomics visualizations. 

Expressiveness is required not only at the track level (i.e., flexible customization of 

individual visualizations) but also on the multi-track and multi-view level (e.g., diverse 

compositions of multiple visualizations). For example, glyph representations are widely 

used in genomics to show the complex structure of genomic data, such as gene annotations 

and structural variance, and they are often visualized differently across tools (Fig. 1H). 

Also, taking widely-used circular layouts into account [36,52,54], there are many ways of 

arranging multiple views, each of which serves different use cases [53]. For example, two 

circular views that represent different chromosomes can be combined, making either two 

semicircles or two circles being stacked from the inside to the outside of the center, in 

addition to simple juxtaposition along horizontal and vertical axes. To ensure the track, 

multi-track, and multi-view level expressiveness in Gosling, we designed the grammar 

around Nusrat et al.’s taxonomy of genomics visualizations [53].

Multi-Scale Encoding

The grammar should support different visual encodings for varying levels of details at 

different scales for effective analysis. Often, it is not feasible to show all data items in a 

genomic region simultaneously because it would result in significant overplotting, leading to 

inefficient interpretation of genomic data, and poor rendering performance (e.g., when trying 

to display every gene annotation in an entire chromosome). Instead, visual representations 

that summarize the overall information would enable scalable visual exploration [72], 

helping users find local regions of interest for further exploration (e.g., showing a density 

plot that encodes the frequency of genes in genomic regions). Thus, for effective visual 

exploration of genomics data across scales, the visual encoding needs to be adaptable to 

support semantic zooming. Gosling supports semantic zooming [58] to ensure effective 

exploration at scale.

Coordinated Interactivity

To cover a broad range of visual analysis scenarios, the grammar should support coordinated 

interactivity effectively. Since biologists frequently analyze multiple tracks (i.e., datasets) 

and views (i.e., genomic locations or scales) concurrently (Sect. 2), the concept of 

coordinated multiple views [66] plays an important role in genomics visualizations 

[54]. Moreover, large-scale genomic data requires multi-focus analysis, making efficient 

switching between regions of interest an essential feature. The grammar must provide 

effective and flexible coordinated interactivity to support various analytical setups, such 

as genome-wide overviews with single nucleotide level detail views or comparative 

visualizations. Gosling supports continuous zooming and panning interactions and enables a 

wide range of configurations for view linking with brushes.
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Domain Specificity

The grammar and its toolkit should be domain specific to allow the target audience 

to learn the grammar quickly and author genomics visualizations efficiently. To ensure 

learnability, the grammar should use the language and concepts familiar to genomics data 

analysts, which is an important aspect in designing a programming language [56]. Moreover, 

given the broad design space of genomics visualizations, keeping the grammar consistent 

is important for learnability as well [6]. For example, the visual parameters for linear 

visualizations in existing visualization libraries (e.g., x, y, width, and height in D3 [7]) are 

different from those of circular visualizations (e.g., startAngle, endAngle, innerRadius, and 

outerRadius in Circos [36]). However, a grammar that supports both types of layouts (i.e., 

linear and circular) should provide a unified interface. Furthermore, the grammar and its 

accompanying rendering toolkit should be domain-friendly to allow efficient visualization 

authoring. For example, general visualization grammars often do not afford the creation of 

scalable genomics visualizations because they expect data in formats that are inefficient for 

genomics data. Moreover, users have to write complex specifications to mimic genomics 

visualizations, such as glyphs used for genomic variants.

Data Scalability

Finally, given the size, complexity, and multimodal nature of the data to be explored, an 

accompanying rendering engine is required to handle large amounts of genomics datasets 

efficiently. This is especially important in the context of multi-scale and multi-focus analysis 

(Sect. 2), which requires fast access to and seamless switching between regions of interest. 

To ensure data scalability, we built Gosling.js around HiGlass [34], an infrastructure for 

efficient processing, access, and rendering of multi-scale genomics data.

Using an existing taxonomy [53], we first identified frequently occurring concepts that many 

genomics visualizations depend on (e.g., tracks, views, and layouts) to provide first-class 

support for these concepts in Gosling. For aspects with significant variability (e.g., visual 

encoding), we opted for general language from the InfoVis community, such as in Vega-Lite 

[70], to ensure Gosling is expressive enough to cover all use cases. The co-authors iteratively 

discussed the grammar in-depth to find solutions for unclear cases and make the grammar 

consistent.

5 GRAMMAR

In Gosling, visual representations of genomic features are organized into tracks and views. 

As described in Background (Sect. 2), a track specifies how data is encoded, and a view 

is a group of tracks that are aligned and linked on their genomic coordinate axes for 

synchronous zooming and panning interactions. Views also define the genomic coordinate 

range displayed by the tracks that they contain. In the grammar, tracks and views are 

specified in a hierarchical structure where a view defines one or more tracks. Gosling 

supports the creation of multiple views, which can be linked (Fig. 3).
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In the following sections, we will introduce the core concepts of Gosling’s grammar with 

example JSON specifications for Gosling.js. For the complete specification, please see 

supplementary materials or our documentation at http://gosling-lang.org.

5.1 Track

Track-level visual representations in genomics share many properties of plots supported by 

general visualization grammars such as the Grammar of Graphics [83] or Vega-Lite [70]. 

Given the similarities and the growing popularity of Vega-Lite, we adopted its primitive 

building blocks (e.g., data, mark, channels, and scales) for track-level visual encoding in 

Gosling to satisfy the expressiveness principle. Gosling supports the following track-level 

properties:

track := data, dataTransform?, mark, x?, y?, color?,

size?, displacement?, visibility?, ...

mark := “point” | “line” | “bar” | “link” | ...

(x | y | color | ...) := value | channel

channel := field, type, domain?, range?, ...

type := “genomic” | “quantitative” | “nominal”

In this abstracted code description adopted from Ren et al. [65], “:=” means assignment, “*” 

means “zero to more,” “|” means “or,” and “?” means “optional.” For better understanding, 

track consists of required properties, such as data and mark, and optional properties, such as 

dataTransform, x, and y. mark can be one of “point”, “line”, “bar”, etc. x, y, and color can be 

either value or channel. We use this notation throughout the paper to specify our grammar.

To better accommodate the unique features of genomics data visualizations, we extended 

the building blocks of Vega-Lite. The main grammatical differences between Gosling’s 

track-level grammar and Vega-Lite are as follows. First, Gosling provides first-class support 

for visual encodings that are commonly used in genomics visualizations. These include band 

representations (e.g., arc diagrams), encoding the height of textual representations (e.g., 

sequence logo plots), and radial visualizations (e.g., chord diagrams, described in Sect. 5.2). 

Second, we support data transformation functions that are commonly used in genomics (e.g., 

“pileup” tracks [67]). Third, considering the domain specificity principle, we allows users to 

specify genomics data formats in data specifications (e.g., “Bed” and “BigWig” [33]) and 

added a field type for genomic coordinates (i.e., “genomic”). Fourth, to support semantic 

zooming in individual tracks for multi-scale encodings, we added a new property, called 

“visibility”, which we describe in the following section (Sect. 5.5).

In summary, each track maps data onto one or two genomic coordinates along the x and 

y axes (i.e., “genomic” type fields are mapped to x and/or y channels). Genomic features 

are represented using visual marks (mark), such as line, point, and bar, and their visual 

properties, such as position, size, and color, can be either bound to attributes (Channel) 

or constant values (value). For example, encoding genomic coordinates on the x axis and 

a regular attribute (e.g., quantitative values) on the y axis generates a horizontal track 

commonly used in genome browsers [31]. Encoding two genomic fields on x and y axes can 
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generate a matrix visualization, for example, showing the strength of interactions between 

two genomic regions (Fig. 12).

In genomics visualizations, specialized overlap reduction algorithms for displacing visual 

marks are frequently employed, for example, to display read alignments [9, 68], genetic 

variants [20], modifications [55], or local patterns [41]). In tracks with one genomic field, 

users can specify a displacement option for such purposes:

displacement := type, padding?, ...

type := “pile” | “spread”

For example, the “pile” displacement adjusts the position of visual marks on the non-

genomic axis (Fig. 4A) while the “spread” displacement distributes marks along the 

genomic axis (Fig. 4B). This could also be extended to support displacement algorithms 

that work in situations when two genomic axes are present in a track.

5.2 View

Multiple tracks can be grouped into a view for concurrent analysis of multiple genomic 

features. For the effective comparison, genomic coordinates are aligned across tracks with 

coordinated zooming and panning interactions. As discussed in Sect. 2, this is critical in 

genomics data analysis, as the interpretation of patterns in one dataset generally requires 

additional datasets as context. Note that while Gosling.js does not restrict users from 

aligning different tracks (e.g., tracks with different lengths), there are no use cases for 

this. The goal of stacking is to be able to view the same genomic region across multiple 

datasets mapped to the same reference genome to look for common patterns, correlations, 

etc.. Therefore, we expect that users will align genomic features that are mapped to the same 

reference genome (e.g., hg38).

In Gosling, a view contains the following key components:

view := tracks, layout?, alignment?, orientation?,

assembly?, linkingId?, ...

tracks := (track | view)*

layout := “linear” | “circular”

alignment := “stack” | “overlay”

orientation := “horizontal” | “vertical”

assembly := “hg38” | “hg19” | “mm10” | “mm9” | ...

A view can define multiple tracks but a view might also contain additional view objects. If 

nested, all the tracks that belong to the root view (i.e., a view that is defined at the highest 

level) will have linked genomic coordinates. Nesting enables flexible composition of tracks 

by using multiple alignment options in a single view.
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Multiple tracks can be aligned in different ways within a view. Based on Nusrat et al.’s 

taxonomy [53], Gosling supports stacking of multiple tracks vertically or overlaying them 

on top of each other. Overlaying tracks enables composition of glyph-based visualizations, 

which are frequently used to show complex structures in genomic data, such as gene 

annotations (Fig. 5), structural variance (Fig. 4A), and ideograms of chromosomes (Fig. 

6). For example, ideograms (Fig. 5)—a common visualization of the chromosome structure–

are composed of four tracks. The first track visualizes rectangular marks that represent 

chromosomal regions called bands. The second and third tracks render triangular marks for 

the left and right parts of the centromere. The fourth track displays the name of each region 

(e.g., p12). In combination with nesting, alignment enables the creation of complex view 

visualizations, such as creating a glyph-based view (Fig. 6B) and showing it together with 

another track (Fig. 6A) by stacking them.

For one-dimensional tracks, users can specify a layout to determine whether genomic 

positions are mapped to Cartesian coordinates (i.e., linear) or polar coordinates (i.e., 

circular). When mapped into a circular layout, the shape of visual marks, the visual 

properties, and the relative position of tracks are seamlessly converted. See Fig. 1A and 

B for several examples. Also note how in circular layouts, tracks are still stacked from the 

inside to the outside of the center, Fig. 6 and Fig. 7).

In some cases, it can be beneficial to rotate tracks by 90 degrees. This enables exploration 

of the correlation between pairs of genomic regions, for instance, as found in chromosome 

conformation capture data [29]. In Gosling, users can set the orientation of tracks to vertical 

to rotate them by 90 degrees.

5.3 View Composition

It is often necessary to display multiple genomic regions to compare values across 

experimental conditions (e.g., control vs. treatment) or gain contextual information 

from additional regions (i.e., exploring multiple detail views with an overview). 

Through arrangement properties, Gosling efficiently supports the creation of multi-view 

arrangements:

multiView := views, arrangement?, ...

views := (view | multiView)*

arrangement := “horizontal” | “vertical” | “parallel” |

“serial”

As shown in Fig. 8, Gosling provides four options for arranging views. Among them, two 

options, parallel and serial, are taken from Nusrat et al.’s taxonomy [53], while we added 

two additional options, vertical and horizontal to cover additional use cases with circular 

layouts. Consistent with the view specification, multiple views can be specified in the nested 

format for flexible view arrangements (i.e., multiView inside views).

The parallel and serial arrangements position genomic coordinates of multiple views in 

parallel or series, respectively. For example, two linear views are juxtaposed vertically or 
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horizontally in parallel and serial arrangements. However, with two circular views, they 

are combined into concentric views, either becoming semi-circular views in the serial 

arrangement or being stacked from the inside to the outside of the center in the parallel 

arrangement. The vertical and horizontal arrangements, juxtaposing views horizontally and 

vertically in the ‘screen space,’ respectively. Therefore, in linear views, parallel and serial 

arrangements are equivalent to vertical and horizontal. Multiple circular views, however, 

would be placed next to each other without becoming concentric.

5.4 Coordinated Interactivity

To enable efficient multi-focus exploration, users can link views and interactive brushes 

for synchronous visual exploration. This enables users to create visualizations that support 

diverse exploration scenarios, such as overview+detail views and comparative visualizations:

view := ..., xLinkingId?

track := ..., mark, x, ...

mark := ... | “brush”

x := ..., linkingId?

Conceptually, views and interactive brushes (i.e., a brush mark overlaid on a regular track) 

have their own viewports for browsing genomic intervals. In the grammar, a viewport is 

specified by linkingId, which is similar to Vega’s Signals [85] in that scales of visual 

channels can be shared using unique identifications. When multiple views are referencing 

the same viewport (e.g., “detail”), they share the same genomic coordinates. This makes 

coordinated zooming and panning interactions across views and/or brushes possible (Fig. 

9). The brush is interactive, allowing users to adjust its left and right edges or position by 

clicking and dragging.

5.5 Semantic Zoom

Semantic zooming is an advanced exploration technique that allows visual elements to be 

represented differently at different scales [58]. Based on previous studies [60,74,76], we 

considered the following aspects to support flexible semantic zooming specifications. First, 

the grammar should support the specification of criteria for determining when to switch 

between different visual encodings, such as space availability [74,76] and zoom levels [60]. 

Second, users should be able to define multiple visual encodings for representing the data 

at different scales. Third, it should be possible to apply new visual encodings either to a 

complete visualization (e.g., changing visualization types [74]) or to certain visual elements 

only (e.g., showing detailed information only to the visual elements that have sufficient 

space [76]).

To enable semantic zooming, Gosling provides control over the visibility of visual marks or 

an entire track through Boolean expressions based on visual properties (e.g., size of tracks or 

marks or zoom level):
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track := ..., visibility?

visibility := visibilityCondition*

visibilityCondition := target, operation, measure,

threshold, conditionPadding?, transitionPadding?

target := “track” | “mark”

operation := “less-than” | “greater-than” | ...

measure := “width” | “height” | “zoomLevel”

threshold := number | “|xe-x|”

(conditionPadding | transitionPadding) := number

Conceptually, this is similar to data filtering, but the target of the filter are visual marks or 

individual tracks, and logical conditions are expressed by visual properties (i.e., width and 

height in pixels and zoom levels in nucleotides). To design semantic zooming effects, users 

can overlay multiple tracks and define visibility conditions for individual tracks, thereby 

showing and hiding visual marks or entire tracks depending on the properties. For example, 

given that size differences of various patterns in genomes span orders of magnitude (Sect. 

2), it is infeasible to show individual nucleotides at a genome-wide scale. However, upon 

zooming far enough into a specific region, it can be useful to see the genome’s nucleotide 

sequence. As shown in Fig. 10, to enable effective multi-scale exploration, a user can 

specify a stacked bar chart that shows the distribution of nucleotides (line 3) when zoomed 

out and overlay an additional track for to show individual nucleotides with text labels 

which are displayed only when there is enough space to render text marks (lines 4–11). 

Multiple conditions can be defined in a single track to support flexible visibility criteria 

(e.g., determining the visibility based on both size of marks and zoom level of a track). In 

this case, multiple conditions are combined with logical ‘and’ operations.

Sometimes, the transition between two different visual encodings may be abrupt (e.g., 

changing between visualization types), which can break a user’s mental map and make 

exploration less effective [59]. To avoid abrupt changes, Gosling supports transitionPadding 

in the visibility property. This adds padding when calculating the conditional operations. 

Instead of setting the opacity level of visual marks or tracks to zero or one, which results in 

sudden (dis)appearance, a floating number between zero and one is assigned to the opacity. 

This is applied to provide smooth fading across the opacity levels (Fig. 10B). For instance, 

say a track is only visible at zoom levels below 40, and that it specifies a transitionPadding 

of 10. Given this setup, at zoom level 45, the track’s opacity would be set to 0.5.

5.6 Property Overriding

To make Gosling more accessible to the target audience, we apply the principle 

of conciseness [56] and provide several shortcuts that make the creation of Gosling 

specifications more efficient. For example, Gosling provides sensible default values for 

individual properties based on frequently used visualization types as reported by Nusrat et 

al. [53]. For example, stack for alignment, linear for layout, and vertical for arrangement. 

Moreover, in the hierarchical structure of view and track specifications of Gosling, the 

values that are defined at the higher levels apply to lower levels but can be overridden. This 
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allows users to define common properties that should be shared across all views and tracks 

only once (e.g., assembly). Similarly, common track properties that can be shared across 

multiple tracks in a single view or they can be inherited from views. For example, track-level 

properties, such as data and encoding, can be defined at the view level, which will result in 

overriding those properties in the tracks of the view. This is especially useful for genomics 

visualizations where the same encoding is often applied to many tracks (Sect. 2).

6 IMPLEMENTATION

Gosling.js is a rendering toolkit for Gosling. It uses Gosling specifications in JSON format 

to create scalable and interactive visualizations on the web. It employs a TypeScript-based 

definition of the Gosling grammar and consists of three main components (Fig. 11): 

a compiler, a renderer, and a HiGlass client [34]. The compiler translates a Gosling 

specification into a HiGlass-interpretable view configuration. The HiGlass client then 

interprets the view configuration and fetches the data that is needed for rendering. Using the 

data, the Gosling.js renderer displays individual tracks. The track renderer is implemented 

using the Pixi.js WebGL library.

We built Gosling.js on top of the HiGlass infrastructure [34] (i.e., the HiGlass client and 

server) to access genomic datasets stored in a wide range of file formats. For scalable data 

access, HiGlass uses a “tiling” approach, which is employed in common map visualization 

tools (e.g., Google Maps and Open Street Maps) and big data preprocessing techniques (e.g., 

nanocubes [46]). Based on this approach, HiGlass preprocesses data to store aggregated 

information (e.g., aggregate nearby quantitative values or filter values) for given genomic 

regions and resolutions (i.e., “tiles”). The HiGlass client then considers the regional 

information of Gosling.js visualizations (i.e., genomic regions and zoom levels) and fetches 

appropriate tiles from the source data and passes them to Gosling.js. While several data 

formats require the HiGlass server for more efficient visual exploration (e.g., Cooler [1], 

Vector [34], Multivec [34]) (Fig. 11D), many common data formats can be used directly in 

Gosling.js without any dedicated HiGlass server and data pre-processing (e.g., BAM [44], 

BigWig [33], CSV including BED [33] and GFF, JSON) (Fig. 11E). For more details about 

using data in Gosling.js, please see the supplementary materials.

7 USAGE SCENARIOS

To show how Gosling can be used to create a wide range of genomics data visualizations, we 

present a series of published visualizations that we reproduced and extended using Gosling. 

Interactive versions of all visualizations in this paper are available at https://gosling.js.org.

We demonstrate the expressiveness of Gosling from the track to the multi-view level. At the 

track level, Gosling enables the creation of diverse visualization types as found in the wild, 

including conventional genomics visualizations. For instance, Gosling supports ideograms 

(Fig. 1F), chord diagrams (Fig. 1B), sequence plots (Fig. 10), gene annotation plots (Fig. 

5), pileup tracks (Fig. 4A), and lollipop charts (Fig. 4B), as well as general chart types 

(Fig. 1A–B), such as bar charts, line charts, area charts, scatterplots, heatmaps, and matrix 

(Fig. 12). Furthermore, Gosling provides flexible customization of each visualization type. 
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This enables the creation of broad design variations of gene annotation plots identified 

from existing genomics visualizations (Fig. 1H), such as in HiGlass [34] and igv.js [67]. 

As Gosling provides support for circular layouts, users can generate visualizations similar 

to Circos [36]. Circular visualizations can be useful for exploring connectivity information 

between distant genomic regions [52] (Fig. 1C and Fig. 13A).

At the view level, Gosling affords the composition of complex Multiview visualizations 

with coordinated interactivity. For example, Fig. 12 shows comparative visualizations of 

two genomic interaction matrices using Gosling [35]. The two matrices are linked to 

show the same genomic regions when zooming and panning, enabling effective visual 

comparison. Moreover, interactive brushes allow users to create a variety of overview+detail 

visualizations. For instance, following the example of overview+detail visualizations in 

genome browsers [67, 79, 89, 90], users can place an overview visualization in the form of 

an ideogram at the top and link it to additional views below through an interactive brush 

(Fig. 9). It is also possible to add two interactive brushes to a circular overview and link 

them to two linear views, enabling comparative analysis of two local regions connected by 

long-range interactions (Fig. 13A). Since Gosling can be applied to genomes of any species, 

one can use data of a SARS-CoV2 reference sequence [86] along with gene and protein 

annotations and recombination sites [21] to author visualizations as found in the WashU 

Virus Browser [21] (Fig. 1G). Moreover, the expressiveness of Gosling allows users to easily 

create interactive versions of static figures [11] (Fig. 13B).

Gosling’s semantic zooming can be used to overcome the limitations of existing tools 

in showing effective overviews. Sequence tracks in existing tools often hide information 

entirely at the scale of more than few hundred nucleotides due to the lack of multi-scale 

encoding. Instead, these tools display user instructions (e.g., “zoom in to see features” in 

igv.js [67]). By using semantic zooming in Gosling, users can show the distribution of 

nucleotides instead of individual nucleotides to maintain a contextual overview (Fig. 10). 

Such a multi-scale sequence track is used in our re-implementation of the WashU Virus 

Browser [21] (Fig. 1G).

Another example is the implementation of semantic zooming to handle sparse genomic 

features, such as pathogenicity information for genomic mutations, i.e., the relationship 

between sequence variations and phenotypes [37]. To allow for more effective visual 

exploration across multiple scales (Fig. 14), users can specify stacked bar charts to show 

the distribution of phenotype information along genomic regions that switch to lollipop plots 

for more detailed information when zoomed in far enough. A similar lollipop plot without 

the multi-scale encoding has previously been implemented as a HiGlass’ plugin track [80]. 

For graphical representations, 700 lines of code were written using JavaScript with Pixi.js 

while Gosling.js makes it much more concise, i.e., around 50 lines of code.

8 DISCUSSION

Comparison To Existing Tools We provide a high-level comparison of Gosling to other 

visualization tools concerning our design principles (Table 1). A common limitation of 

existing tools is the lack of support for both linear and circular layouts. For example, 
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Vega-Lite [70] currently only supports arc marks for radial visualizations. This makes it 

impossible to create Circos-like visualizations [36] (Fig. 1B–C and Fig. 7). The multi-scale 

encoding is not supported in most of the tools except ggBio [87] which only allows to 

switch between encoding templates by zoom level. Furthermore, ggBio [87] and Circos [36] 

only support static visualizations, so users’ ability to explore genomics data across scales 

is very limited. Modern genome browsers [34, 67, 79, 90] commonly use template-based 

approaches which limit their track-level expressiveness. While several generic tools, such 

as Vega-Lite [70] and GenomeSpy [39], are more expressive, they do not support large and 

complex genomic datasets well. For example, GenomeSpy requires users to convert most of 

the genomics datasets into tabular formats (e.g., CSV) prior to using them in the system.

Gosling has some practical limitations compared to existing tools, which we intend to 

address in the future. Some genome browsers support a wider range of genomics data 

formats (e.g., SEG and VCF in IGV.js [67]). GenomeSpy [39] has a well structured GPU 

pipeline that allows rendering of a large number of graphical elements more efficiently 

than currently possible in Gosling.js. Vega-Lite [70] and ggBio [87] are integrated into 

computational analysis environment (e.g., R or Python).

Data Abstraction

The core concept of the Grammar of Graphics [83] is to decompose visualizations into 

abstracted components. To facilitate this approach, the data also needs to be stored in an 

abstracted and consistent format, e.g., in a ‘tabular’ format. However, due to its size and 

complexity, genomics data is stored in a wide range of text-based, binary, or compressed file 

formats, many of which are not tabular. For grammars that expect tabular data, this would 

require that users convert their data before visualizing it, which is inefficient and often not 

feasible. The need for data conversion results in a conflict between domain specificity and 

data scalability. Asking users to perform the transformation themselves would simplify the 

rendering process of the grammar. However, it would also put an enormous burden on the 

users. Data visualization software is typically employed in genomics data analysis alongside 

many other analysis tools in an iterative fashion. Requiring users to convert gigabytes of 

data for each tool is unrealistic. Therefore, if the grammar supports domain-specific file 

formats and can transform data into tabular formats on the fly before encoding them, 

domain specificity and data scalability can be addressed without burdening users. However, 

this results in data scalability issues since it is computationally expensive or impossible 

in practice to convert large and complex genomics datasets. This represents a significant 

barrier for developing domain-specific visualization grammars if the domain deals with 

large and complex data like genomics. In our work, the use of the established HiGlass data 

visualization infrastructure [34] allowed us to overcome this trade-off. Through HiGlass, 

we can provide support for diverse genomics file formats—increasing domain specificity

—and pre-aggregated, tiled datasets for efficient rendering in Gosling.js—increasing data 

scalability.

Beyond Specifications of Visualizations

Gosling is designed to enable effective visual exploration of genomics data. Because 

support for multi-scale exploration is critical (Sect. 2), we allow users to author interactive 
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visualizations, such as coordinated multiple views with zooming and panning interactions 

for effective navigation of genomic datasets. However, exploration of genomics data is more 

effective if additional interactive components are integrated with visualization. For example, 

a common scenario is to link a visualization to a data table that lists additional information 

(e.g., genes and their locations, possibly ranked by one or more scores) about the visualized 

data records [51]. Using such an interface, users can navigate the data more efficiently, 

for example, by selecting an item in the table to navigate to a specific genomic location. 

Considering such practical usage scenarios, it is essential to consider appropriate APIs in 

Gosling.js to integrate visualizations with external components better.

Limitations and Future Work

Our work on Gosling to date has focused on supporting the creation of the wide range of 

the genomic visualization techniques captured in the taxonomy of Nusrat et al. [53]. While 

Gosling covers almost the entire taxonomy, Gosling currently lacks support for two rarely 

used layout techniques: space-filling curves and spatial 3D layouts. In some cases, it makes 

sense to map the genome sequence onto a space-filling curve (e.g., Hilbert curve [2,27]) to 

produce a compact overview of the genome. Further, some examples have been published in 

which the genome was mapped onto (simulated) 3D spatial coordinates [81], for example, 

to visualize genome folding [16] and to provide an illustration of the genome’s plasticity. 

While the Gosling grammar can easily be extended to support these two layouts, the utility 

of these layouts in the context of a grammar is limited as they do not afford alignment with 

other tracks. We will explore support for space-filling and 3D layouts in the future. Another 

limitation of Gosling concerning the taxonomy by Nusrat et al. [53] is that it currently only 

supports mapping to the entire genome sequence. It does not support sequence abstraction, 

i.e., it is not possible to filter out regions, such as intragenic regions, or to scale genomic 

regions of different lengths to a unit length. We intend to add support for such functionality 

in the future. Finally, we plan to conduct a controlled user study with members of our target 

audience to assess the grammar’s learnability and overall ease-of-use.

9 CONCLUSION

In this paper, we presented Gosling—a grammar-based toolkit for scalable and interactive 

genomics data visualization. Gosling balances expressiveness for multi-scale and multi-

focus visualizations with accessibility for a broad user audience.

Our goal was to address the shortcomings of existing approaches for genomics visualization, 

particularly concerning customizability. We show that we have reached this goal by 

demonstrating the capabilities of the grammar and the proposed toolkit through a series 

of examples that represent the wide spectrum of visual representations and interactions 

supported by Gosling. We showed that developing a domain-specific grammar and an 

accompanying toolkit can potentially overcome several critical limitations of general-

purpose visualization grammars. This work encourages the development of visualization 

grammars for other domains with unique domain-specific data types, visual representations, 

and analysis tasks.
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We anticipate that Gosling will enable notable progress in genomics data visualization 

by providing a foundation for the design of novel scalable, interactive, multi-view 

visualizations. Because Gosling also removes common barriers, such as limited 

expressiveness of template-based approaches and data scalability, it will enable broader 

participation in visualization design and implementation in genomics. Finally, given the 

success of visualization grammars in other fields, we expect that the work described here 

will serve as the foundation of an ecosystem of tools built around Gosling and Gosling.js.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Genomics Data Visualizations Using Gosling.
A wide range of genomics visualizations in the wild can be expressed by Gosling and 

rendered by Gosling.js, a declarative grammar and its JavaScript toolkit for scalable and 

interactive visualizations for genome-mapped data.
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Fig. 2. Genomes, Data, and Visualization.
Top: A genome is the sequence of all nucleotides on all chromosomes. It is defined by 

a reference sequence of nucleotides and a chromosome order. Bottom: Nominal, ordinal, 

or continuous measurements can be mapped onto the genome sequence to define genomic 

features. The data within a light gray rectangle is typically referred to as a track.
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Fig. 3. Hierarchical Structure of Tracks and Views.
This figure shows a Gosling visualization (top) and its hierarchical structure of tracks and 

views (bottom right). Gosling uses a JSON format specification as input (bottom left). Each 

of the three views shown in this figure (blue, orange, and green) consists of two tracks 

(stacked area charts and ideograms).
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Fig. 4. Displacement of Marks.
Using displacement options, users can pile up (left bottom) or spread out (right top) marks to 

remove overlap.
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Fig. 5. Overlaying Tracks.
Using an overlay option of an alignment property, multiple tracks can be superposed on top 

of each other, allowing to create glyph-based representations, such as ideograms and gene 

annotations. This figure shows an example that overlays rectangular, triangular, and textual 

marks to create ideograms.
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Fig. 6. Track Alignment.
Tracks can be either stacked or overlaid. The ability to nest multiple tracks with different 

alignment options allows flexible track composition. This figure shows an area chart that is 

juxtaposed with an ideogram (i.e., overlaid tracks).
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Fig. 7. View Layout.
Specifying the layout property to either “linear” or “circular” encodes genomic positions in 

Cartesian coordinates or polar coordinates, respectively. The example in this figure adds a 

single line of code (line 1) from Fig. 6 to circularize the visualization.
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Fig. 8. View Arrangement.
Four arrangement options used in different layouts cover broad arrangement of views (pink 

and blue).
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Fig. 9. Coordinated Views with Interactive Brushes.
An interactive brush can be linked with other views by having the same linkingId value. The 

brush makes it easy to adjust the genomic locations of another view by adjusting the left and 

right edges of the brush.
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Fig. 10. Multi-Scale Encoding with Semantic Zooming.
For each track, users can define multiple visual encodings and switch between them using 

Boolean expressions in the visibility property. This figure shows a multi-scale sequence plot 

that shows the overall distribution of nucleotides using stacked bar charts which change to 

show individual nucleotides in detail upon zooming in enough.
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Fig. 11. System Structure of Gosling.js.
Gosling.js consists of three main components: (A) a compiler, (B) a renderer, and (C) a 

HiGlass client [34].
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Fig. 12. Comparison of Micro-C and Hi-C.
Comparative matrix visualizations of Micro-C (left) and Hi-C (right) for HFFc6 cells (Total 

23.0 GB, 7 files) [35].
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Fig. 13. Examples Using Gosling.
(A) A circular overview with two linear detail views and interactive brushes (Total 4.0 GB, 2 

files) [36,88]. (B) An interactive version of a static figure (Total 0.9 GB, 12 files) [11].
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Fig. 14. Multi-Scale Lollipop Plots.
Using semantic zooming for showing relationship between sequence variations and 

phenotypes using stacked bar charts and lollipop plots (Total 0.6 GB, 3 files) [37].
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