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Abstract

Background: Immune cell transcriptome signatures have been widely used to study the lung tumor microenvironment (TME).
However, it is unclear to what extent the immune cell composition in the lung TME varies across histological and molecular
subtypes (intertumor heterogeneity [inter-TH]) and within tumors (intratumor heterogeneity [ITH]) and whether ITH has any
prognostic relevance. Methods: Using RNA sequencing in 269 tumor samples from 160 lung cancer patients, we quantified
the inter-TH of immune gene expression and immune cell abundance and evaluated the association of median immune cell
abundance with clinical and pathological features and overall survival. In 39 tumors with 132 multiregion samples, we also
analyzed the ITH of immune cell abundance in relation to overall survival using a variance-weighted multivariate Cox model
not biased by the number of samples per tumor. Results: Substantial inter-TH of 14 immune cell types was observed even
within the same histological and molecular subtypes, but early stage tumors had higher lymphocyte infiltration across all tu-
mor types. In multiregion samples, an unbiased estimate of low ITH of overall immune cell composition (hazard ratio [HR] ¼
0.40, 95% confidence interval [CI] ¼ 0.21 to 0.78; P¼ .007), dendritic cells (HR ¼ 0.24, 95% CI ¼ 0.096 to 0.58; P¼ .002), and macro-
phages (HR ¼ 0.50, 95% CI ¼ 0.30 to 0.84; P¼ .009) was strongly associated with poor survival. The ITH of 3 markers, including
CD163 and CD68 (macrophages) and CCL13 (dendritic cells), was enough to characterize the ITH of the corresponding immune
cell abundances and its association with overall survival. Conclusion: This study suggests that lack of immune cell diversity
may facilitate tumor evasion and progression. ITH inferred from CCL13, CD163, and CD68 could be used as a prognostic tool in
clinical practice.

The recent advances of lung cancer immunotherapy have fos-
tered a growing interest in the tumor immune microenviron-
ment (TME). To characterize the cell admixtures of immune
infiltrates and their interaction with tumor cells, computational
deconvolution tools are used to quantify immune cell fractions
from bulk transcriptome data based on cell type–specific signa-
tures (1-5). Using these approaches, array- and sequencing-based
studies have profiled the tumor immune landscape in lung
tumors from diverse ethnic and clinical and pathological groups
(6-11). Some of the immune signatures were associated with

clinical outcomes or response to immunotherapy (5,7,12-14).
Nearly all studies analyzed a single biopsy per tumor. Two recent
studies (15,16) based on multiple-regional samples per lung tu-
mor showed substantial intratumor heterogeneity (ITH) of over-
all gene expression signatures (not immune-related). Moreover,
using immunohistochemistry or RNA sequencing (RNA-seq)
(17), the TRACERx (TRAcking non-small cell lung Cancer
Evolution through therapy [Rx]) study showed ITH of the overall
immune infiltration level without exploring its association with
survival.
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After identifying the best deconvolution approach for RNA-
based immune cell detection, we performed a comprehensive
analysis of intertumor heterogeneity (inter-TH) and ITH of im-
mune gene expression and immune cell abundances in 269 tu-
mor samples from 160 lung cancer patients and investigated
their association with clinical and pathological features, includ-
ing survival .

Methods

Patients and Samples

We collected fresh-frozen samples from 160 lung cancer
patients from the Environment And Genetics in Lung cancer
Etiology (EAGLE) study, a large population-based, case-control
study conducted in Italy between 2002 and 2005 (18-20); see the
Supplementary Methods (available online) for details. The study
protocol was approved by the institutional review board of
the US National Cancer Institute and the involved institutions
in Italy. Informed consent was obtained for all subjects. In brief,
269 tumor samples and 109 paired normal samples passed qual-
ity control (Supplementary Table 1, available online) and under-
went RNA-seq analysis. These samples were used to investigate
inter-TH and overall immune cell abundance. After excluding
low-purity samples (Supplementary Figure 1, A, available on-
line), 132 samples from 39 multiregion tumors were used for
ITH analysis.

RNA-Sequencing

RNA-seq was performed using the Illumina HiSeq platform and
Illumina TruSeq Stranded Total RNA-seq protocol, generating
2x100bp paired-end reads. The FASTQ files were aligned to hu-
man reference genome GRCh37/hg19 using STAR (21) and proc-
essed by RSEM (22) for gene quantification. The resulting
expression data were normalized to transcripts per million and
log2 transformed.

Molecular Subtype Detection

Molecular subtypes were detected using 2 previously published
nearest centroid classifiers (23,24). Log2-transformed transcripts
per million data were gene median–centered. A 506-gene pre-
dictor for lung adenocarcinoma (LUAD) (23) and a 203-gene pre-
dictor for lung squamous cell carcinoma (LUSC) (24) were
applied to samples of the 2 histological types, respectively. See
the Supplementary Methods (available online) for details.

Quantification of Immune Cell Abundances and Tumor
Purity

For tumor samples, immune cell abundances were inferred us-
ing 5 algorithms. Gene signatures from Danaher et al. (1) and
Davoli et al. (2) studies were downloaded from the publications
separately, and estimated immune cell abundances were deter-
mined using the average expression levels across all genes for
each cell type. The toolkits CIBERSORTx (http://cibersortx.stan-
ford.edu) (4) and TIMER (http://cistrome.org/TIMER/) (25) were
used to estimate immune cell fractions. Estimation based on
the Jerby-Arnon et al. study (5) used the code for cell typing
from GitHub (https://github.com/livnatje/ImmuneResistance).

To evaluate the impact of tumor purity on the estimates of
immune cell abundances, we inferred the tumor purity from
RNA-seq data using the R package ESTIMATE (26). For tumor
samples with paired normal samples, we applied paired tumor-
normal (TN) estimation of immune cells based on the Danaher
signatures (1). The TN estimates were derived as

TN ¼ 1
p
½Xt � ð1� pÞXn�;

where Xt and Xn are the immune cell abundances in tumor and
paired normal samples, respectively, and p is the tumor purity.

Unsupervised Clustering of Abundances of Immune
Cells and Immune Genes

The estimated abundances of 14 immune cells were median
centered across all tumor samples and clustered by an agglom-
erative complete-linkage hierarchical algorithm using Euclidean
distance. The same approach was then applied to the expres-
sion levels of 60 immune marker genes for clustering. The con-
sensus clustering analysis was performed using the R package
ConsensusClusterPlus (27).

Quantification of Immune Cell ITH

For each patient with k multiregion tumor samples, ITH of im-
mune cell abundances was quantified as the average pairwise
ITH or APITH (28). Specifically, for an individual immune cell
type (eg, macrophage, neutrophils),

APITH ¼ 2
kðk� 1Þ

X

1� i< j� k

dij;

where dij is the genomic distance between a pair of samples (i, j)
calculated based on the expression levels of signature genes of
the immune cell type. The overall ITH summarizing all immune
cell composition was quantified as

APITH ¼ 2
kðk� 1Þ

X

1� i< j� k

Sij;

where Sij is the Euclidean distance of the relative abundances of
14 immune cells between a pair of samples (i, j).

As we discussed previously (28), the expectation of APITH
does not depend on the number of tumor samples per tumor,
which allows to compare ITH across groups of patients and to
perform regression analysis for subjects with different numbers
of tumor samples.

Immune Genewise Inter-TH and ITH

We used the metrics of genewise heterogeneity developed by
Biswas et al. (15) to determine the genewise inter-TH and ITH.
See the Supplementary Materials (available online) for details.

Statistical Analysis

All statistical tests were 2-sided, with a false discovery rate or P
value less than .05 considered as statistically significant.

Survival analysis. We investigated the association of 1) me-
dian and 2) APITH of immune cell abundances per patient with
overall survival using multivariate Cox proportional hazards
models, adjusted for age, tumor stage, histological type, and

A
R

T
IC

LE

W. Zhao et al. | 281

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
http://cibersortx.stanford.edu
http://cibersortx.stanford.edu
http://cistrome.org/TIMER/
https://github.com/livnatje/ImmuneResistance
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data


smoking status. For median immune cell abundances, the over-
all immune cell levels were quantified as the median of the
sum of all cell types. Because the variance of the APITH estima-
tor depends on the number of samples per tumor, we used a
variance-weighted Cox regression to optimize the power of
detecting the association between APITH and survival (28). We
used the cox.zph function (29) in the R package survival to test
the proportional hazards assumption and R package survey (30)
for the weighted Cox regression analysis.

Association analysis of immune cell abundances and APITH with
clinical features. We tested the association of 1) median and 2)
APITH of immune cell abundances per patient with stage (stage
1 vs others), tobacco smoking status (former vs current), and
histological type (LUAD vs LUSC) using the Student t-test and
with age at diagnosis using the Pearson correlation test. The as-
sociation with smoking duration was analyzed using the ordinal
regression adjusted for smoking status.

ITH analysis of single-gene markers of immune cells. We tested
the association of the expression level of each signature gene
with the corresponding immune cell abundance in all samples
to identify single-gene markers that could characterize each im-
mune cell type. For each selected marker, gene-level APITH was
quantified as the average pairwise difference of expression
across all pairs of samples from multiregion tumors and was
compared with APITH of corresponding immune cells. Survival
analysis was applied as described above for the APITH of im-
mune cells.

Results

Patient Characteristics

The study patients ’ demographic characteristics are summa-
rized in Table 1 and Supplementary Table 2 (available online).
All patients were treatment naı̈ve and had a median follow-up
time of 43 months. Most patients were smokers, including 80
(50.0%) current and 73 (45.6%) former. Most tumors (98.1%) were
non-small cell lung cancer, including 100 LUAD, 45 LUSC, and 5
large cell carcinomas; 3 were small cell carcinomas. Stage
groups included 78 (48.8%) stage I, 41 stage II (25.6%), and 41
(25.6%) stage III-IV.

Deconvolution of Immune Cells From RNA-Seq Data

To characterize the immune cell landscape in lung cancer, we
used the tumor RNA-seq data and the immune signatures from
5 published studies (1-4,31) to infer the immune cell compo-
nents based on gene expression. The abundances of B cells and
CD8 T cells were highly consistent across all 5 methods,
whereas the abundances of regulatory T cells, natural killer (NK)
cells, and macrophages showed consistency across only 3
methods, by Danaher et al. (1), Davoli, et al. (2) and Jerby-Arnon
et al. (5) (Supplementary Figure 2, available online). Among
them, the Danaher et al. (1) method required the minimum set
of genes to define immune cell signatures compared with the
other 2 approaches. In addition, the TRACERx study bench-
marked computational deconvolution tools with pathology tu-
mor-infiltrating lymphocyte estimates and showed optimal
concordance with the CD8 cell abundances inferred using the
Danaher approach (17). Therefore, we used the Danaher ap-
proach and characterized 14 immune cell types using 60 im-
mune genes in our study.

All immune cells were statistically significantly correlated
between tumor-only estimates and estimates based on paired
tumor and TN samples (P< .05; Supplementary Figure 1, avail-
able online). For CD45, CD8 T cells, exhausted CD8, overall T
cells, macrophages, and dendritic cells (DC), the Pearson corre-
lation was approximately 0.9; for all other cell types, the correla-
tion was greater than 0.65 (Supplementary Figure 1, available
online). We therefore used tumor-only estimates as a surrogate
of TN estimates to characterize the relative immune cell abun-
dances. Similarly, APITH (28) of all immune cells had a statisti-
cally significant correlation between tumor-only and TN
estimates (Supplementary Figure 3, available online), after ex-
cluding low purity samples (Supplementary Methods, available
online). RNA integrity scores of all tumor samples were 6 or
more, and no association between APITH of any immune cells
and APITH of RNA integrity was observed.

Characterization of Inter-TH and ITH of Immune Cells in
Lung Cancer

Unsupervised hierarchical clustering of the 14 immune cell
types across 269 tumor samples revealed 2 clusters with high
(113 samples) and low (156 samples) levels of immune infiltra-
tion (Figure 1, A), consistent with the TRACERx study (17). In the
immune-low cluster, a subset of 45 samples had low levels of all
immune cells and was defined as the ultra-low subgroup.
Substantial inter-TH was observed across and within non-small
cell lung cancer histological types (Supplementary Table 3,
available online), but small cell and large cell carcinomas
mostly had low or ultra-low immune gene clusters. Previous
studies (23,24) had defined molecular subtypes by gene expres-
sion within histological types. Using this classification, we
found that all molecular subtypes contained immune-high and
-low tumors (Supplementary Table 3, available online). Notably,
the ultra-low clusters were dominated by the LUAD proximal-
proliferative subtype and LUSC classical subtype (Figure 1, A).
Within the 39 multiregion tumors, 3 (7.7%) had immune-high
samples exclusively, 17 (43.6%) had immune-low samples ex-
clusively, and 19 (48.7%) had both immune-high and -low sam-
ples, including 3 (7.7%) with both immune-high and ultra-low
samples (Figure 1, B). Clustering of the 60 immune marker genes
revealed similar patterns, with 227 of 269 (84.4%) samples classi-
fied within the same immune classes as the 14 immune cell
abundances, and 15 (28.5%) tumors had both immune-high and
-low samples (Supplementary Table 1, available online).
Consensus clustering analysis confirmed the presence of 3 ro-
bust clusters that accounted for 211 of 269 (78.4%) of all samples
(Figure 1, A).

Next, we investigated inter-TH and ITH of immune marker
genes (n¼ 60) from the Danaher signatures relative to inter-TH
and ITH of all expressed genes (n¼ 18 927). The inter-TH of all
expressed genes across 39 multiregion tumors was highly con-
sistent with the inter-TH across all tumors (R¼ 0.969, P< .001).
Therefore, we evaluated ITH and inter-TH in the multiregion
tumors (Figure 1, C). We investigated the distributions of the
overall genes and immune genes in the quadrants. Specifically,
5 (8.3%) immune genes had low inter-TH and high ITH (defined
as quadrant Q1) ; 6 (10.0%) immune genes had low inter-TH and
low ITH (Q2); 49 (81.7%) immune genes had high inter-TH and
high ITH (Q3); and no immune gene had high inter-TH and low
ITH (Q4). Thus, immune genes were statistically significantly
enriched in Q3 (P< .001, Fisher exact test).

A
R

T
IC

LE

282 | JNCI J Natl Cancer Inst, 2022, Vol. 114, No. 2

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djab157#supplementary-data


Association of Immune Cell Abundance With Clinical
and Pathological Features

We first tested the association of individual immune cell abun-
dances with clinical and pathological features (Supplementary
Table 4, available online). The median abundance per tumor of
most immune cells was suggestively enriched in current smok-
ers (Figure 2, A; nominal P< .05). Further, NK and CD8 T-cell
abundances showed suggestive associations with tobacco
smoking duration adjusted for smoking status (Figure 2, B; nom-
inal P¼ .01 and 0.047, ordinal regression). Several immune cells
had suggestively higher abundance in stage I tumors (nominal
P< .05), among which the results in exhausted CD8 and T cells
were statistically significant (Figure 2, C; adjusted P¼ .02 for
both), with similar results in LUAD and LUSC. No statistically
significant association was observed between histological type
or age at diagnosis and immune cell abundances except for a

higher NK cell abundance in LUSC vs LUAD (Figure 2, D).
Similarly, no statistically significant association was identified
between APITH of immune cell abundances and clinical or path-
ological features (data not shown).

Association of Immune Cell Abundance and ITH of
Immune Cells With Lung Cancer Survival

To evaluate the prognostic relevance of ITH and inter-TH of
immune cell abundances, we first tested the association of me-
dian immune cell abundances per tumor with overall survival
in 160 tumors (Supplementary Table 5, available online). We ob-
served that higher abundances of CD8 T cells and T cells were
associated with longer overall survival, but the associations
were not statistically significant after correcting for multiple
comparisons.

We then evaluated the association of APITH of individual im-
mune cells and overall immune cell composition with overall
survival (Figure 3; Supplementary Table 6 and Figure 4, available
online). Low APITH of overall immune cell composition was
statistically significantly associated with poor survival (hazard
ratio [HR] ¼ 0.40, 95% confidence interval [CI] ¼ 0.21 to 0.78;
P¼ .007). Similarly, among individual immune cells, low APITH
of DC and macrophage abundances was statistically signifi-
cantly associated with poor survival (DC: HR ¼ 0.24, 95%
CI ¼ 0.096 to 0.58; P¼ .002; macrophage: HR ¼ 0.50, 95% CI ¼
0.30 to 0.84; P¼ .009). The results remained statistically signifi-
cant after adjusting for chemotherapy or radiation therapy
(Supplementary Table 7, available online). We next included the
median abundance of corresponding immune cells as a covari-
ate of the proportional-hazards model and confirmed the statis-
tically significant association of the overall APITH of immune
cells and APITH of DC and macrophages with survival
(Supplementary Table 6, available online). All survival analyses
for APITH of immune cells remained statistically significant af-
ter correction for multiple comparisons.

A previous study showed that a substantial proportion of
randomly picked genes could be associated with clinical out-
comes possibly because of the confounding effect of the
proliferation-related signals (32). To verify whether our results
based on immune gene signatures were superior to those based
on random genes, we generated 500 random signatures of sizes
identical to each immune cell signature and then computed
APITH of individual random signatures corresponding to each
immune cell and the overall random signatures. We tested the
prognostic value of the APITH of random signatures using the
weighted Cox proportional hazards model. We confirmed that
the associations of overall APITH with survival were statistically
significantly stronger than the random signatures (Figure 3, D;
P¼ .004). The APITH of DC and macrophages was also statisti-
cally significantly more associated with survival than the ran-
dom signatures (Figure 3, E and F; DC: P¼ .01; macrophages:
P¼ .048).

Next, we explored whether a few immune markers could
capture the expression of all genes in DC and macrophages and
investigated their association with overall survival. Across all
tumor samples, immune markers CCL13 and CD163 had the
highest correlation with DC and macrophage abundances, re-
spectively (Figure 4, A and B; CCL13: R¼ 0.88; CD163: R¼ 0.95). In
addition, 3 macrophage markers—CD68, CD84, and MS4A4A—
were also highly correlated with the macrophage abundances
(Figure 4, C; CD68: R¼ 0.90; CD84: R¼ 0.93, MS4A4A: R¼ 0.94). We
then selected 2 markers with the best correlation, CCL13 and

Table 1. Demographic and clinical characteristics of patients

Characteristic No. of patients

Mean age at first diagnosis (range), y 65.6 (38.8-79.7)
Sex

Male 134
Female 26

Pathological subtype
Adenocarcinoma 100
Squamous/Epidermoid carcinoma 45
Large cell carcinoma 5
Mixed type 5
Other non-small cells 2
Small cell carcinoma 3

Tumor stage
IA 40
IB 38
IIA 23
IIB 18
IIIA 35
IIIB 2
IV 4

Chemotherapy
Yes 12
No 146

Distant metastasis
Yes 84
No 74

Death from any cause 102
Smoking status

Never 5
Former 73
Current 80
Unknown 2

Cigarettes per day
Mean (SD) 22.5 (10.7)
�10 22
>10 to �20 72
>20 to �30 31
>30 24

Cigarette smoking duration, y
Mean (SD) 43.5 (10.6)
�30 13
>30 to �40 47
>40 to �50 48
>50 41
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Figure 1. Summary of inter-tumor heterogeneity (inter-TH) and intra-tumor heterogeneity (ITH) of EAGLE-lung samples. A) Unsupervised clustering of RNA-based

abundance of 14 immune cells across 269 tumor samples from 160 tumors. Histological types, molecular subtypes, sex, smoking status, consensus clusters (cluster

count K¼3), and immune classes are indicated by different colors of the column sidebars. The P values are based on the v2 test of the immune classes and clinical fea-

tures. B) Summary of immune classes of samples from the same subjects. 39 subjects with at least 2 samples per subject that passed the purity filtering were analyzed.

Histological types of subjects are indicated by different colors of the diamond symbols. C) Inter- and intratumor mRNA heterogeneity quadrant of 18 927 expressed

genes in 132 samples from 39 multiregion tumors. Each dot represents a gene. Genes of immune signatures are indicated by colors. 2D density contour is indicated by
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scores, respectively). The numbers of all genes and immune genes are indicated by circles on the left and right sides of the figure. All statistical tests were 2-sided. DC
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Figure 2. Association of immune cell abundances with clinical and pathological features. A) Comparison of 8 immune cell abundances in former (n¼73) and current

smokers (n¼80). The immune cell abundances were determined by the average expression level across all marker genes for each immune cell type and were plotted

in the same scale across all figures in the panel. The nominal P value is based on a 2-sided Student t-test. B) Distribution of the natural kill (NK) cell and CD8 T-cell

abundances in patients with different smoke duration periods. P values are based on ordinal regression adjusted for smoking status. C) Comparison of 5 immune cell

abundance in subjects with different tumor stages. P values are based on a 2-sided Student t-test comparing the stage I patients vs stage II-IV patients. D) Comparison

of NK cell abundance in different histological types. The P value is based on a 2-sided Student t-test of adenocarcinoma (n¼100) and squamous and/or epidermoid car-

cinoma (n¼45). DC ¼ dendritic cell.
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Figure 3. Association between overall survival and intratumor heterogeneity (ITH) of immune cells in subjects with multiregion tumor samples. A-C) Kaplan-Meier

curves for overall survival stratified by the median APITH of (A) overall immune cells, (B) dendritic cells, and (C) macrophages. P values and hazard ratios indicated are

based on the multivariate model. D-F) Distribution of log10 (P values) of the multivariate Cox proportional-hazards model for 500 random signatures of identical sizes

of (D) overall immune cells, (E) dendritic cells, and (F) macrophages. P values of corresponding immune ITH are indicated by arrows. All statistical tests were 2-sided. CI

¼ confidence interval; HR ¼ hazard ratio.
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Figure 4. Association between overall survival and intratumor heterogeneity (ITH) of single immune gene markers. A-C) Scatter plots of the gene expression levels of

immune markers and the corresponding immune cell abundances for (A) CCL13 (DC marker), (B) CD163 (macrophage marker), and (C) CD68 (macrophage marker). D-F)

Scatter plots of the single gene-based APITH and APITH of the corresponding immune cells for (D) CCL13, (E) CD163, and (F) CD68. G-I) Kaplan-Meier curves for overall

survival stratified by the median APITH of (G) CCL13, (H) CD163, and (I) CD68. P values and hazard ratios indicated are based on the multivariate model. J-L) Distribution

of log10 (P values) of the multivariate Cox proportional hazards model for all expressed genes (n¼18 927). P values of (J) CCL13, (K) CD163, and (L) CD68 are indicated by

arrows. CI ¼ confidence interval; DC ¼ dendritic cell; HR ¼ hazard ratio; TPM ¼ transcripts per million .
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CD163, as well as CD68, which is routinely used as a histochemi-
cal marker for pan-macrophages, and analyzed the APITH of in-
dividual genes in 39 multiregion tumors. The single gene-based
APITH of 3 markers was highly correlated with APITH of the cor-
responding immune cells (Figure 4, D-F). We further investi-
gated the prognostic capability of single gene-based APITH.
Lower APITH of CCL13, CD163, and CD68 was statistically signifi-
cantly associated with worse survival using multivariate mod-
els (Figure 4, G-I). Compared with APITH of random genes, the
prognostic capability of APITH of CCL13, CD163, and CD68
remained statistically significant (Figure 4, J-L; CCL13: P¼ .02;
CD163: P¼ .03; CD68: P¼ .04).

Discussion

In this study, we characterized immune gene expression pat-
terns and immune cell abundances using RNA-seq in 160
tumors of different histological types, including 39 multiregion
tumors. We demonstrated extensive inter-TH and ITH of 14 im-
mune cell types inferred from the expression of 60 immune-
related genes. The overall immune infiltration level varied sub-
stantially across tumors even within histological and molecu-
larly defined (33,34) subtypes, highlighting the importance of
investigating the TME role in defining these subtypes. However,
some patterns were consistent across all tumors, including
higher immune cell abundances in current smokers and lower
lymphocytic infiltration in advanced stages. High CD8 T cells in
tumors were also associated with better survival, as previously
observed (35-37). These results confirm the important role for
lymphocytes in the TME in tumor progression and prognosis.

At the gene level, 80% of immune markers were high inter-
TH and ITH genes. The results confirmed a previous observation
that overall immune infiltration levels exhibit ITH (17) and addi-
tionally revealed ITH of the levels of individual immune genes
and immune cells. Importantly, we found that low ITH of over-
all immune cells and ITH of individual cells, such as DC
and macrophages, were statistically significantly associated
with poor overall survival, suggesting that lack of immune cell
diversity may facilitate tumor evasion and progression. For this
analysis, we implemented the APITH and used a variance-
weighted proportional hazards model so, differently from previ-
ous ITH studies of T-cell density or clonality (38), our results
were not biased by the number of samples per tumor.
Additionally, we performed simulation analyses to demonstrate
the superior performance of immune gene ITH compared with
random genes.

Finally, we demonstrated that 3 single-gene markers, includ-
ing the DC marker CCL13 and macrophage markers CD163 and
CD68, were able to recapitulate the overall relative abundances
and ITH of the corresponding cell types. The ITH of these
markers showed prognostic capability as the ITH from the poly-
genic signatures. In the clinic, the evaluation of only these 3
genes by immunohistochemistry or gene expression in 2 or
more samples could aid in prognosis assessment.

The major limitation of this study is the lack of any publicly
available cohort we could use for validation. To overcome this
limitation, we validated our results using simulation analyses.
We confirmed strong statistically significant results with large
effect size of the immune ITH on mortality risk. This study
mostly included smokers of European descent, and only 5 of 160
(3.1%) were lung cancer in never-smokers (LCINS). Previous
studies showed an upregulation of immune-related genes in
LCINS of East Asian descent (9,39), suggesting a potentially

different role of the TME in these tumors. Therefore, a larger
study focusing on LCINS is needed to verify the prognostic
effects of immune cell diversity.

In conclusion, our analysis revealed substantial immune cell
ITH and inter-TH in lung tumors, with strong prognostic rele-
vance of specific immune cells and immune genes.
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