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Can data-driven approaches for dietary pattern assessment improve
microbiome epidemiology research?
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A growing body of research implicates the gut microbiome—the
collection of microbes and their genetic elements that inhabit the
human gastrointestinal tract—as a potential mediator or modifier
of diet’s effects on a variety of health-related outcomes, including
variable blood glucose response to foods (1), lipid profiles (2),
and blood pressure (3). Gut microbes survive by consuming
indigestible dietary constituents, like fiber, and other byproducts
of digestion. They also consume constitutively available nutrients
such as mucin, lactate, and glucose. Ultimately, microbial
production of metabolites from diet and nondiet precursors can
impact host physiology (4). Because diet is the main source
of fuel for gut microbes, it is appealing to conclude that
dietary composition should account for a majority of microbiome
variation. However, the amount of interindividual microbiome
variation attributed to dietary features has thus far been relatively
small (5), potentially owing to suboptimal diet measurement.

In this issue of the Journal, Cotillard and colleagues (6)
explored dietary pattern–driven variation in the gut microbiome
using data from the American Gut Project (AGP). Dietary
pattern assessment typically uses 1 of 2 approaches: a priori
(predefined) or a posteriori (data-driven). To our knowledge,
no prior studies had compared how a priori and a posteriori
approaches associate with gut microbiome features or examined
the extent to which each approach explains variation in overall
microbiome composition.

A priori dietary indices measure adherence to a dietary
pattern that is defined by prior evidence or expert opinion.
The benefit of this approach is that dietary pattern associations
can be more easily compared across populations because they
are not derived from study population-specific dietary data.
However, because predefined indices often depend on expert
recommendations, culturally specific foods, or outdated research,
the dietary patterns may fit specific populations less well. In
their study, Cotillard and colleagues (6) chose first to explore
relationships between microbiome features and adherence to the
2010 Dietary Guidelines for Americans in 744 individuals using
the predefined Healthy Eating Index (HEI-2010). They found
a minimal but statistically significant association between HEI-
2010 scores and gut microbiome beta diversity (the measure
of overall microbiome similarity between two samples) after
controlling for the influence of confounding variables (age,

sex, and BMI). This finding agrees with other research that
has shown that the HEI-2010 is associated, albeit modestly,
with gut microbiome beta-diversity variance (7, 8). The weak
association of HEI-2010 with overall microbiome composition is
not entirely surprising given how the HEI-2010 index quantifies
and incorporates dietary components (e.g., total vegetables, total
fruit, whole grains, etc.), which may inadequately account for the
heterogeneous microbiome effects of the individual foods within
these food groups.

Cotillard and colleagues (6) then examined whether an a
posteriori, data-driven dietary pattern would afford greater ex-
planatory power for microbiome variation. Data-driven strategies
use dimensionality reduction techniques to define dietary patterns
for a specific study population (9). Because these approaches are
study-population specific, the results may not be generalizable
to other populations. The strength of data-driven dietary patterns
is that they should best reflect the dietary patterns of the study
population. However, these dietary patterns may also be overfit
to the study population, and are unlikely to be replicated in
cultures with distinct culinary practices. In the microbiome
space, data-driven dietary patterns built from food-frequency
questionnaire (FFQ) data (10) and daily 24-hour recall data (11)
have been shown to covary significantly with gut microbiome
beta diversity. In their study, Cotillard et al. used energy-adjusted
food groups to develop dietary clusters for 620 individuals (a
subset of the 744 used for a priori analysis). The authors described
the dietary patterns of the resulting clusters with 2 prudent-
like patterns, “Plant-based” and “Flexitarian”; 2 Western-like
patterns, “Health-Conscious Western” and “Standard Western”;
and 1 “Exclusion” pattern characterized by low intake of carbo-
hydrates. Unlike the HEI-2010 or other diet factors examined,
the data-driven dietary patterns were significantly associated with
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microbiome alpha diversity (microbial diversity within a sample).
For example, the “Standard Western” pattern was associated with
lower gut microbiome alpha diversity as compared with both the
“Flexitarian” and “Plant-based” patterns, which is consistent with
prior work showing that greater fruit and vegetable intake is a
driver of microbial diversity (12). The data-driven dietary patterns
were also significantly associated with beta diversity, however,
they only explained a marginally greater percent of variance than
the HEI-2010 (1.3% vs. 1%, respectively). Unfortunately, the
predefined and data-driven approaches were not applied to the
exact same subset of individuals, making it difficult to directly
compare the associations and variance explained by the different
methods.

When interpreting the results of this study, readers must
consider the following caveats. First, there was no external
replication of the data-driven approaches. Data-driven dietary
patterns are, by nature, best fit to the study population in which
they were derived. However, they perform less well when tested
in external populations with different distributions of diet data. In
contrast, predefined dietary patterns, such as the HEI-2010, may
reflect a given population’s dietary patterns less well because they
are externally derived. Second, the AGP cohort is a unique study
population that skews toward older individuals, with a higher
proportion of women, who have higher income, higher-quality
diets, lower BMI, and a higher incidence of gastrointestinal
complaints as compared to a representative sample of US adults.
This limits the external validity of these results. Third, the
cross-sectional nature of this study limits the ability to discern
temporality, let alone causality of the observed associations.
Moreover, this study design is subject to potential residual and
unmeasured confounding. For example, we cannot conclude
whether the association of the “Exclusion” dietary pattern with
low Bifidobacteria levels is due to the restricted dietary pattern
itself or to the reason that individuals chose to adhere to a
restricted diet, namely gastrointestinal disorders, which were
more common in the restricted dietary pattern group. Finally,
information bias is also a concern in this study, which used self-
reported dietary data collected using VioScreen (Viocare, Inc.), a
visual FFQ. Underlying health status can influence the accuracy
of self-reported diet; for example, adults with higher body weight
may systematically underreport their dietary intake.

Putting these issues aside, this research begs the question, do
these and similar findings have implications for how we explore
causal associations with the gut microbiome in epidemiologic
studies? Specifically, we ask whether data-driven approaches are
helpful when aiming to control for diet in observational studies
that seek to connect the microbiome with health outcomes? While
data-driven dietary patterns could help to control for dietary vari-
ation in microbiome studies, in the current study the differences
in variation explained in gut microbiome beta diversity by the
different dietary patterns were modest (approximately 1.3% for
the data-driven patterns and less than 1% for the predefined
patterns) and unlikely to materially improve model fit or reduce
residual confounding by diet. We may never be able to control for
all external factors that contribute to microbiome variation. Still,
if, in the future, data-driven approaches can help to capture these
difficult-to-measure factors, particularly those correlated with
diet, they would be a most-welcome addition to the microbiome-
epidemiology tool belt. It is important to note that in addition to
helping to control for confounding by diet, data-driven dietary

patterns can also facilitate the discovery of novel microbiome-
centric dietary patterns to test in randomized trials. However, the
first step would be identify unique dietary patterns that strongly
associate with both microbiome features and health outcomes,
and then replicate these data-driven dietary patterns in external
cohorts.

In summary, Cotillard and colleagues provide evidence that
data-driven dietary patterns are more strongly associated with
several gut microbiome outcomes, including alpha-diversity, than
HEI-2010, but they only explain slightly more variance in overall
microbiome composition (i.e. beta diversity). This research
has implications for observational studies hoping to minimize
confounding by dietary patterns on microbiome–outcome asso-
ciations. However, the amount of variation explained by dietary
patterns built from FFQ-collected data, regardless of the method
used, remains relatively small, potentially suggesting higher
resolution dietary data is needed for data driven approaches
(11). Also, while the authors do not directly compare the
microbiome variance explained by dietary patterns with that of
other variables like age, sex, and BMI, we might posit that those
factors correlate with diet and remain important to control for
in microbiome research. More broadly, while identifying dietary
pattern–microbiome associations in observational studies may
eventually lead to translatable microbiota interventions that can
be leveraged to improve health, conclusive results in this research
area will ultimately require adequately powered randomized
trials.

The authors’ responsibilities were as follows—AJJ: wrote the first draft
of the paper; NTM: provided additional content and edits; and both authors:
hold equal responsibility for the content and read and approved the final
manuscript. The authors report no conflicts of interest.

References
1. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger

A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, et al.
Personalized nutrition by prediction of glycemic responses. Cell
2015;163(5):1079–94.

2. Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew
DA, Leeming E, Gibson R, Le Roy C, Khatib HA, et al. Microbiome
connections with host metabolism and habitual diet from 1,098 deeply
phenotyped individuals. Nat Med 2021;27(2):321–32.

3. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q,
Geng B, et al. Gut microbiota dysbiosis contributes to the development
of hypertension. Microbiome 2017;5(1):14.

4. Laursen MF, Sakanaka M, von Burg N, Mörbe U, Andersen D,
Moll JM, Pekmez CT, Rivollier A, Michaelsen KF, Mølgaard
C, et al. Bifidobacterium species associated with breastfeeding
produce aromatic lactic acids in the infant gut. Nature Microbiology
2021;6(11):1367–82.

5. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T,
Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N, et al. Environment
dominates over host genetics in shaping human gut microbiota. Nature
2018;555(7695):210–5.

6. Cotillard A, Cartier-Meheust A, Litwin NS, Chaumont S, Saccareau
M, Lejzerowicz F, Tap J, Koutnikova H, Lopez DG, McDonald D,
et al. A posteriori dietary patterns better explain variations of the gut
microbiome than individual markers in the American Gut Project. Am
J Clin Nutr 2022;115(2):432–43.

7. Bowyer RCE, Jackson MA, Pallister T, Skinner J, Spector TD, Welch
AA, Steves CJ. Use of dietary indices to control for diet in human gut
microbiota studies. Microbiome 2018;6(1):77.

8. Maskarinec G, Hullar MAJ, Monroe KR, Shepherd JA, Hunt J,
Randolph TW, Wilkens LR, Boushey CJ, Le Marchand L, Lim U,
et al. Fecal microbial diversity and structure are associated with diet



Editorial 331

quality in the Multiethnic Cohort Adiposity Phenotype Study. J Nutr
2019;149(9):1575–84.

9. Zhao J, Li Z, Gao Q, Zhao H, Chen S, Huang L, Wang W, Wang
T. A review of statistical methods for dietary pattern analysis. Nutr J
2021;20(1):37.

10. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S,
Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, et al. Gut
microbiota composition correlates with diet and health in the elderly.
Nature 2012;488(7410):178–84.

11. Johnson AJ, Vangay P, Al-Ghalith GA, Hillmann BM, Ward TL,
Shields-Cutler RR, Kim AD, Shmagel AK, Syed AN, Walter
J, et al. Daily sampling reveals personalized diet-microbiome
associations in humans. Cell Host Microbe 2019;25(6):789–802,
e5.

12. McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A,
Ackermann G, Aksenov AA, Behsaz B, Brennan C, Chen Y, et al.
American Gut: an open platform for Citizen Science Microbiome
Research mSystems 2018;3:e00031–18.


