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ABSTRACT
Background: Diet and physical activity (PA) are independent risk
factors for obesity and chronic diseases including type 2 diabetes
mellitus (T2DM) and metabolic syndrome (MetS). The temporal
sequence of these exposures may be used to create patterns with
relations to health status indicators.
Objectives: The objectives were to create clusters of joint temporal
dietary and PA patterns (JTDPAPs) and to determine their association
with health status indicators including BMI, waist circumference
(WC), fasting plasma glucose, glycated hemoglobin, triglycerides,
HDL cholesterol, total cholesterol, blood pressure, and disease status
including obesity, T2DM, and MetS in US adults.
Methods: A 24-h dietary recall and random day of accelerometer
data of 1836 participants from the cross-sectional NHANES 2003–
2006 data were used to create JTDPAP clusters by constrained
dynamic time warping, coupled with a kernel k-means clustering
algorithm. Multivariate regression models determined associations
between the 4 JTDPAP clusters and health and disease status
indicators, controlling for potential confounders and adjusting for
multiple comparisons.
Results: A JTDPAP cluster with proportionally equivalent en-
ergy consumed at 2 main eating occasions reaching ≤1600 and
≤2200 kcal from 11:00 to 13:00 and from 17:00 to 20:00,
respectively, and the highest PA counts among 4 clusters from
08:00 to 20:00, was associated with significantly lower BMI
(P < 0.0001), WC (P = 0.0001), total cholesterol (P = 0.02), and
odds of obesity (OR: 0.2; 95% CI: 0.1, 0.5) than a JTDPAP cluster
with proportionally equivalent energy consumed reaching ≤1600
and ≤1800 kcal from 11:00 to 14:00 and from 17:00 to 21:00,
respectively, and high PA counts from 09:00 to 12:00.
Conclusions: The joint temporally patterned sequence of diet and
PA can be used to cluster individuals with meaningful associations
to BMI, WC, total cholesterol, and obesity. Temporal patterns hold
promise for future development of lifestyle patterns that integrate
additional temporal and contextual activities. Am J Clin Nutr
2022;115:456–470.
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Introduction
Diet (1) and physical activity (PA) (2) are modifiable risk

factors when it comes to health. Both dietary and PA behaviors are
expected to be interrelated, with potential synergistic effects on
health status indicators (3–5). A systematic review to investigate
the effect of the interaction of time, eating, and exercising on
health showed that postmeal exercise may have a potential benefit
on postprandial glycemic response compared with premeal
exercise (5). This study demonstrated that the timing of diet
and PA and their relation to each other in a day are related to
health indicators and hold promise for the discovery of their joint
patterns of activity and these patterns’ links to health.

Both dietary and PA behaviors occur in a temporal context or
“temporal pattern” including daily rhythms that begin and end
throughout a day (6). Previous work to derive clusters repre-
senting 4 distinct temporal dietary patterns in a representative
US sample showed that participants with energy-equivalent and
evenly distributed eating occasions throughout a day had higher
diet quality (7), lower mean BMI and odds of obesity, and smaller
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FIGURE 1 EI heat maps representing 4 distinct JTDPAPs for US adults aged 20–65 y drawn from NHANES 2003–2006 (C1: n = 256; C2: n = 678; C3:
n = 472; C4: n = 430). Distribution of 1836 participants’ EI in 4 JTDPAP clusters generated through the dependent constrained band dynamic time warping
method is shown. The absolute EI ranging from 0 to 4000 kcal (y axis) ranging from 00:00 to 24:00 at the hourly level (x axis) for nonpregnant US adults aged
20–65 y as drawn from NHANES 2003–2006 is depicted. The proportion of participants in each of 4 JTDPAP clusters reporting EI is represented through
shading ranging from 0.0% to 27.7% of participants. Darker shading represents a greater percentage of participants in the cluster reporting the same amount of
EI at that time. C1, Cluster 1; C2, Cluster 2; C3, Cluster 3; C4, Cluster 4; EI, energy intake; JTDPAP, joint temporal dietary and physical activity pattern.

waist circumference (WC) (8) than those with other temporal
dietary patterns exhibiting 1 energy intake (EI) peak sometime
in a day. Similarly, novel work integrating PA and corresponding
timing throughout the day generated “temporal PA patterns.”
Findings showed that those with the lowest PA counts (PACs)
from 06:00 to 23:00 had significantly higher mean BMI and larger
mean WC than those with higher PACs at either an early time
(08:00–11:00) or later time (16:00–21:00) of the day (9).

Yet, the combination of the timing of both dietary EI and PA
throughout a 24-h day simultaneously and investigation of their
joint relation with health status indicators are not known. To
fill this gap, this study describes the creation of “joint temporal
dietary and PA patterns” (JTDPAPs), or the chronological succes-
sion of energy from dietary intake and varying PACs over time.
Therefore, study objectives were to 1) create clusters of JTDPAPs
using modern data-driven distance-based clustering algorithms,

and 2) investigate the association between JTDPAP clusters and
primary health status indicators including BMI, WC, and odds
of being obese, as well as secondary health status indicators
including fasting plasma glucose, glycated hemoglobin (HbA1c),
triglycerides, HDL cholesterol, total cholesterol, blood pressure,
and disease status including T2DM and MetS, among US adults.
JTDPAPs are hypothesized to be linked with health status
indicators and disease status among US adults aged 20–65 y using
NHANES 2003–2006.

Methods

Participants and data set

NHANES is a cross-sectional survey that is carried out by
the National Center for Health Statistics (NCHS) of the US
CDC to assess the US noninstitutionalized civilian population’s
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FIGURE 2 PA heat maps representing 4 distinct JTDPAPs for US adults aged 20–65 y drawn from NHANES 2003–2006 (C1: n = 256; C2: n = 678; C3:
n = 472; C4: n = 430). Distribution of PA of 4 JTDPAP clusters generated through the dependent constrained band dynamic time warping method is shown.
PACs ranging from 0 cph to 1.2 × 105 cph (y axis, truncated) ranging from 00:00 to 24:00 (x axis) for US adults aged 20–65 y as drawn from NHANES
2003–2006 are depicted. The proportion of participants in each of 4 JTDPAP clusters reporting PA is represented through shading ranging from 0.0% to 13.9%
of participants. Darker shading represents a greater percentage of participants in the cluster reporting the same number of PACs at that time. cph, counts per
hour; C1, Cluster 1; C2, Cluster 2; C3, Cluster 3; C4, Cluster 4; JTDPAP, joint temporal dietary and physical activity pattern; PA, physical activity; PAC,
physical activity count.

health and nutritional status. The participants of NHANES
are selected using a complex, multistage sampling design.
Selected participants undergo an in-person household interview,
a physical health examination, and a phone follow-up inter-
view. Participants’ sociodemographic information was collected

during the in-person household interview, which included age,
sex, race/ethnicity, and poverty to income ratio (PIR), using
questionnaires. All participants consented to completing the
survey approved by the NCHS Research Ethics Review Board
(10).

FIGURE 3 The largest EI heat maps representing 4 distinct JTDPAPs for US adults aged 20–65 y drawn from NHANES 2003–2006. Heat maps
(distribution) of the highest EI of 1836 participants in 4 JTDPAP clusters (C1: n = 256; C2: n = 678; C3: n = 472; C4: n = 430). The clusters were generated
through the dependent constrained band dynamic time warping method for nonpregnant US adults aged 20–65 y as drawn from NHANES 2003–2006. The
absolute EI (blocks in heat map) is characterized by amount (y axis: ranging from 0 to 4000 kcal) ranging from 00:00 to 24:00 at the hourly level (x axis). The
shading of blocks (ranging from 0.0% to 7.8%) represents the proportion of participants in each cluster whose highest EI is characterized by the corresponding
amount and timing. Darker shading represents a greater percentage of participants in the cluster reporting the same amount of EI at that time. C1, Cluster 1;
C2, Cluster 2; C3, Cluster 3; C4, Cluster 4; EI, energy intake; JTDPAP, joint temporal dietary and physical activity pattern.
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FIGURE 4 The largest PA heat maps representing 4 distinct JTDPAPs for US adults aged 20–65 y drawn from NHANES 2003–2006. Heat maps
(distribution) of the highest PA of participants in 4 JTDPAP clusters (C1: n = 256; C2: n = 678; C3: n = 472; C4: n = 430). The clusters were generated through
the dependent constrained band dynamic time warping method for US adults aged 20–65 y as drawn from NHANES 2003–2006. The PA (blocks in heat map)
is characterized by counts (y axis: ranging from 0 cph to 1.2 × 105 cph, truncated) ranging from 00:00 to 24:00 at the hourly level (x axis). The shading of
blocks (ranging from 0.0% to 13.9%) represents the proportion of participants in each cluster whose highest PAC is characterized by the corresponding amount
and timing. Darker shading represents a greater percentage of participants in the cluster reporting the same number of PACs at that time. cph, counts per hour;
C1, Cluster 1; C2, Cluster 2; C3, Cluster 3; C4, Cluster 4; JTDPAP, joint temporal dietary and physical activity pattern; PA, physical activity; PAC, physical
activity count.

Analytic sample

NHANES 2003–2006 was used owing to the availability
of hip-worn PA accelerometer data. The analytic sample only
included nonpregnant US adults ages 20–65 y with ≥1 reliable
24-h weekday dietary recall and 1 valid weekday accelerometer
record. The temporal dietary and PA behaviors of pregnant
women and participants outside of the age range are expected to
entail unique life stage patterns and were excluded. Participants
with missing sociodemographic, anthropometric, and health
status indicator data were also excluded. Therefore, the study
sample included 1836 participants (Supplemental Figure 1).

Dietary data assessment

The USDA Automated Multiple-Pass Method was used
to collect 2 dietary recalls (11) detailing all the foods that
participants reported consuming during a 24-h period, including
information on the time of intake, amount, and type of each

food, and detailed food descriptions (12). One valid dietary 24-
h recall that met the minimum criteria in NHANES (12) with
nonzero EI was used in this study. Previous research has found
that weekdays and weekend days of dietary intake can differ
(13). For this first attempt to generate JTDPAPs, weekday dietary
recalls were chosen to maintain the largest possible sample; the
first recall was used if it was for a weekday, otherwise, the second
weekday recall was used. Each participant’s EI for all reported
foods and beverages was determined using the USDA Food
and Nutrient Database for Dietary Studies (FNDDS) for 2003–
2004 data (USDA FNDDS, version 2.0) and 2005–2006 data
(USDA FNDDS, version 3.0). The duration time of the eating
occasions was not available in NHANES, but 15 min/occasion
was applied based on a previous study (14) so that energy reported
at a time of eating was divided by 15 min to determine the
energy per minute and applied to each minute within the 15-
min eating occasion. Dietary data from the chosen valid weekday
recall were also used to determine total EI over the entire
day.
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TABLE 1 Characteristics of clusters representing joint temporal dietary and physical activity patterns of US adults aged 20–65 y as drawn from the
NHANES, 2003–20061

Characteristics Total, n Cluster 1 Cluster 2 Cluster 3 Cluster 4 P value2

Total 1836 256 (14.0) 678 (36.9) 472 (25.7) 430 (23.4)
Survey year 0.19

2003–2004 895 (49.3) 131 (54.0) 338 (51.2) 222 (45.5) 204 (48.0)
2005–2006 941 (50.7) 125 (46.0) 340 (48.8) 250 (54.5) 226 (52.0)

Sex <0.0001∗
Male 933 (49.5) 197 (73.4) 226 (32.0) 202 (39.8) 308 (70.3)
Female 903 (50.5) 59 (26.6) 452 (68.0) 270 (60.2) 122 (29.7)

Race/ethnicity 0.09
Mexican American 389 (8.4) 54 (10.0) 142 (7.6) 107 (8.9) 86 (8.1)
Other Hispanic 57 (3.2) 11 (4.5) 16 (2.6) 18 (3.9) 12 (2.6)
Non-Hispanic white 910 (71.5) 127 (71.0) 325 (69.3) 229 (71.7) 229 (74.5)
Non-Hispanic black 385 (10.5) 56 (11.3) 149 (11.4) 96 (10.0) 84 (9.4)
Other 95 (6.4) 8 (3.2) 46 (9.1) 22 (5.5) 19 (5.4)

Age group, y <0.0001∗
20–34 560 (29.4) 122 (44.9) 138 (20.0) 162 (32.5) 138 (29.8)
35–49 623 (38.2) 93 (37.2) 193 (34.8) 173 (40.1) 164 (41.4)
50–65 653 (32.4) 41 (18.0) 347 (45.2) 137 (27.3) 128 (28.8)

Household PIR 0.007∗
0–0.99 288 (9.9) 39 (10.5) 136 (13.2) 57 (7.2) 56 (7.8)
1.00–2.99 427 (18.0) 62 (19.3) 161 (20.4) 116 (17.2) 88 (14.6)
2.00–2.99 280 (15.9) 40 (17.6) 111 (16.0) 73 (16.9) 56 (13.4)
3.00–3.99 277 (17.1) 39 (14.3) 94 (17.3) 79 (18.7) 65 (16.9)
4.00–4.99 168 (11.1) 24 (11.0) 50 (9.1) 39 (9.8) 55 (15.3)
≥5.00 396 (28.1) 52 (27.3) 126 (24.0) 108 (30.2) 110 (31.9)

BMI3 <0.0001∗
Underweight 24 (1.6) 4 (2.2) 10 (1.7) 6 (1.3) 4 (1.5)
Normal weight 519 (31.1) 103 (43.1) 164 (28.0) 146 (34.4) 106 (24.7)
Overweight 630 (33.5) 94 (36.9) 205 (28.4) 181 (37.3) 150 (34.5)
Obese 663 (33.8) 55 (17.8) 299 (41.8) 139 (27.0) 170 (39.4)

1Values are unweighted sample sizes and weighted percentages except for the total cluster size percentage. The percentages may not add up to 100%
owing to rounding. ∗Significant difference: P < 0.05. PIR, poverty to income ratio.

2Rao–Scott F adjusted χ2 test is a goodness-of-fit, 1-sided test. Analyses were adjusted for aspects of survey design including stratification, clustering,
and weight.

3BMI: categories were classified based on the WHO (95).

PA assessment

PA accelerometers were used to quantify the PA of each
participant. The accelerometers recorded vertical accelerations
as “counts per minute,” which represent the relative intensity
of movements per minute (15), for 7 consecutive days after the
health examination (16). Use of the accelerometer for >10 h/d
was considered as a valid wear day (17). Previous research has
determined that PA on weekdays or weekend days can differ (18).
One random valid weekday was selected for each participant to
ensure the selection probabilities for each weekday were equal
(19). The random valid weekday of accelerometer data was also
used to determine total PACs for the entire 24-h day. Because
there is no gold standard to identify intensity levels and different
cutoffs influenced estimates of PA intensity level, and specificity
and sensitivity regarding health indicators (20, 21), the possible
bias can be decreased by utilizing raw PACs, as in this study,
rather than cutoffs or categorized intensity levels.

Anthropometric assessment and laboratory tests

Health status indicators were included to study their associ-
ations with JTDPAPs. Height, weight, and WC were measured
(22), and BMI was calculated. Blood samples of participants

were obtained based on standardized protocols (23, 24). After
8.5–24 h of fasting, triglycerides were measured enzymatically
(25, 26) and a hexokinase method was used to measure fasting
plasma glucose with a Roche/Hitachi 911 in years 2003–2004
or a Roche Cobas Mira in years 2005–2006 (27, 28). HDL
cholesterol, total cholesterol, and HbA1c were measured without
regard to fasting or nonfasting state (29). A direct immunoassay
method was used to measure HDL cholesterol (30) and total
cholesterol was measured enzymatically (31, 32). The equipment
to measure HDL cholesterol and total cholesterol in years 2005–
2006 was different, but the method and location were the same
as those in 2003–2004 (30, 32). The blood lipid measurements
were standardized for NHANES according to the CDC’s lipid
standardization program (33) and corrected using the Solomon
Lab quality controls (30, 32). HPLC was used to measure HbA1c
by a Primus CLC 330 and Primus CLC 385 (Primus Corporation)
in years 2003–2004 and a Tosoh A1c 2.2 Plus Glycohemoglobin
Analyzer (Tosoh Medics, Inc.) in years 2005–2006 (34, 35). A
mercury sphygmomanometer was used to measure ≤4 systolic
and diastolic blood pressures (36): if only 1 measurement was
recorded, the value used in this study was the only measurement;
if multiple measurements were recorded, the mean of the multiple
measurements excluding the first measure was used.
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TABLE 2 Qualitative description of separate energy and PA pattern clusters representing joint temporal dietary and physical activity patterns of US adults
aged 20–65 y as drawn from the NHANES, 2003–20061

Cluster 1 Cluster 2 Cluster 3 Cluster 4

n (%) 256 (14.0) 678 (36.9) 472 (25.7) 430 (23.4)
Characteristics of EI

patterns
Mean ± SEM EI is

2558 ± 69 kcal/d. Peaks
in EI were at 2 main
occasions reaching
≤1600 and ≤2200 kcal
at 11:00–13:00 and
17:00–20:00 where
59.35% and 75.8% of the
cluster consumed
0–600 kcal, respectively

Mean ± SEM EI is
1808 ± 28 kcal/d.
Proportionally equivalent
peaks in EI were at 2
main occasions reaching
≤1000 kcal at
11:00–14:00 and
17:00–20:00 where
79.5% and 81.3% of the
cluster consumed
0–600 kcal, respectively

Mean ± SEM EI is
1817 ± 34 kcal/d.
Proportionally equivalent
peaks in EI were at 2
main occasions reaching
≤1000 kcal at
11:00–04:00 and
17:00–20:00 where
74.2% and 78.6% of the
cluster consumed
0–600 kcal, respectively

Mean ± SEM EI is
3017 ± 46 kcal/d. Peaks
in EI were at 2 main
occasions reaching
≤1600 and ≤1800 kcal
at 11:00–14:00 and
17:00–21:00 where
46.5% and 31.9% of the
cluster consumed
200–800 kcal,
respectively

Characteristics of PA
patterns

Mean PA (SEM) is
5.7 × 105 (1.2 × 104)
counts/d. Highest PACs
reached >1.2 × 105 cph
and 92.2% of the cluster
engaged in PACs
between 1.8 × 104 and
3.6 × 104 cph between
08:00 and 20:00

Mean PA (SEM) is
1.7 × 105 (2.4 × 103)
counts/d. Lowest PACs
reached ≤3.8 × 104 cph
and 98.1% of the cluster
engaged in PACs
between 0.3 × 104 and
1.2 × 104 cph between
09:00 and 22:00

Mean PA (SEM) is
3.4 × 105 (4.7 × 103)
counts/d. High PACs
reached ≤8.8 × 104 cph
and 75.4% of the cluster
engaged in PACs
between 1.2 × 104 and
2.4 × 104 cph between
16:00 and 20:00

Mean PA (SEM) is
3.0 × 105 (5.0 × 103)
counts/d. High PACs
reached ≤6.2 × 104 cph
and 58.6% of the cluster
engaged in PACs
between 1.2 × 104 and
2.4 × 104 cph between
09:00 and 12:00

1cph, counts per hour; EI, energy intake; PA, physical activity; PAC, physical activity count.

Disease status classification

Disease status included obesity, T2DM, and MetS. Obesity
was classified as BMI (in kg/m2) >30 (37). The number
of participants with T2DM was determined by subtracting
the number with type 1 diabetes from the total number of
participants with diabetes. Diabetes was classified by participant
self-reports of being told they had diabetes by a doctor or of
taking medications that lowered glucose, or by fasting plasma
glucose concentration ≥126 mg/dL or HbA1c ≥ 6.5% (38).
Type 1 diabetes was classified when a participant reported being
diagnosed with diabetes before being 30 y old and continuous
insulin use since diagnosis (39). MetS was determined by ≥3 of
5 risk factors: 1) WC > 102 cm for men or >88 cm for women; 2)
triglycerides >150 mg/dL; 3) HDL cholesterol < 40 mg/dL for
men or <50 mg/dL for women; 4) hypertension (systolic blood
pressure > 130/diastolic blood pressure > 85 mm Hg); or 5)
impaired fasting plasma glucose >110 mg/dL (40).

Measures for covariates

Variables to classify survey year (2003–2004 and 2005–2006)
and variables based on self-reported information to classify sex
(male or female), race/ethnicity, age group (20–34, 35–49, and
50–65 y), and PIR were created and used to adjust the models.
Furthermore, BMI, total PACs per day, and energy misreporting
were also accounted for in the models. Race/ethnicity was
reported and classified as Mexican American, other Hispanic,
non-Hispanic white, non-Hispanic black, and other including
multirace. PIR was the reported household income divided by the
federal poverty guideline for household income, and classified
as 0–0.99 (under poverty threshold), 1–1.99, 2–2.99, 3–3.99, 4–
4.99, and ≥5 (41). BMI was classified as underweight (<18.5),
normal weight (18.5–24.9), overweight (25.0–29.9), and obese

(>30.0) (37). Energy misreporting was considered as a potential
confounder modeled as total EI divided by estimated energy
requirement (EER) (42–44), where EER was calculated using
equations for adults based on age, sex, height, weight, and PA
level according to the Institute of Medicine (45). According to
previous studies, the vast majority (96.5%) of the US NHANES
participant sample (and representative of the US population as
a whole) did not meet the Physical Activity Guidelines for
Americans and, similarly, the mean PACs of the 4 clusters
indicated a light activity level (17, 46). Therefore, a low PA
level was applied in the calculation to determine the EER
(coefficient for men = 1.11 and women = 1.12) (44). For each
participant whose data are reported in the NHANES data, the
NCHS creates a weight based on the selection process. Weights
were constructed when combining survey cycles 2003–2006 and
used in the models, so the results are representative of the US
civilian, noninstitutionalized population at the midpoint of the 4
y of the study (47, 48). The survey design of NHANES included
stratification and clustering, which were both accounted for in the
regression models according to NCHS guidelines to increase the
precision of survey estimates (49).

Creating JTDPAPs

Participants’ diet and PA data from the NHANES were
extracted as 2-dimensional time series of length 1440 (24 h × 60
min), the entries of which are 2-dimensional vectors consisting
of EIs and PACs at the timing (min) indicated by their indexes.
For instance, participant q is represented by a 2D time series

[x(q)
1 , x(q)

2 , . . . , x(q)
i , . . . , xq

M], where x(q)
i = [ EI(q)

i

PAC(q)
i

]x(q)
i = [ EI(q)

i

PAC(q)
i

] is

a 2D vector representing the EI and PAC at the ith minute of the
day, and M = 1440 is the length of the time series. Distance-based
clustering analysis was used to derive JTDPAPs; specifically,
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dynamic time warping (DTW) is a distance measure that was
used to determine the pairwise distances between participants
(50). Unlike the commonly used Euclidean distance which
sums the squared differences of entries with the same indexes,
DTW finds the optimal matching path such that the summed
differences between matched entries are minimized under certain
conditions (50). In addition, the Sakoe-Chiba band (51) was used
to constrain the maximum temporal difference between matched
entries to avoid pathological warping (e.g., matching activities
in the morning to activities in the evening), and is denoted as
constrained band DTW (CDTW).

The original CDTW was designed for 1-dimensional speech
signals. To generalize CDTW to multidimensional time series
such as the diet and PA time series, 2 commonly used
methods (52), i.e., independent multivariate CDTW (CDTWI)
and dependent multivariate CDTW (CDTWD), were adopted.
CDTWI uses CDTW distances which were computed based on
dietary data and PA data independently [i.e., to determine CDTWI

for 1 pair of participants, 2 separate CDTW distances were
computed: CDTWdiet

∑
(i, j)∈M (EI(p)

i − EI(q)
j )2 and CDTWPA =

∑
(i, j∈M) (PAC(p)

i − PAC(q)
j )2 where M denotes the alignment

(matching path) that is found by the DTW algorithm; it defines
how entries/events (EI for diet) of participant p are matched
to those in participant q. EI(p)

i and PAC(p)
i denote the EI and

PACs in the ith minute of the day of participant p]; and the
joint distance was determined from the equation: CDTWI = α ×
CDTWPA + (1 − α) × CDTWdiet(0 ≤ α ≤ 1), where parameter
α controls the emphasis on PA over diet. Note that CDTWI

reduces to CDTWPA when α = 1 and to CDTWdiet when α = 0,
and larger values of α indicate more emphasis on PA than dietary
information in the clustering. In contrast, CDTWD computes the
joint distance following a similar procedure as 1-dimensional
CDTW. First, the difference between 2 entries, (EIi, PACi)
and (EIj, PACj), was defined as (1 − α) × (EIi − EIj)2 + α ×
(PACi − PACj)2(0 ≤ α ≤ 1). Next, the same dynamic program-
ming algorithm that finds the optimal matching path in CDTW
was used here using the newly defined difference. The joint
distance CDTWD was determined as the summed differences
along the optimal matching path. The parameter α in CDTWD

has similar effects on the derived JTDPAPs as in CDTWI.
The discussion on multidimensional CDTW is kept necessarily
brief in this article but more detail can be found in previous
publications (50, 52).

Both CDTWI and CDTWD were coupled with 3 popular
distance-based clustering algorithms including kernel k-means
(53), spectral clustering (54), and hierarchical agglomerative
clustering (55) to partition the participants into 4 mutually
exclusive clusters based on internal criteria including Silhouette
Index and Dunn Index and external criteria including the number
of significant inferential analysis results. In addition, the density
balanced hierarchical cluster agglomeration (DBHCA), which
exploits the definition of local reachability density (56), was used
to develop a density-based, distance-aided cluster agglomeration
method. In this method, pairwise CDTW with Sakoe-Chiba band
and kernel k-means were coupled to derive 4 clusters based
on dietary data and PA data independently (9, 57). The cross
product of diet and PA clusters resulted in 16 initial clusters. Next,
DBHCA agglomerateed the 16 initial joint clusters into 4 final
clusters by repeatedly merging the 2 most similar clusters. Unlike
previous hierarchical agglomerative methods (58–60), DBHCA
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follows a density-similarity-first strategy to avoid the chaining
effect, and introduces a distance threshold to ensure diet and
PA similarity between clusters. Python was used to perform all
clustering.

Statistical analysis

The 3 aforementioned methods were evaluated using in-
ferential analysis to determine the strength of the JTDPAP’s
relation with the health status indicators. For categorical disease
status indicators for obesity (yes/no), T2DM (yes/no), and
MetS (yes/no), the receiver operating characteristic curves were
used to evaluate the models. The AUCs in all 3 categorical
disease status models were >0.8. For continuous health status
indicators including BMI, WC, fasting plasma glucose, HbA1c,
triglycerides, HDL cholesterol, total cholesterol, and systolic
and diastolic blood pressure, residual plots and outliers were
checked, and triglycerides, HbA1c, total cholesterol, and fasting
plasma glucose exhibited suspected outliers in the residuals.
After rerunning the analysis without those points, the inferential
analysis results did not change substantially. Further, the values
that produced the extreme residuals were considered biologically
possible and acceptable so they were retained. Ultimately,
CDTWD with Sakoe-Chiba band = 240 and α = 0.0016 produced
the strongest relations with health status indicators based on
inferential analysis results that included the most significant
differences between the 6 pairwise comparisons among all health
status indicators, the highest model R2 values, or the lowest
Akaike information criterion.

ANOVA and the Kruskal–Wallis test showed significant
differences among the cluster means of HDL cholesterol and all
other health status indicator models, respectively. Multiple linear
regression models compared clusters of JTDPAPs on continuous
health status indicators. Multiple logistic regression models com-
pared clusters of JTDPAPs on categorical disease status indica-
tors. Models using BMI, WC, and obesity as health status indica-
tors were adjusted for survey year, age group, sex, race/ethnicity,
PIR, total PACs per day, and energy misreporting, whereas
models using other health and disease status indicators were in
addition adjusted for BMI. The Tukey–Kramer adjustment was
made for multiple comparisons. Adjusted P < 0.05 for com-
parisons among clusters was considered statistically significant.
SAS version 9.4 (SAS Institute Inc) was used to complete the
analysis.

Visualization

The visualization (Figures 1 and 2) used heat maps to reveal
the distribution of nonzero eating occasions and nonzero PACs
in 4 distinct JTDPAP clusters. The x axis indicated time ranging
from 00:00 to 24:00, whereas the y axis was either absolute EI
ranging from 0 kcal to 4000 kcal or PACs ranging from 0 to
1.2 × 105 (truncated) at a certain hour. Both EI and PAC were cal-
culated from their minute records. The proportion of individuals
in each cluster reporting eating occasions or PA was represented
through shading and ranged from 0.0% to 27.7% or from 0.0%
to 13.9% in the 4 JTDPAP clusters, respectively. The darker
shading represented that a greater percentage of participants in
the cluster reported the same amount of EI or PACs at that time.
Figures 3 and 4 added color to show the distribution of the largest
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EIs (Figure 3) and PACs (Figure 4) throughout 24 h among the 4
clusters.

Results
Table 1 shows the demographic characteristics of participants

in the 4 JTDPAP clusters. Cluster 2 had the largest proportion
(36.9%) of participants, whereas Cluster 1 had the smallest
proportion (14.0%); Clusters 3 and 4 had similar proportions of
participants (25.7% and 23.4%, respectively). There were signifi-
cant differences in sex (P < 0.0001), age group (P < 0.0001), PIR
(P = 0.007), and BMI (P < 0.0001) among clusters. Men made up
the majority in Cluster 1 (73.4%) and Cluster 4 (70.3%), whereas
women made up the majority in Cluster 2 (68.0%) and Cluster 3
(60.2%). In addition, the age group 20–34 y was more heavily
represented in Cluster 1 (44.9%), the age group 50–65 y was
more heavily represented in Cluster 2 (45.2%), and the age group
35–49 y was more heavily represented in Clusters 3 (40.1%)
and 4 (41.4%). Further, participants with the lowest household
PIR (0–0.99) accounted for the largest percentage (13.2%) and
those with the highest household PIR (≥5.00) accounted for the
smallest percentage (24.0%) in Cluster 2 compared with the 3
other clusters. Participants in Cluster 1 had a greater proportion
(43.1%) of normal weight than the 3 other clusters; whereas
Clusters 2 (41.8%) and 4 (39.4%) had greater proportions of
participants with obesity than the 2 other clusters.

Characteristics of JTDPAPs

Characteristics of JTDPAPs are summarized in Table 2 based
on the cluster visualizations in Figures 1–4. In respect to dietary
intake, the absolute EI in Cluster 4 was significantly higher than
in the 3 other clusters. The absolute EIs in Clusters 2 and 3
were both less but more concentrated between 0 and 600 kcal
around noon and in the evening than in Clusters 1 and 4, which
were more concentrated between 0 and 800 kcal with a more
dispersed distribution. Two main EI peaks from all 4 clusters
occurred around 12:00 and 18:00. Clusters 1 and 4 displayed
more EI around noon and in the evening, whereas Clusters 2
and 3 exhibited more energy-equivalent eating occasions with no
distinct EI peaks.

With respect to PA, Cluster 1 demonstrated the highest PACs,
Cluster 2 demonstrated the lowest PACs, and Clusters 3 and 4
demonstrated similar PACs in the middle among the 4 clusters.
The intensity of activity in Cluster 3 tended to increase toward
later hours from 16:00 to 20:00; however, Cluster 4 intensity
tended to be greater toward the earlier hours from 09:00 to 12:00
and decrease toward later hours after 13:00. This suggested that
Cluster 3 had more of an evening PA pattern, whereas Cluster 4
had more of an early morning PA pattern.

Associations of JTDPAPs with obesity

The primary result of this study is that JTDPAPs are associated
with obesity-related health indicators. Participants in Cluster 1
had significantly lower mean BMI and smaller WC than those in
Clusters 2 and 4 as well as those in Cluster 3 than those in Clusters
2 and 4 in the unadjusted model (P < 0.05) (Supplemental
Tables 1 and 2). Participants in Cluster 4 had significantly higher
mean BMI and larger WC than those in Clusters 1 (P < 0.0001,
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P = 0.0001, respectively), 2 (P = 0.01, P = 0.05, respectively),
and 3 (P < 0.0001, P < 0.0001, respectively), and participants
in Cluster 3 also had significantly lower mean BMI and smaller
WC than those in Cluster 2 (P = 0.001, P = 0.003, respectively)
in the adjusted models (Tables 3 and 4). The greatest significant
differences in mean BMI and mean WC were present between
Clusters 3 and 4 (β: −3.7 ± 0.5 and β: −8.3 ± 1.3 cm,
respectively) in the adjusted model (Tables 3 and 4).

There were significant differences among all comparisons of
2 clusters except for Clusters 2 and 4 in the odds of being
obese to normal weight in the unadjusted model (P < 0.05)
(Supplemental Table 3). The significant differences remained
between Cluster 4 and Clusters 1 (P < 0.0001), 2 (P = 0.004),
and 3 (P < 0.0001) in the adjusted models (Table 5). The greatest
significant difference in odds of being obese was present between
Clusters 1 and 4 in the adjusted model (OR: 0.2; 95% CI: 0.1,
0.5).

Association between JTDPAPs and other health status
indicators

The secondary result of this study is that JTDPAPs are
associated with other health indicators. Supplemental Tables 4–
12 present the association of JTDPAPs with other health status
indicators, T2DM, and MetS in the unadjusted model. There were
3 significant differences in triglycerides between Clusters 1 and
2 or 3, and Clusters 2 and 4, and 3 significant differences in total
cholesterol between Cluster 1 and the 3 other clusters, in the ad-
justed models (Tables 6 and 7). There were no significant differ-
ences in the adjusted models for all other examined health status
indicators, T2DM, and MetS (Supplemental Tables 13–19).

Discussion
In this study, primarily, clusters representing JTDPAPs among

US adults ages 20–65 y were created using a novel methodology.
Even though previous studies investigated the potential role
of timing of eating and PA for health (7–9, 61–65), to our
knowledge, this is the first study to create JTDPAPs that
integrated the amount/counts, frequency, and timing of dietary
intake and PA throughout 24 h. JTDPAPs are associated with
BMI, WC, triglycerides, total cholesterol, and odds of being
obese among investigated health or disease status indicators.
The circadian system has an important effect on the regulation
of metabolism, physiology, and behavior and may help to
explain why the timing of diet and PA exposures is important
to health. Biological rhythms are coordinated in the circadian
system through the involvement of clock genes (66–68). Diet
and PA are behavioral factors that can have an impact on the
circadian system. If these external behaviors are misaligned with
the original circadian system, such as in eating late at night,
metabolism may be impaired and could lead to dysfunction
(69–74).

The significant mean differences in BMI, WC, triglycerides,
but not total cholesterol, among JTDPAP clusters were both sta-
tistically significant and clinically meaningful (75–79), showing
a potential for future clinical application. JTDPAPs could be an
important health exposure that holds promise for early detection
of lifestyle factors to promote health and prevent disease. T
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Participants in Cluster 1 had significantly lower BMI, total
cholesterol concentration, odds of obesity, and smaller WC
than those in Cluster 4. A pattern with 3 evenly spaced eating
occasions with higher EI during 2 main eating occasions from
11:00 to 13:00 and 17:00 to 20:00 and higher PACs during the
day, may bring more benefits to health than a pattern with higher
overall EI and an energy peak from 17:00 to 21:00 and lower
PACs throughout a day. These primary findings are in line with
the previous finding that suggested lower EI and higher PA level
are positively associated with a lower prevalence of obesity-
related health outcomes (8, 9, 15, 80–83). Moreover, being
in Cluster 1 was also associated with significantly lower total
cholesterol than the 3 other clusters, a result that is also consistent
with previous PA studies showing higher PA level is positively
associated with a lower concentration of total cholesterol (84–
86). Furthermore, Cluster 1 participants demonstrated peaks of
PACs before corresponding eating occasions, which may indicate
participants have a high level of PA before eating. Cluster 1
predominantly included men and the age group 20–34 y, which
is consistent with previous studies showing young adults have
higher PA intensities than older adults (87).

Cluster 2 had a significantly higher mean BMI and larger mean
WC than Cluster 3. Because Clusters 2 and 3 had similar dietary
patterns during the day, this result suggests that PA may have a
main effect on modulating BMI and WC as supported by previous
studies (15, 80–83). Cluster 2 with the lowest PACs among
the 4 clusters had the highest number of participants (36.9%),
corroborating evidence that US adults engage in high amounts
of sedentary behavior (88). In addition, Cluster 2 predominantly
included women, ages 50–65 y with low PIR and odds of obesity,
which aligns with previous findings of lower PA and EI with
advanced age (89, 90) and among women (82), especially those
with low income (91, 92).

Results of no significant differences among JTDPAP clusters
in terms of the other short-term health status indicators and
disease statuses examined in this study were unexpected. A
systematic review demonstrated that participants who exercised
postmeal at any time of day had lower postprandial glycemia
than those who exercised premeal (5). Further, a cross-sectional
study showed that a temporal dietary pattern with “later lunch”
(13:00–14:00) was associated with hypertension compared with
that with “conventional lunch” (12:00–13:00) in women (62).
Potential reasons for no significant differences in these health
status indicators of this study may be due to the similar timing of
dietary intake among the 4 clusters yet varying amounts of EI or
individual variability in short-term serum biomarkers being larger
than among long-term indicators like BMI and WC. If not, this
finding may imply that JTDPAPs may be more closely related to
long-term health status indicators like BMI and WC rather than
short-term indicators such as blood pressure.

One of the strengths of the study was the comprehensive
method to integrate temporal dietary and PA exposures together
over a 24-h day. Using this method, the clusters were not
generated from a predefined standard but data-driven methods
based on the true nature of the behaviors. Even though this
is the first attempt to integrate multiple behaviors, additional
multidimensionality of dietary intake and PA such as diet quality
and activity type, along with other factors such as comorbidity
status, medication use, and other lifestyle behaviors such as
smoking, should be incorporated in future studies. But because
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of the cross-sectional study design, this study cannot be used
to infer causation. In addition, the patterns generated integrate
both EI and PA over time, but the influences of factors of
behavior and timing are not distinguishable because the goal
was to determine if their integration had a significant relation
with health. Another limitation is that the dietary and PA data
are from 1 weekday dietary recall and 1 weekday accelerometer
record, respectively, likely representing different days because
of NHANES protocol, yet their combination assumes the data
represent participants’ regular patterns. NHANES includes ≤2
dietary recalls and 7 d of PA accelerometer data, so the sample
size would be further reduced if a second recall or another day
of PA was also an inclusion criterion, even though two 24-h
dietary recalls or multiple PA accelerometer data may better
identify participants’ usual temporal eating pattern and temporal
PA pattern. In addition, because little is known about temporal
dietary and PA behavior over multiple days, future studies should
explore the integration of the amount/intensity and temporal
sequence of dietary intake and PA over multiple days. A single
24-h dietary recall may be considered to be representative to
estimate the general dietary pattern if days of the week of dietary
recalls are evenly selected (93), and 1 valid random day of PA
data is also considered to be sufficient at the population level
(19). The dietary data in this study did not evenly distribute
across the week, thus, weekend compared with weekday patterns
should be further investigated and the conclusion of this study
should be cautiously generalized because only weekday data
were used. Accelerometers are not waterproof and only record
uniaxial movement, so they did not record or accurately record
all types of activity such as swimming or elliptical training
(16), but main sources of PA for most people like walking were
accounted for. Moreover, because total cholesterol may not be
measured at fasting state, it may result in higher concentration
than fasting total cholesterol (94), but compared with the fasting
lipid profile, the diagnostic accuracy of the nonfasting lipid
profile was significantly higher for the assessment of lipoprotein
coronary risk (94). Finally, the study sample is only 8.97% of
the original population in NHANES 2003–2006 because many
participants in the original sample were outside of the age range
20–65 y and did not have valid fasting health status indicator
information. Owing to the relatively small sample size, the unique
JTDPAPs that may exist in the population, such as night shift
patterns, may not be observed because these smaller patterns
were combined with other patterns preventing observation of
their unique temporal characteristics.

In conclusion, JTDPAPs are significantly associated with BMI,
WC, triglycerides, total cholesterol, and obesity. A JTDPAP
cluster with 2 energy-equivalent main eating occasions and
higher PACs may be associated with more favorable health
indicators including lower BMI, total cholesterol concentration,
odds of obesity, and smaller WC in US adults than other
JTDPAPs. The integration of weekday EI, PACs, and the timing
of those exposures is possible in generating JTDPAPs that are
associated with health status indicators and could contribute to
early detection of lifestyle behavioral patterns prone to obesity.
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