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Abstract
A dynamical systems perspective on multi-agent learning, based on the link between evolutionary game theory and

reinforcement learning, provides an improved, qualitative understanding of the emerging collective learning dynamics.

However, confusion exists with respect to how this dynamical systems account of multi-agent learning should be inter-

preted. In this article, I propose to embed the dynamical systems description of multi-agent learning into different

abstraction levels of cognitive analysis. The purpose of this work is to make the connections between these levels explicit

in order to gain improved insight into multi-agent learning. I demonstrate the usefulness of this framework with the general

and widespread class of temporal-difference reinforcement learning. I find that its deterministic dynamical systems

description follows a minimum free-energy principle and unifies a boundedly rational account of game theory with

decision-making under uncertainty. I then propose an on-line sample-batch temporal-difference algorithm which is

characterized by the combination of applying a memory-batch and separated state-action value estimation. I find that this

algorithm serves as a micro-foundation of the deterministic learning equations by showing that its learning trajectories

approach the ones of the deterministic learning equations under large batch sizes. Ultimately, this framework of embedding

a dynamical systems description into different abstraction levels gives guidance on how to unleash the full potential of the

dynamical systems approach to multi-agent learning.

Keywords Multi-agent learning � Temporal-difference reinforcement learning � Evolutionary game theory �
Levels of analysis

1 Introduction

Multi-agent learning. In a multi-agent system, a collective

of autonomous agents interacts in a shared environment.

Multi-agent systems are important for a variety of appli-

cation domains, such as traffic [3, 90, 113], manufacturing

[111], electricity [82] and finance [61]. Furthermore, a

sound understanding of multi-agent systems is relevant for

other fields, such as biology [68], economics [28],

sustainability [10] and social sciences in general [19]. For

artificial agents, preprogrammed agent behavior cannot

lead to satisfactory solutions when the behavior of other

agents and the shared environment is unknown or too

complex. The agents need to learn an appropriate course of

actions by themselves. Likewise, natural agents do use

many forms of learning, which is required when the future

is unpredictable and complex and therefore precise plan-

ning is doomed to failure.

While many learning mechanisms have been studied and

applied in a multi-agent setting [31, 92], a significant

amount of work concerns multi-agent reinforcement

learning [17, 105]. Reinforcement learning is a trial-and-

error method of mapping situations to actions in order to

maximize a numerical reward signal [98]. Particular

& Wolfram Barfuss

wolfram.barfuss@uni-tuebingen.de

1 School of Mathematics, University of Leeds, Leeds, UK
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challenging is the case when rewards come as a delayed

consequence of current actions. For this case, the class of

reinforcement learning procedures that utilizes the differ-

ence between estimates made from past and current expe-

riences, called temporal-difference learning [96], has been

particularly influential. Also, remarkable similarities exist

between computational reinforcement learning and results

of neuroscientific experiments [24]. Dopamine appears to

convey temporal-difference errors to brain structures where

learning and decision-making take place [87]. It has further

been argued that this dopamine reward-prediction error

signal constitutes a potential neuronal substrate for the

crucial economic decision variable of utility [88].

Reinforcement learning algorithms can be divided into

two categories: model-free and model-based. Model-free

methods learn directly from experience, whereas model-

based methods learn a model of the environment to plan

their course of actions [44]. In multi-agent settings, agents

can be further categorized into two categories [15, 105]:

independent learners, which learn the value of situation-

action mappings only for their own actions and joint-action

learners, where the learning takes place over the joint-

action space [20].

Challenges. However, the application of multi-agent

learning systems is hindered by numerous challenges:

Complexity. The joint state-action space suffers from the

curse of dimensionality, hindering the scalability of algo-

rithms to realistic problem sizes [17]. While deep-learning

techniques can enable the scalability of multi-agent learn-

ing, several new challenges need to be addressed regarding

implementation, computational demands and scientific

reproducibility [43].

Non-stationarities. Each agent’s environment becomes

non-stationary due to the other learning agents. Thus, each

agent is faced with a moving-target problem [105] which

invalidates the convergence properties of most single-agent

learning algorithms [17, 42]. Also, the exploration–ex-

ploitation trade-off is further complicated due to the pres-

ence of multiple agents. Agents need to explore to obtain

information not only about the environment, but also about

the other agents [17]. As a result, the analysis of the

transient learning behavior gains in importance.

Coordination needs. Agents need to coordinate between

equally good policies, since the effect of any agent’s action

depends also on the actions taken by the other agents

[17, 72]. Even more challenging is the case when the

agents did not train together and have to coordinate in an

ad hoc [95] or zero-shot [51] manner.

Social dilemmas. Social dilemmas can arise, typically

defined as a situation in which any agent prefers the

socially defecting choice, regardless of what the other

agents do, yet all agents are better off if all choose the

socially cooperative option [23].

Learning goal. Last, defining an appropriate learning

goal still remains challenging since the objectives of the

agents are not necessarily aligned [17, 93, 117].

Taken together, these challenges culminate in the chal-

lenge of the interpretability of multi-agent learning sys-

tems. Despite the lack of consensus on how to specify

interpretable machine learning, it has been widely recog-

nized as an important aspect for the advancement of

autonomous learning systems [65]. The majority of inter-

pretability research focuses on methods for classifying

high-dimensional data. Techniques for interpretable rein-

forcement learning have not been extensively studied [45].

As Doshi-Velez and Kim [27] argue, the need for inter-

pretability stems from an incompleteness in the problem

formalization. As the list of challenges above highlights,

multi-agent learning with various types of learners in var-

ious types of environments can find themselves in various

types of strategic interactions and dynamic regimes under

various types of learning goals. This openness of the multi-

agent learning problem formulation highlights the need for

interpretable multi-agent learning methods.

Replicator Reinforcement Learning Dynamics. A

dynamical systems approach, based on the link between

evolutionary game theory and reinforcement learning,

contributes to solving these challenges by providing

improved, qualitative insights into the emerging collective

learning dynamics [15]. This link turned out to be benefi-

cial for applications regarding hyper-parameter tuning

[56, 58], the design of new reinforcement learning algo-

rithms [36, 40], the creation of novel evaluation metrics

[78] and the analysis of strategic interactions [116].

Therefore, it is a prime candidate for interpretable multi-

agent learning research.

In their seminal work, Börgers and Sarin showed how

one of the most basic reinforcement learning update

schemes, cross-learning [22], can converge to the deter-

ministic replicator dynamics of evolutionary games theory

[18]. This connection opened up all the tools of dynamical

systems theory to the study of collective learning. The

relationship between the two fields is as follows: one

population with a frequency over phenotypes in the evo-

lutionary setting corresponds to one agent with a frequency

over actions in the learning setting [103]. The convergence

to the replicator dynamics has also been shown for stateless

Q-learning [86, 104], following some mathematical limit-

ing procedure.

Yet, there is ambiguity as to how this deterministic—

sometimes also called evolutionary —limit is taken. Con-

sequently, it remains also unclear how to interpret these

dynamics of multi-agent reinforcement learning [6].

One technique sends the learning rate to zero, resulting

in replicator-type dynamics in continuous time [86, 104].

However, previous work found that discrepancies arise
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between the learning trajectories of the limiting learning

equations and the actual Q-learning algorithm at small

learning rates. This policy-bias problem has been addressed

by modifications of the basic Q-learning algorithm. The

value of an action is updated proportional to the inverse of

the frequency of choosing that action. This suggests that

replicator dynamics learning actually matches a frequency-

adjusted Q-learning algorithm [1, 55].

Alternatively, a deterministic limit of reinforcement

learning can be taken in discrete time, resulting in a set of

difference equations for the action probabilities

[14, 32–34]. This technique assumes that agents update

their action values and policies only once every K rounds,

using averages of the collected rewards. Similar methods in

computer science are known as experience replay [64] or

batch learning [60]. Deterministic dynamics emerge by

sending the size of the batch K to infinity.

While the construction of such a batch-learning algo-

rithm is straight forward for stateless repeated games, it is

less clear how learning dynamics and batch algorithm

relate in multi-state environments. Overall, there is much

less work on learning dynamics in changing environments.

Multiple variants of state-coupled replicator dynamics

[40, 41, 109] have been introduced, yet, all of these

dynamics consider an average reward setting, whereas in

temporal-difference learning a discounted reward is com-

monly used. Recently, we introduced an analytical method

to derive the deterministic, discrete-time limit of temporal-

difference reinforcement learning with discounted rewards

[7]. This method extends on the idea of batch learning with

an infinite batch size, yet, it is still an open question how a

temporal-difference batch learning algorithm must be

constructed such that the learning trajectories of the algo-

rithm can approximate those of the deterministic dynamics

under large batch sizes.

Cognitive levels of analysis. In order to resolve ambi-

guity around the interpretation of multi-agent learning

using dynamical systems theory, I propose to embed the

dynamical systems approach within multiple levels of

cognitive analysis. Marr’s level of analysis—computa-

tional, algorithmic and implementation—has had far-

reaching influence in both neuroscience and cognitive

science [70, 71]. They correspond to an abstract charac-

terization of the computational problem being solved, the

algorithm executing that solution, and the hardware

implementing that algorithm. This framework highlights

that it is valid, fruitful, and even necessary to analyze

cognition by forming abstraction barriers which result in

different levels of analysis [35]. Griffiths and colleagues

[35] proposed to define levels of analysis that lie between

the computational and the algorithmic, leading to the study

of the optimal use of cognitive resources

[37, 50, 52, 63, 83].

Contributions. I take on this idea of different levels of

analysis and the value of building bridges between them

and explicitly apply it to multi-agent learning.

First, I associate the dynamical systems level—mani-

fested by replicator-alike equations—to an algorithmic

level of high abstraction. Note that dynamical systems

approaches to agent–environment interactions in particular

and cognitive science in general have a long tradition

[12, 13]. In this article, I explore the connections between

this dynamical systems level, the computational level and

an algorithmic level of lower abstraction. Like Griffiths and

colleagues [35], I do not deal with the implementation

level.

Second, I establish connections between the replicator-

alike reinforcement learning equations [7] and the com-

putational level. For multi-agent learning, the computa-

tional level is characterized by the framework of stochastic

games [66] which I introduce in Sect. 2. I conjecture the

relationship between the learning dynamics and Markov

Perfect equilibria, a solution concept of stochastic games,

and show that the dynamics follow a minimum free-energy

principle (Sect. 3).

Third, I connect the dynamical systems level to an

algorithmic level of lower abstraction. To do so, I propose

a novel temporal-difference batch-learning algorithm (Sect.

4) and show that the learning trajectories of the algorithm

converge to the ones of the deterministic equations under

increasing batch sizes (Sect. 5).

I finish with a discussion about specifics, limitations and

related work about the dynamic equations and the proposed

sample-batch algorithm and highlight how the learning

dynamics form a model of bounded rationality. I also give

directions for future work and potential applications (Sect.

6). Fig. 1 shows a graphical overview of the paper’s main

contributions.

2 Background

2.1 Stochastic games

Stochastic games are a formal model for multi-agent

environment systems. They generalize both repeated nor-

mal form games and Markov decision processes (MDPs).

MDPs are generalized by introducing multiple agents.

Repeated games are generalized by introducing an envi-

ronment with multiple states and transition probabilities

between those states. All agents choose their actions

simultaneously. The transition probabilities depend on the

joint action and the current environmental state. So do the

rewards. Formally, the game G ¼ hN;S;A; T ;R;Xi is a

stochastic game with N 2 N agents. The environment

consists of Z 2 N states S ¼ ðS1; . . .; SZÞ. In each state s,
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each agent i has M 2 N available actions Ai ¼
ðAi

1; . . .;A
i
MÞ to choose from. A ¼

Q
i A

i is the joint-action

set and agents choose their actions simultaneously.

The transition function T : S � A� S ! ½0; 1� deter-

mines the probabilistic state change. Tðs; a; s0Þ is the tran-

sition probability from current state s to next state s0 under

joint action a ¼ ða1; . . .; aNÞ 2 A.

The reward function R : S � A � S ! RN maps the

triple of current state s, joint action a and next state s0 to an

immediate reward value for each agent. Riðs; a; s0Þ is the

reward agent i receives.

Agents choose their actions probabilistically according

to their policy Xi : S � Ai ! ½0; 1�. Xiðs; aÞ is the proba-

bility that agent i chooses action a given the environment is

in state s. Xðs; aÞ ¼
Q

i X
iðs; aiÞ is the joint policy.

I chose an identical number of actions for all states and

all agents out of notational convenience. With a�i ¼
ða1; . . .; ai�1; aiþ1; . . .; aNÞ I denote the joint action except

agent i’s. Throughout this paper I only consider ergodic

environments without absorbing states.

2.2 Temporal-difference reinforcement learning

Temporal-difference Q-learning is one of the most widely

used reinforcement learning algorithms [98, 112]. Agents

successively improve their evaluations of the quality of the

available actions at each state. At time step t, agent i

evaluates action a in state s to be of quality Qi
tðs; aÞ. Those

state-action values Qi
tðs; aÞ are then updated after selecting

action at in state st according to

Qi
tþ1ðst; atÞ ¼ Qi

tðst; atÞ þ a � ditðst; atÞ; ð1Þ

with the temporal-difference error

ditðst; atÞ :¼ð1� cÞrit
þ cmax

b
Qi

tðstþ1; bÞ � Qi
tðst; atÞ:

Computational level

Algorithmic levels

Learning dynamics

Learning algorithm

Game-equilibrium e.g. Markov Perfect equilibrium

Idealised process model

Concrete process model

Implementation level

temporal-difference (TD) 
reinforcement learning

stochastic game

e.g. deterministic TD equations

e.g. sample-batch TD algorithm

min free energy principle
bounded rational account 
to game-equilibria

memory-batch learning
separated state-action
value estimation

Fig. 1 Levels of analysis of

multi-agent learning. The

dynamical systems level of

analysis is embedded between

the computational level and

algorithmic levels of lower

abstraction. The computational

level is defined by the

framework of stochastic games

and related game-equilibrium

concepts. Applying this

concept, I find that the

deterministic learning equations

follow a minimum free energy

principle and represent a

bounded rational account of the

game-equilibria. The proposed

sample-batch temporal-

difference algorithm is

characterized by the

combination of applying a

memory-batch and separated

state-action value estimation. Its

learning trajectories converge to

the ones of the deterministic

learning equations under large

batch sizes
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This update can be derived from the assumption that agent i

aims to maximizes its expected discounted future reward

Gi
t ¼ ð1� cÞ

P1
k ckritþk, where the discount factor

parameter c 2 ½0; 1Þ regulates how much the agent cares for

future rewards. The pre-factor ð1� cÞ normalizes the state-

action values to be on the same numerical scale as the

rewards. The learning rate parameter a 2 ð0; 1Þ regulates

how much new information is used for a state-action-value

update. For the sake of simplicity, I assume identical

parameters across agents throughout this paper and there-

fore do not equip parameters with agent indices. The

variable rit refers to agent i’s immediate reward at time step

t.

Agents select actions based on the current state-action

values Qi
tðs; aÞ, balancing exploitation (i.e., selecting the

action of maximum quality) and exploration (i.e., selecting

lower quality actions in order to learn more about the

environment). I here focus on the widely used Boltzmann

policy. The probability of choosing action a in state s is

Xi
tðs; aÞ ¼

ebQ
i
tðs;aÞ

P
b e

bQi
tðs;bÞ

; ð2Þ

where the intensity of choice parameter b controls the

exploration–exploitation trade-off. Throughout this paper, I

am interested in the learning process with fixed parameters

a, b and c throughout learning and evaluating a policy.

3 Deterministic learning dynamics

In this section, I first present a dense recap of the derivation

of the deterministic discrete-time dynamic equations of

temporal-difference reinforcement learning. A more elab-

orate version can be found in Ref. [7]. Then, I show how

these equations relate to the higher-level properties of

game-equilibira and free energy minimization. Note that

temporal-difference learning generalizes simpler forms of

stateless reinforcement learning used in many previous

studies. In a stateless environment with discount factor

c ¼ 0, temporal-difference learning reduces to this simpler

form of reinforcement learning. Thus, the presented results

conceptually hold for these learning dynamics as well.

3.1 Derivation

In essence, deterministic learning dynamics consider policy

averages instead of individual realizations of rewards and

state-action values. For multi-state multi-agent learning we

need to find the average temporal-difference error �d
i
to be

inserted in the update for the joint policy,

Xi
tþ1ðs; aÞ ¼

Xi
tðs; aÞ � exp½ab�d

i

tðs; aÞ�
P

b X
i
tðs; bÞ � exp½ab�d

i
tðs; bÞ�

; ð3Þ

which can be derived combining Eqs. 1 and 2. Computing

�d
i
involves averaging over policies and environmental

transitions for all three terms of the temporal-difference

error.

First, the average immediate reward becomes

�R
iðs; aÞ :¼

X

s0

X

a�i

X�iðs; a�iÞTðs; a; s0ÞRiðs; a; s0Þ

where
P

s0
P

a�i X�iðs; a�iÞ Tðs; a; s0Þ is a short notation

for

X

s0

X

a1

� � �
X

ai�1

X

aiþ1

� � �
X

aN

X1ðs; a1Þ

� � �Xi�1ðs; ai�1ÞXiþ1ðs; aiþ1Þ
� � �XNðs; aNÞTðs; a; s0Þ:

Regarding notation, the bar over the symbol indicates that a

policy average has been taken. When fewer state and action

variables appear in the brackets, the remaining variables

indicate which other variables have been used to average

over.

Second, the quality of the next state, maxb Q
i
tðstþ1; bÞ,

yields

max �Q
iðs; aÞ :¼

X

s0

X

a�i

X�iðs; a�iÞTðs; a; s0Þmax
b

�Q
iðs0; bÞ:

Here, I replace the quality estimates Qi
tðs; aÞ, which evolve

in time t (Eq. 1), with the true state-action values �Q
iðs; aÞ,

which is the expected return from executing action a in

state s and then following along the joint policy X. I

compute �Q
iðs; aÞ ¼ ð1� cÞ �Riðs; aÞ þ c

P
s0
�Tðs; a;s0Þ �Viðs0Þ,

where �V
i
are the true state values. They are computed via

matrix inversion according to �V
iðsÞ ¼ ð1� cÞ

½1Z � c �Tðs; sÞ��1 �RðsÞ. Here, underlined state variables

indicate that the corresponding object is a vector or matrix.
�Tðs; sÞ indicates the policy-averaged transition matrix and

the entry �Tðs; s0Þ indicates the transition probability from

state s to state s0. �R
iðsÞ denotes the policy-average state

rewards. 1Z is a Z-by-Z identity matrix. Note, the quality
max �Q

iðs; aÞ depends on s and a although it is the policy

averaged maximum state-action value of the next state.

Third, the quality of the current state, Qi
tðst; atÞ becomes

b�1 lnXiðs; aÞ in the average temporal-difference error and

serves as regularization term. This can be derived by

inverting Eq. 2 and realizing that the dynamics induced by
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Eq. 3 are invariant under additive transformations which

are constant in actions.

All together, the average temporal-difference error for

Q-learning reads

�d
iðs; aÞ ¼ ð1� cÞ �Riðs; aÞ þ cmax �Q

iðs; aÞ � lnXiðs; aÞ
b

:

ð4Þ

3.2 Properties

Let us divide the average temporal-difference error into

two parts, the non-regularized part plus the regularizer,

�d
iðs; aÞ ¼ �qiðs; aÞ � lnXiðs; aÞ=b with

�qiðs; aÞ ¼ ð1� cÞ �Riðs; aÞ þ cmax �Q
iðs; aÞ:

The deterministic map comprised of Eq. 3 and the non-

regularized temporal-difference error,

Xi
tþ1ðs; aÞ ¼

Xi
tðs; aÞ � exp ½ab�qiðs; aÞ�P
b X

i
tðs; bÞ exp ½ab�qiðs; bÞ�

is equivalent to the alternative replicator dynamics in dis-

crete time [48, 49] with ab�qiðs; aÞ being the fitness of agent

i’s action a in state s. This equivalence allows us to con-

jecture the folk theorem of evolutionary game theory

[21, 49] for policy-average temporal-difference learning in

stochastic games (a detailed proof is not the focus of this

work and left for future work):

(a) A stable rest point is a Markov Perfect equilibrium.

(b) A convergent trajectory in the interior of the policy

space evolves to a Markov Perfect equilibrium.

(c) A strict Markov Perfect equilibrium is locally

asymptotically stable.

Roughly speaking, Markov Perfect equilibria can be seen

as the Nash equilibria of the stochastic game when agents

employ stationary Markov policies [26], i.e., as in this case,

choose an action with a probability based only on the

current state. This means no agent can gain more value by

unilaterally changing its policy at a Markov Perfect equi-

librium. Nontrivially, they have been shown to exist in

discounted stochastic games with a finite number of agents

[29].

Considering the dynamics with full average temporal-

difference error including the regularization term,

Xi
tþ1ðs; aÞ ¼

Xi
tðs; aÞ � exp ½ab�d

iðs; aÞ�
P

b X
i
tðs; bÞ exp ½ab�d

iðs; bÞ�
; ð5Þ

the steady state policy, if it exists, can be obtained by

setting �d
iðs; aÞ ¼ 0 which yields after normalizing,

Xi
�ðs; aÞ ¼

eb �q
i
�ðs;aÞ

P
b e

b �qi�ðs;bÞ
: ð6Þ

Despite their similarity, this set of equations is qualitatively

different from Eq. 2; Eq. 6 gives a condition for the poli-

cies Xi
�ðs; aÞ and values �qi�ðs; aÞ at equilibrium.

One can show that the joint policy described in Eq. 6

follows from the principle of maximum entropy [53] under

the constraint that agents play a policy the yields a constant

expected value [114, 115]. The negative logarithm,

� lnXiðs; aÞ, is called the information, surprise or uncer-

tainty [91] of agent i taking action a in state s. The entropy

�
P

b X
iðs; bÞ lnXiðs; bÞ is the average surprise of agent i’s

policy in state s. The principle of maximizing the average

surprise or uncertainty in a policy is reasonable whenever

agents are not capable of computing the optimal policy

straight away. This may because either agents are uncertain

about their environment or they lack the cognitive resour-

ces. Within the context of active learning [89], this is also

known as uncertainty sampling.

From the maximum entropy principle follows the prin-

ciple of minimum free energy

F½XiðsÞ� ¼ �
X

b

Xiðs; bÞ�qiðs; bÞ þ 1

b

X

b

Xiðs; bÞ lnXiðs; bÞ;

which can be expressed as the action-mean policy-average

temporal-difference error, �F½XiðsÞ� ¼
P

b X
iðs; bÞ�diðs; bÞ.

Minimizing the first term is equivalent to maximizing the

expected average quality, minimizing the second term

means maximizing the entropy of agent i’s choice of

actions in state s. The Lagrange parameter b balances these

two contributions.

It is important to note that the minimum free energy

principle does only hold for temporal-difference reinforce-

ment learning when we differentiate the free energy with

respect to the current action in the current state. In other

words, we ask only for the effect of what the agent can do at

this moment. We are not concerned with the effects of this

actionwhen the environment returns to the current state. This

notion, that we are only interested in the effect of the current

action a in state s resembles precisely the common definition

of the state-action values �Q
iðs; aÞ [98].

While the dynamics (Eq. 5) converge to a policy with

minimum free energy (Eq. 6) one can also show that the

steps the dynamics take minimize free energy differences,

DF½Xi
tþ1ðsÞ� ¼ F½Xi

tþ1ðsÞ� � F½Xi
tðsÞ�

¼ �
X

b

Xi
tþ1ðs; bÞD�qiðs; bÞ

þ 1

b

X

b

Xi
tþ1ðs; bÞ

lnXi
tþ1ðs; bÞ

lnXi
tðs; bÞ

;

ð7Þ

1658 Neural Computing and Applications (2022) 34:1653–1671

123



where D�qiðs; aÞ :¼ �qitþ1ðs; aÞ � �qitðs; aÞ. Here I used the

relationship Xi
tðs; aÞ ¼ eb �q

i
tðs;aÞ=

P
b e

b �qitðs;bÞ analogous to

Eq. 2. From this equality one can show that �qitðs; aÞ ¼
b�1 lnXi

tðs; aÞ þ b�1 ln Zi
tðsÞ with Zi

tðsÞ :¼
P

b e
b �qitðs;bÞ and

�b�1 lnZi
tðsÞ ¼ F½Xi

tðsÞ�. Assuming the value differences

between two steps D�qiðs; aÞ ¼ a�d
i
tðs; aÞ such that

�qitþ1ðs; aÞ ¼ �qitðs; aÞ þ a�d
i
tðs; aÞ (c.f. Eq. 1) it is exactly

Eq. 5 that minimizes Eq. 7 [80].

4 Algorithmic foundations

In order to connect the presented deterministic learning

dynamics to an algorithmic level of analysis of lower

abstraction, I present a temporal-difference reinforcement

learning algorithm whose learning trajectories approach the

ones of the deterministic dynamics. I will build up on the

idea of batch learning that has been used in previous work

on stateless reinforcement learning dynamics and extend it

to multi-state temporal-difference learning. Originally, the

batch reinforcement learning problem is defined to learn

the best policy from a fixed set of a priori-known transition

samples [60]. Research activity on batch reinforcement

learning has grown substantially in recent years, primarily

due to the central merits of the batch approach: (i) its

efficient use of collected data and (ii) the stability of the

learning process when used with function approximation.

My focus though is not to present an efficient algorithm

that solves the batch learning problem. Instead, I aim for an

improved understanding regarding the algorithmic foun-

dations underlying the policy-average temporal-difference

learning equations.

I denote the proposed algorithm sample-batch temporal-

difference Q-learning. The learning process is divided into

two phases, an interaction phase and an adaptation phase.

During the interaction phase, the agent keeps its policy

fixed while interacting with its environment for K time

steps, collecting state, action and reward information.

During the adaptation phase, the agent uses the collected

information for an update of its policy. Key is the use of

two state-action value tables, one for acting (actQ), the other

for improved value estimation (valQ). While actQ is kept

constant during the interaction phase, valQ is iteratively

updated.

During the interaction phase the information is collected

as follows. The agent counts the number of visited state-

action-next state triples,

tiðst; at; stþ1Þ þ¼ 1

and sums up immediate rewards for each state-action pair,

riðst; atÞ þ¼ rit ;

with rit being the reward agent i received at time step t.

Both, tðs; a; s0Þ and r(s, a) were initialized to zero for all

s; a; s0. Further, each agent updates its value estimate of the

current state-action pair as

valQi
tþ1ðst; atÞ þ

¼ a

�

ð1� cÞrt

þ c
X

b

Xi
tðstþ1; bÞvalQi

tþ1ðstþ1; bÞ

� valQi
tðst; atÞ

�

:

ð8Þ

Note, I here do not use the off-policy max term in the value

update. The aim of updating the valQi values is to estimate

the true state-action values of policy Xi. The use of
P

b X
i
tðstþ1; bÞvalQi

tþ1ðstþ1; bÞ is known as expected

SARSA, which was shown to have significant advantages

over other update schemes [54, 106]. At the beginning of

each batch valQi
tþ1ðs; aÞ are set to actQi

tþ1ðs; aÞ, which are

initialized to lnðXi
0ðs; aÞÞ=b� hlnðXi

0ðs; bÞÞ=bib. These

interaction steps repeat until the current time step t is a

multiple of the batch size K. Then the learner enters the

adaptation phase.

During the adaptation phase, the agent uses the sample

averages of the immediate rewards and next-state-value

estimates to summarize the collected information in order

to update the actQ values. For all states, s, and actions, a, the

sample-average reward is computed as

~R
iðs; aÞ ¼ riðs; aÞ=dðs; aÞ;

with the divisor dðs; aÞ ¼ minð1;
P

s0 t
iðs; a; s0ÞÞ. The divi-

sor is used to avoid a division by zero, taking into account

the possibility that a state-action pair might not have been

visited. The sample-average transition model amounts to

~T
iðs; a; s0Þ ¼ tiðs; a; s0Þ=dðs; aÞ:

The sample-average of the maximum next-value then

yields

max ~Q
iðs; aÞ ¼

X

s0

~T
iðs; a; s0Þmax

b

valQiðs0; bÞ:

This is the specific maxQ update typically used in Q-

learning. From these terms we can write the sample-aver-

age temporal-difference error as

~d
i

tðs; aÞ ¼ ð1� cÞ ~Riðs; aÞ þ cmax ~Q
iðs; aÞ � actQi

tðs; aÞ

Finally, the actQ values are updated according to
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actQi
tþ1ðs; aÞ ¼ actQi

tðs; aÞ þ a � ~ditðs; aÞ;

Last, the new policy is set to

Xi
tþ1ðs; aÞ ¼

exp½b actQi
tþ1ðs; aÞ�P

b exp½b actQi
tþ1ðs; bÞ�

;

the values valQi
tþ1ðs; aÞ ¼ actQi

tþ1ðs; aÞ, and riðs; aÞ ¼ 0, and

tiðs; a; s0Þ ¼ 0, for all s; a; s0. Note that this sample-batch

algorithm reduces to standard Q-learning for a batch size

K ¼ 1.

5 Results

In this section, I compare the deterministic learning equa-

tions (Sect. 3) with the sample-batch algorithm (Sect. 4) to

show that their learning trajectories match under large

batch sizes and thus, the sample-batch algorithm can be

seen as an algorithmic foundation of the deterministic

learning dynamics. I use two classes of environments as

testbeds, a risk–reward dilemma and a zero-sum competi-

tion. For each comparison, I let both learning processes,

deterministic equations and stochastic algorithm, update

their policies 100 times. As a consequence, an increased

batch size K results into an increased number of time steps

as the sample-batch algorithm interacts with the

environment.

5.1 Risk-reward dilemma

The first environment I use as a testbed is a one-agent

stochastic game, i.e., a Markov decision process. It is a

simple, two-state, two-action environment and models the

inter-temporal dilemma between a risky choice with pos-

sibly high immediate reward and a safe choice with a

guaranteed, but low immediate reward [8]. The action set

reads A ¼ fsafe; riskyg, the environment can either be in

a prosperous or a degraded state, S ¼ fprosp:; deg:g. The
transition function reads

Tðprosp:; a; deg:Þ ¼
0 a ¼ safe

0:2 a ¼ risky

�

;

Tðdeg:; a; prosp:Þ ¼
0:1 a ¼ safe

0 a ¼ risky

�

:

The reward function is given by

Rðs; a; s0Þ ¼
1 s ¼ s0 ¼ prosp: and a ¼ risky

0:5 s ¼ s0 ¼ prosp: and a ¼ safe

0 elsewhere

8
><

>:
:

By applying the safe action in the prosperous state, the

agent is guaranteed to remain in the prosperous state and

obtains a reward of 0.5. If it applies the risky action and

remains in the prosperous state, it obtains a reward of 1. If,

however, the environment collapses under the risky action,

the agent obtains 0 reward until the environment is

recovered again. Recovery is possible only under the safe

action after waiting for some iterations in the degraded

state. In the prosperous state, it depends on the agent’s

discount factor whether the risky or the safe action is more

valuable to the agent.

Figure 2 compares the deterministic dynamics with the

sample-batch algorithm. For an agent with a discount factor

of c ¼ 0:9 it is optimal to select the safe action in both

states. The challenge presented in Fig. 2 is learning to play

safe in both states, starting from an initial policy where the

safe action is chosen only with 20% in both states. The

arrows in the policy space indicate the average direction

toward which the learner is driven by temporal-difference

errors of the deterministic limit (Eq. 4). The deterministic

dynamics (dark red dashed line) follow these temporal-

difference arrows and learn to play almost completely safe.

The small distance to the upper right corner in the policy

space results from the finite exploitation parameter b.
Under increasing the sample-batch size K, the match

between deterministic dynamics and sample-batch algo-

rithm becomes increasingly closer. The sample-batch

learning algorithm with batch size K ¼ 50 does not learn to

play safe in the prosperous state (Fig. 2a). For a batch size

of K ¼ 500, the agent learns to do so, yet, the trajectory

through the policy space differs from the one of the

deterministic limit (Fig. 2b). The agent learns to play safe

in the degraded state faster than in the prosperous state. For

a batch size of K ¼ 5000, algorithm and equations match

almost perfectly (Fig. 2c).

Extending the single-agent risk–reward dilemma to a

multi-agent environment, I let the agents face a classic

social dilemma in the prosperous state [9]. Playing safe

induces a costly contribution c to the public good from

which all agents will receive a benefit b, regardless whether

they contributed or not. However, each risky action will

increase the probability by 0.2/N that the environment will

collapse from the prosperous to the degraded state. In the

degraded state, all agents receive a negative collapse

impact m\0. Only the safe action will increase the

recovery probability by 0.1/N from the degraded to the

prosperous state. In previous work, we showed that the

discount factor alone can transform this game from a tra-

gedy of the commons, where the risky action dominates,

into one of coordination, and even into a comedy of the

commons in which the safe action dominates [9].

Figure 3 compares the deterministic dynamics with the

sample-batch algorithm for an environment with 2 agents.

Parameters are as such that the game is a comedy, where

the game-equilibrium corresponds to all agents playing
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safe in both states. And indeed, the deterministic dynamics

(dark red dashed line) reach this policy from the asym-

metric initial policy, where agent 1 plays safe with 10% in

the degraded and 80% in the prosperous state and agent 2

play safe with 40% in the degraded and 10% in the pros-

perous state.

Here too, as well, the match between deterministic

dynamics and sample-batch algorithm becomes increas-

ingly closer under increasing sample-batch size K. For

K ¼ 50, the learning behavior of the algorithm in the

prosperous state appears to be random around the center of

the policy space (Fig. 3 a). For a batch size of K ¼ 500,

algorithm and deterministic dynamics match already well

(Fig. 3 b). The match is perfected for K ¼ 5000 (Fig. 3 c).

5.2 Zero-sum competition

The other environment I use as a testbed is the two-agent

(N ¼ 2), two-state (S ¼ f1; 2g), two-action

(A ¼ fleft; rightg) matching pennies game [40]. It roughly

models the situation of penalty kicks between a kicker and

a keeper. Both agents can choose between the left and the

right side of the goal. The keeper agent scores one point if

it catches the ball, otherwise the kicker agent receives one

point. Agents change roles under state transitions, which

depend only on agent 1’s actions. Precisely when agent 1

selects either left as keeper or right as kicker both agent

will change roles. With symmetrical rewards but asym-

metrical state transitions, the two-state Matching Pennies

game presents the challenge of coordinating both agents on

playing a mixed strategy with equiprobable actions.

Figure 4 shows that the match between deterministic

dynamics and sample-batch algorithm becomes increas-

ingly closer under increasing sample-batch size K. The

deterministic dynamics (dark red-dashed line) manage to

find this mixed Markov equilibrium in the center of the

policy space from a spiraling learning trajectory starting

with both agents selecting left with 20% in both states. The

sample-batch algorithm with batch size K ¼ 50 does not

capture the learning trajectory of the deterministic

dynamics (Fig. 4a). For a batch size of K ¼ 500, algorithm

and deterministic dynamics match already well (Fig. 4b).

The match is perfected for K ¼ 5000 (Fig. 4c).

Fig. 2 Single-agent risk–reward

dilemma. Comparison between

deterministic dynamics (dark

red dashed line) with 10 runs of

the sample-batch learning

algorithm (light blue straight

lines) for varying batch sizes K
(a: K ¼ 50, b: K ¼ 500, c:
K ¼ 5000). Agent parameters

are a ¼ 0:05, b ¼ 150, c ¼ 0:9.
The match between the sample-

batch learning algorithm and the

deterministic dynamics

becomes increasingly closer as

the batch size K increases

Neural Computing and Applications (2022) 34:1653–1671 1661

123



Figure 5 shows that the sample-batch algorithm

approaches the deterministic dynamics under increasing

sample-batch size K even for parameter domains at which

the deterministic agents no longer converge to a fixed point

policy but instead learn on a periodic orbit of changing

policies.

5.3 Rate of convergence

So far, I showed that the sample-batch algorithm discussed

in Sect. 4 matches the deterministic dynamics derived in

Sect. 3 under sufficiently large batch sizes. From Eq. 3, it

is clear that the reason for this match is the temporal-dif-

ference error. Under large batch sizes the temporal-differ-

ence error of the algorithm must converge to the average

temporal-difference error (Eq. 4). To get a better under-

standing of the rate of this convergence, I investigate the

individual contributions of the temporal-difference error in

more detail. Specifically, I consider the average rewards

�Riðs; aÞ, the environmental transitions �T
iðs; a; s0Þ, the state-

action values �Q
iðs; aÞ, the maximum state-action values

max �Q
iðs; aÞ, and finally the full temporal-difference errors

�d
iðs; aÞ. For each of those terms, I compute the relative

error between the algorithmic value and the deterministic

value. For an average temporal-difference error term �Y 2
f �R

iðs; aÞ; �Tiðs; a; s0Þ; �Qiðs; aÞ;max �Q
iðs; aÞ; �diðs; aÞg with

the corresponding algorithmic value ~YðKÞ for batch size K,

I define the relative error to be

DYðKÞ ¼
~YðKÞ � �Y

h �Yis;a;s0

�
�
�
�
�

�
�
�
�
�

* +

s;a;s0

ð9Þ

where I use h:is;a;s0 to take the sample average along all

states s, actions a and next state s0, if they exist in the

temporal-difference error term Y. Fig. 6 shows how the

relative errors of the temporal-difference error terms

Fig. 3 Two-agent risk–reward dilemma with contribution cost c ¼ 5,

benefit b ¼ 3 and collapse impact m ¼ �5. The deterministic

dynamics (dark red dashed line) are compared against 10 runs of

the sample-batch learning algorithm (light blue straight lines) for

varying batch sizes K (A: K ¼ 50, B: K ¼ 500, C: K ¼ 5000). Agent

parameters are a ¼ 0:04, b ¼ 25, c ¼ 0:9. The match between the

sample-batch learning algorithm and the deterministic dynamics

becomes increasingly closer as the batch size K increases
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depend on the batch size K. Since the algorithm is

stochastic, I computed 100 sample runs and plot one

standard deviation around the mean.

Across all environments, we observe two qualitatively

different processes of convergences. Compared to the other

terms, rewards ~R
iðs; aÞ and transitions ~T

iðs; a; s0Þ converge
much faster. Their convergence is a direct consequence of

the central limit theorem and their convergence is thus

proportional to the inverse square root of the batch size,

1=
ffiffiffiffi
K

p
. The other terms, the state-action values ~Q

iðs; aÞ, the
maximum state-action values max ~Q

iðs; aÞ and the full

temporal-difference errors ~d
iðs; aÞ, all depend on the value

estimation (Eq. 8). This processes convergences slower

than 1=
ffiffiffiffi
K

p
in all environments. Yet, here differences

between environment classes exist. The convergence of the

value terms occurs faster in the zero-sum environments

than in the risk–reward dilemmas. One explanation for this

phenomenon is the environmental dynamics. In the zero-

sum games, state changes occur more often than in the

risk–reward dilemmas, allowing for a faster and smoother

convergence.

Overall, Fig. 6 explains the results shown in Figs. 2, 3, 4

5. For batch sizes of K ¼ 50 and K ¼ 500, the differences

between algorithmic and average temporal-difference

errors are simply too large for a close match between

algorithmic and determinsitic learning trajectories through

policy space. For the environments used in this article, a

batch size of K ¼ 5000 is able to let the learning trajec-

tories match well. Interestingly, the quality of this match

must depend also on the type of the attractor. For agent

parameters that lead to a periodic orbit in the zero-sum

environment, a batch size of K ¼ 5000 is required to let the

learning trajectories match well. For agent parameters that

let the learning convergence to the center of the policy

space, a good match of the learning trajectories could

already be achieved with K ¼ 2500. The reason is that the

center of the policy space does not require the same amount

Fig. 4 Zero-sum competition with the two-state Matching Pennies

game. The deterministic dynamics (dark red-dashed line) are

compared against 10 runs of the sample-batch learning algorithm

(light blue straight lines) for varying batch sizes K (a: K ¼ 50, b:

K ¼ 500, c: K ¼ 2500). Agent parameters are

a ¼ 0:05; b ¼ 25; c ¼ 0:75. The match between the sample-batch

learning algorithm and the deterministic dynamics becomes increas-

ingly closer as the batch size K increases
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of precision about where to go next. On a periodic orbit,

small errors can propagate more easily and thus can lead to

different learning trajectories in policy space.

6 Discussion

In this article, I proposed to regard the replicator rein-

forcement learning dynamics perspective on multi-agent

learning as a level of cognitive analysis. This dynamical

systems level still has a high level of abstraction, con-

necting the computational level of the problem statement

with lower algorithmic levels that aim to find a solution for

the computational problem. I argue that it are the connec-

tions between those levels that can bring improved insights

about the whole system of multiple learning agents (Fig. 1).

I demonstrated this approach with the classic model-free

independent temporal-difference Q-learning algorithm. It

generalizes simpler forms of reinforcement learning used

in previous studies and has importance also in neuroscience

through the reward-prediction hypothesis [87]. I first dis-

cuss specifics, limitations and related work about the

dynamic equations and the proposed sample-batch algo-

rithm separately, before I highlight how the learning

dynamics form a model of bounded rationality which can

be used as a cognitive interpretation of individual learning

in models of social dynamics. I finish with an outline for

future work.

6.1 Dynamics

With respect to the connection between the computational

level and the dynamical systems level of learning, I have

shown that the equilibria of these dynamics, if they exist,

minimize a free energy functional resulting from a maxi-

mum entropy approach. Further, I showed that the discrete

Fig. 5 Zero-sum competition with the two-state Matching Pennies

game. The deterministic dynamics (dark red dashed line) are

compared against 10 runs of the sample-batch learning algorithm

(light blue straight lines) for varying batch sizes K (a: K ¼ 50, b:
K ¼ 500, c: K ¼ 5000). Agent parameters are

a ¼ 0:02; b ¼ 45; c ¼ 0:55. Here, the deterministic dynamics learn

on a periodic orbit in policy space. Nevertheless, the sample-batch

learning algorithm matches the deterministic dynamics under a

sufficiently large batch size K
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time dynamics minimize free energy differences at each

learning step.

The concept of free energy minimization occurs in

various other related domains. Minimizing free energy

differences has been proposed as a thermodynamic theory

of decision-making with information processing costs,

which encompasses optimal, risk-sensitive and robust

decision-making as special cases [79, 80]. Also, free

energy minimization has served as a theory of boundedly

rational decision-making [114, 115]. Eq. 6 resembles

Quantal Response [74, 75] or logit equilibria [4] from

behavioral game theory, which are able to provide a unified

perspective on many of the systematic deviations from

Nash equilibria in behavioral experiments. For example,

the famous Ellsberg’s and Allais’ paradoxes can be

explained [80]. Under a particular choice of rewards, which

minimize the agents’ observational surprise, minimizing

the free energy approximates Bayesian inference [67, 80].

Such a variational Bayes approach has also been proposed

as a unified theory to understand brain function [30]. With

respect to the domain of optimal control, closely related

ideas are entropy regularization [77], reinforcement learn-

ing as probabilistic inference [62], maximum-entropy

reinforcement learning [119], energy-based reinforcement

learning [39, 84] and Kullback–Leibler divergence mini-

mization [36, 57, 101].

It is interesting to observe the different roles the

parameter b receives from these different contexts. From

decision-making under uncertainty, the intensity of choice

b regulates the exploration–exploitation trade-off. In the

min free energy principle b is a Lagrange multiplier. In

boundedly rational decision-making b regulates the degree

of an agent’s rationality or likewise b�1 the cognitive cost

of the agent. Indeed, b�1 must come in units of reward per

units of information, i.e., how expensive it is for an agent to

acquire information about the optimal policy. For decision-

making under uncertainty, b�1 expresses the value of being

unsure about what to do. If the agent knows nothing about

the environment being unsure about what to do is more

valuable compared to the situation when the agent already

learned something about the environment. This suggests

the use of an adaptive b [102].

Fig. 6 Relative error of

temporal-difference error terms

(reward DRiðs; aÞ in red,

transitions DTiðs; a; s0Þ in dark

blue, values DQiðs; aÞ in orange,

max values DmaxQiðs; aÞ in
light blue, temporal-difference

error Ddiðs; aÞ in green) versus

the batch size K for the four

environments presented (single-

agent risk–reward environment

in Fig. 2, two-agent risk–reward

environment in Fig. 3, zero-sum

competition with fixed point in

Fig. 4, zero-sum competition

with periodic orbits in Fig. 5).

Shown are the averages of 100

sample runs in the center of on

standard deviation. Each plot

uses the initial policy from its

corresponding Figs. 2-5.

Vertical lines indicate the batch

size shown in those figures
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6.2 Algorithm

In order to connect the dynamical systems level to an

algorithmic level of lower abstraction, I proposed a simple

batch learning algorithm for temporal-difference Q-learn-

ing. I showed that under increasing batch size the learning

trajectories of this sample-batch algorithm match the ones

of the deterministic equations. Two characteristics of the

algorithm are essential for this property. First, the policy is

updated using a batch of experiences, i.e., state-action

transitions. Second, the state-action values are separated

into two data structures, one for the value estimation inside

the batch, the other for acting outside the batch.

This algorithms has various similarities with well-

known algorithms from the literature. For one, its structure

is similar to the influential DQN-paradigm [76], which also

combines the replay of a batch of experiences with sepa-

rated state-action value estimation. This suggests that some

of DQN’s success might be due to the fact that it approx-

imates a free-energy minimizing learning dynamic whose

stable rest points correspond to Nash equilibria under

b ! 1. Nevertheless, significant differences remain. Most

importantly, DQN is used with non-linear function

approximation, whereas my algorithm is a tabular method.

Being in the tabular setting is certainly a limitation of my

work. Both, algorithm and dynamic equations do not scale

to more complex environments.

With respect to use of separate state-action value esti-

mation, a related approach is double-Q learning [38]. It

uses two Q-tables to avoid an overestimation of the next

state value caused by the max operator used in Q-learning.

One Q-table is used for an update of the other and vice

versa. In contrast, my algorithm’s Q-tables keep their roles

as actor and value-estimator fixed. Overestimation is

avoided by a large batch sizes which lead to unbiased

policy-average estimators.

With respect to use of a batch for memory replay, my

sample-batch algorithm has similarities with a stochastic

Dyna agent [97] that uses experienced reward and state

samples to simultaneously update a value function and

learn a model. Indeed, the distinction between model-free

and model-based algorithms is not always clear and

memory replay blurs the line between model-based and

model-free methods [107]. The data structures of the pro-

posed algorithm, which store rewards and transitions, are

the model the agent learns while interacting with the

environment. The state-action values for improved value

estimation inside the batch (valQ) are simultaneously

updated. The use of the current policy of my algorithm

resembles what is known as trajectory sampling [11]. In

contrast to Dyna, the model is learned for each policy from

scratch and also no reward-state transitions are sampled

from the model. This makes the proposed algorithm highly

data-inefficient. Yet, my goal was not to create an efficient

algorithm, but to improve on the understanding of the

deterministic temporal-difference learning dynamics.

All related algorithm discussed so far fall under the

category of value-based or critic-only methods, that aim to

obtain a good estimate of the state-action value function

first and then derive a policy from it. However, the use of

the soft-max policy in combination with the two Q-ta-

bles has also similarities with the family of actor-critic

algorithms [59] and policy gradient methods [99]. One Q-

table is used for acting (actQ), the other for improved values

estimation and criticizing the actor (valQ). Actor-critic

algorithms have also been referred to as two-time-scale

algorithms [59] in which the actor is updated on a slower

time scale than the critic. This description matches my

sample-batch algorithm perfectly. One advantage of actor-

critic methods is their capability of learning a stochastic

policy explicitly, which turns out to be useful in competi-

tive and non-Markov cases [94]. And indeed, we have seen

the convergence of both the sample-batch algorithm and

the learning equations in the zero-sum competition (Fig. 4).

Taken together, the classification of the replicator rein-

forcement learning dynamics need revision. Although

originally derived from model-free temporal-difference

reinforcement learning algorithms [7], they should be

classified as model-based learners. In the limit of an infinite

memory-batch, they obtained a perfect model of their

current environment. However, the environmental transi-

tions each agent learns are influenced by the policies of the

other agents. And since this influence of the other agents’

policies is taken into account perfectly by the deterministic

equations, i.e., they condition their perfect model of the

environment on the current policies of the other agents

without error, they should also be classified as joint-action

space learners. This is interesting because originally, the

deterministic learning dynamics were derived from a set of

independent temporal-difference learning algorithms.

6.3 Bounded rationality

We can use those deterministic dynamics for a boundedly

rational account of game theory in two ways. First, added

cognitive costs and second, agents no longer assume that

other agents behave rationally.

First, the idea to model a cognitive cost of computation

through a Boltzman softmax function is nothing new

[4, 115]. Yet, I have shown that the Boltzman softmax

function can originate from the need to regulate the

exploration–exploitation trade-off in a decision-making

situation under uncertainty. To unify both perspectives,

bounded rationality and decision-making under
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uncertainty, the corresponding parameter b might be called

the ecological rationality parameter. Generally, the study

of ecological rationality uncovers the conditions of how

computationally bounded minds use simple heuristics and

produce accurate decisions by exploiting the structures of

information in uncertain environments [100]. Thus, on a

high level of abstraction, the exploration–exploitation

trade-off justifies bounded rational decision-making and

explains why it can be beneficial in decision-making con-

texts under uncertainty. The best choice of the ecological

rationality b depends on the environment. In this sense,

multi-agent learning dynamics can serve also as a high-

level theory of ecological rationality.

Second, the classic solution to a game in the form of a

Nash equilibrium requires the assumptions that all agents

behave fully rational and have complete information about

rewards and environmental transitions. Thus, all agents

assume all other agents to behave rationally as well. In

contrast, the deterministic learning equations use only the

other agents’ current policy to update their own policy. As

a result, learning behavior emerges in policy space, instead

of game-equilibrium points. Such learning dynamics help

overcome the game-equilibrium selection problem, if more

than one such equilibrium exists.

In combination, learning dynamics with full cognitive

rationality, i.e. the extreme case of b ! 1 (under ab ¼ 1),

the deterministic dynamics approach the alternative repli-

cator dynamics in discrete time. For the replicator

dynamics, the folk theorem of evolutionary game theory

connects dynamic equilibria to game-theoretic equilibria.

Stable rest points of the dynamics correspond to Nash

equilibria of the game. However, this only works because

the deterministic dynamics learn as if they have a perfect

model of the environment and the other agent’s current

policy and thus, they are not required to explore the

environment with some finite b. Additionally, with tem-

poral-difference learning we are not restricted to normal-

form games. Instead, the more general form of stochastic

games allows us to investigate the interactions of multiple

agents within a changing environment [9, 47].

This account of boundedly rational game theory can also

be embedded within the framework of cognitive levels of

analysis (Table 1). The stochastic game corresponds to the

upper level of the computational problem that is posed to

the agents. Typically, it is assumed that agents have perfect

information about their environment, assume that all other

agents behave rationally as well, require no cognitive cost

of computation and thus find some static equilibrium. The

learning dynamics correspond to an algorithmic level with

a high level of abstraction. Here, agents are assumed to

have a perfect model of the environment and of the other

agents current policy. Cognitive costs are included in the

model and tunable by the parameter b. The outcome is a

deterministic dynamic learning trajectory which is not

necessarily converging to a rest point. The proposed

learning algorithm corresponds to an algorithmic level of

lower abstraction. Agents require no knowledge about the

environment in advance. They learn a model of the envi-

ronment and the other agents current policy through repe-

ated interactions with the environment and each other

under the same policy. The cognitive costs of computing

this model are immense and dealing with the exploration–

exploitation is required. As a result, the agents’ learning is

stochastic.

6.4 Future work and potential applications

The proposed algorithm is not resource-efficient at all. In

fact, the computational costs are infinite to match the

deterministic learning dynamics exactly. Future work is

needed to advance the link between the deterministic

learning dynamics and more data-efficient algorithms

toward resource-rational analysis. A natural start to do so is

to not erase all collected experience after a policy update

and instead start from the current reward and transition

model. The equations need to be extended to account for

imperfect models by adding suitable noise terms to the

temporal-difference error, building upon previous work on

stateless learning dynamics [32]. Thereby, it is important to

investigate the conditions influencing the rate of conver-

gence of the temporal-difference error. The convergence

quality surely must depend on the environmental dynamics.

State that are visited rarely will correspond to increased

noise.

Potential applications. The improved insights about the

connections between different analysis levels may have

potential use with respect to the following application

domains.

Hyper-parameter tuning. How does the quality and

dynamics depend on hyper-parameters of the algorithm and

features of the environment? For example, the size of the

memory buffer in experience replay needs careful tuning

[118]. A noisy version of the replicator reinforcement

learning dynamics may shed light on the principles for

determining decent batch sizes that can be translated to

learners in complex environments.

Design of new algorithms. Can we reduce the number of

hyper-parameters by replacing them through sensible

functional relationships? For example, an inexperienced

agent should explore more than an experienced one. The

level of experience of an agent should also depend on the

discount factor. An agent with a small outlook on the future

should exploit faster than an agent who values the future

more. Future work may investigate and formalize those

verbal principles and convert its findings into novel algo-

rithms. Based on this work, these algorithms can be
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deployed and tested both on the idealized process level of

replicator reinforcement learning dynamics as well as on

the concrete process model of reinforcement learning

algorithms. Additionally, extensions to the basic rein-

forcement learning update scheme, such as leniency [81]

and Win-or-Learn-Fast (WoLF) [16], could be rapidly

prototyped on the idealized process level and then con-

verted to the concrete process algorithms.

Analysis of strategic interactions. How do hyper-pa-

rameter combinations affect the resulting collective

incentive structure in relation to features of the environ-

ment? For example, in previous work, we found that a

sufficiently large discount factor can change a tragedy of

the commons into a comedy of the commons where the

mutually beneficial cooperative action dominates, given a

potential environmental threat is sufficiently severe [9]. We

must assume that this found principle also conveys to more

complex environments. An interesting area for future work

is to study the influence of the batch size in relation to the

other hyper-parameters on the emerging incentive

structure.

Modeling of social dynamics. Related to the analysis of

strategic interactions, replicator reinforcement learning

dynamics are of potential use in models of social dynamics

that apply evolutionary game theory to human social phe-

nomena [2, 25, 46, 69, 73, 85, 108, 110]. Methodologically,

the use of evolutionary game theory can be seen as a

middle ground between the highly formal classic game

theoretic equilibrium analyses and more open agent-based-

modeling approaches. It has been justified either as as a

theoretical tool to identify robust behavioral policies or as

model of social imitation learning. This work provides a

third interpretation for studying social dynamics. Rein-

forcement learning agents learn on their own in a bound-

edly rational fashion. This interpretation might be valuable

especially when a social learning interpretation might not

be justifiably from the modeling context.

7 Conclusion

Evolutionary game theory is a fruitful framework to

enhance the interpretability of multi-agent learning sys-

tems. In this work, I have enhanced the interpretability of

the link between evolutionary game theory and reinforce-

ment learning itself.

Conceptually, I have embedded replicator reinforcement

learning dynamics into different levels of cognitive anal-

ysis. Doing so allowed me to investigate the connections

between the dynamical systems level to the computational

level and algorithmic levels of lower abstraction. I have

found that temporal-difference replicator reinforcement

learning dynamics follow a principle of minimum free

energy and combines a boundedly rational account to game

equilibria in stochastic games with decision-making under

uncertainty. I have introduced a sample-batch algorithm

and showed that it serves as a micro-foundation for the

replicator reinforcement learning equation. The algorithm

combines memory-batch learning with separated state-ac-

tion value estimation. The learning trajectories of the

algorithm matches the ones of the equation under a large

memory-batch, which I have empirically shown across two

classes of environments.

Taken together, the classification for replicator rein-

forcement learning dynamics must be revised. Although

originally derived from independent, model-free temporal-

difference reinforcement learning algorithms, replicator

reinforcement learning dynamics should be classified as

model-based, joint-action learners. They use a perfect

model of the environment and the other agents’ current

policies balancing the rewards from the environment with

the exploration–exploitation costs of cognition.
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25. Domingos EF, Grujić J, Burguillo JC, Kirchsteiger G, Santos

FC, Lenaerts T (2020) Timing uncertainty in collective risk

dilemmas encourages group reciprocation and polarization.

Iscience 23(12):101752

26. Doraszelski U, Escobar JF (2010) A theory of regular markov

perfect equilibria in dynamic stochastic games: genericity, sta-

bility, and purification. Theor Econ 5(3):369–402

27. Doshi-Velez F, Kim B (2017) Towards a rigorous science of

interpretable machine learning. arXiv preprint

arXiv:1702.08608

28. Farmer JD, Foley D (2009) The economy needs agent-based

modelling. Nature 460(7256):685–686

29. Fink AM et al (1964) Equilibrium in a stochastic n-person game.

J Sci Hiroshima Univ 28(1):89–93

30. Friston K (2010) The free-energy principle: a unified brain

theory? Nat Rev Neurosci 11(2):127–138

31. Fudenberg D, Levine DK (1998) The theory of learning in

games, vol 2. MIT Press Cambridge, Massachusetts, London,

England

32. Galla T (2009) Intrinsic Noise in Game Dynamical Learning.

Physical Review Letters. https://doi.org/10.1103/PhysRevLett.

103.198702

33. Galla T (2011) Cycles of cooperation and defection in imperfect

learning. J Stat Mech Theory Exp 2011(08):P08007. https://doi.

org/10.1088/1742-5468/2011/08/p08007

34. Galla T, Farmer JD (2013) Complex dynamics in learning

complicated games. Proc Natl Acad Sci 110(4):1232–1236.

https://doi.org/10.1073/pnas.1109672110

35. Griffiths TL, Lieder F, Goodman ND (2015) Rational use of

cognitive resources: levels of analysis between the computa-

tional and the algorithmic. Top Cognit Sci 7(2):217–229

36. Hafner D, Ortega PA, Ba J, Parr T, Friston K, Heess N (2020)

Action and perception as divergence minimization. arXiv pre-

print arXiv:2009.01791

37. Halpern JY, Pass R (2011) Algorithmic rationality: adding cost

of computation to game theory. ACM SIGecom Exch

10(2):9–15

38. Hasselt H (2010) Double q-learning. Adv Neural Inf Process

Syst 23:2613–2621

39. Heess N, Silver D, Teh YW (2013) Actor-critic reinforcement

learning with energy-based policies. In: European Workshop on

Reinforcement Learning, pp. 45–58

Neural Computing and Applications (2022) 34:1653–1671 1669

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevE.99.043305
https://doi.org/10.1038/s41467-018-04738-z
https://doi.org/10.1038/s41467-018-04738-z
https://doi.org/10.1103/physreve.84.041132
https://doi.org/10.1613/jair.4818
https://doi.org/10.1006/jeth.1997.2319
https://doi.org/10.1006/jeth.1997.2319
https://doi.org/10.2307/1882186
https://doi.org/10.2307/1882186
https://doi.org/10.1103/PhysRevLett.103.198702
https://doi.org/10.1103/PhysRevLett.103.198702
https://doi.org/10.1088/1742-5468/2011/08/p08007
https://doi.org/10.1088/1742-5468/2011/08/p08007
https://doi.org/10.1073/pnas.1109672110


40. Hennes D, Kaisers M, Tuyls K (2010) RESQ-learning in

stochastic games. In: Adaptive and Learning Agents Workshop

at AAMAS, ALA’10

41. Hennes D, Tuyls K, Rauterberg M (2009) State-coupled repli-

cator dynamics. In: Proceedings of the 8th International Con-

ference on Autonomous Agents and Multiagent Systems,

AAMAS 2009, pp. 789–796

42. Hernandez-Leal P, Kaisers M, Baarslag T, de Cote EM (2017)

A survey of learning in multiagent environments: Dealing with

non-stationarity. arXiv preprint arXiv:1707.09183

43. Hernandez-Leal P, Kartal B, Taylor ME (2019) A survey and

critique of multiagent deep reinforcement learning. Auton

Agents Multi-Agent Syst 33(6):750–797

44. Hester T, Stone P (2012) Learning and using models. In:

Reinforcement learning, pp. 111–141. Springer

45. Heuillet A, Couthouis F, Dı́az-Rodrı́guez N (2021) Explain-

ability in deep reinforcement learning. Knowl Based Syst

214:106685

46. Hilbe C, Abou Chakra M, Altrock PM, Traulsen A (2013) The

evolution of strategic timing in collective-risk dilemmas. PloS

one 8(6):e66490
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