Skip to main content
. 2022 Jan 12;3(1):sgac009. doi: 10.1093/schizbullopen/sgac009

Table 1.

Confirmatory Factor Analysis of Negative Symptoms: Model Fit Results

Parameters Log-likelihood AIC BIC χ 2 value (df) CFI RMSEA [90% CI] SRMR
16 years
1-factor model 24 –28 955.59 57 959.18 58 115.47 1378.97 (20), P < .001 0.78 0.18 [0.17, 0.19] 0.08
2-factor model 25 –27 993.87 56 037.73 56 200.53 547.37 (19), P < .001 0.91 0.12 [0.11, 0.12] 0.06
4-factor model 30 –27 479.64 55 019.27 55 214.63 115.81 (14), P < .001 0.98 0.06 [0.05, 0.07] 0.03
5-factor model 32 –27 382.81 54 829.63 55 038.01 31.48 (12), P < .001 0.99 0.03 [0.02, 0.04] 0.01
5H-factor model 28 –27 509.06 55 074.12 55 256.46 139.67 (16), P < .001 0.98 0.06 [0.05, 0.07] 0.03
17 years
1-factor model 24 –9753.86 19 555.72 19 682.73 444.50 (20), P < .001 0.85 0.17 [0.15, 0.18] 0.06
2-factor model 25 –9463.35 18 976.70 19 109.01 148.52 (19), P < .001 0.95 0.10 [0.08, 0.11] 0.04
4-factor model 30 –9333.55 18 727.11 18 885.88 16.75 (14), P = .27 1.00 0.02 [0.00, 0.04] 0.02
5-factor model 32 –9325.68 18 715.35 18 884.71 8.40 (12), P = .75 1.00 0.00 [0.00, 0.03] 0.01
5H-factor model 28 –9336.36 18 728.73 18 876.91 19.59 (16), P = .24 1.00 0.02 [0.00, 0.04] 0.02
22 years
1-factor model 24 –34 446.79 68 941.58 69 098.84 940.15 (20), P < .001 0.86 0.14 [0.13, 0.15] 0.06
2-factor model 25 –33 945.17 67 940.34 68 104.15 480.38 (19), P < .001 0.93 0.10 [0.09, 0.11] 0.05
4-factor model 29 –33 658.92 67 375.84 67 565.86 217.03 (15), P < .001 0.97 0.07 [0.06, 0.08] 0.03
5-factor model 32 –33 554.72 67 173.44 67 383.11 110.13 (12), P < .001 0.99 0.06 [0.05, 0.07] 0.02
5H-factor model 28 –33 633.77 67 323.54 67 507.01 185.89 (16), P < .001 0.98 0.07 [0.06, 0.07] 0.03

Note: N age 16 = 4974; N age 17 = 1469; N age 22 = 5179. Robust maximum likelihood estimation (MLR). 5H-factor model, 5-factor hierarchical model; AIC, Akaike’s Information Criterion; BIC, Bayesian Information Criterion; χ 2, chi-square value; CFI, comparative fit index; RMSEA, root mean square error of approximation; SRMR, standardized root mean square residual. Baseline models: At 16, χ 2 (28) = 5626.51, P < .001. At 17, χ 2 (28) = 2643.21, P < .001. At 22, χ 2 (28) = 6163.17, P < .001. Bold typeset represents best fitting model at each age.