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Abstract

Advances in population scale genomic sequencing have greatly expanded the understanding of the 

inherited basis of cardiovascular disease (CVD). Reanalysis of these genomic datasets identified 

an unexpected risk factor for CVD, somatically acquired DNA mutations. In this review, we 

provide an overview of somatic mutations and their contributions to CVD. We focus on the 

most common and well described manifestation, clonal hematopoiesis of indeterminate potential 

(CHIP). We also review the currently available data regarding how somatic mutations lead to 

tissue mosaicism in various forms of CVD, including atrial fibrillation and aortic aneurism 

associated with Marfan Syndrome. Finally, we highlight future research directions given current 

knowledge gaps and consider how technological advances will enhance the discovery of somatic 

mutations in CVD and management of patients with somatic mutations.

Cardiovascular disease (CVD) is the leading cause of mortality, accounting for 32% of all 

deaths worldwide1. A mainstay of the management of CVD is risk factor modification2. 

Well established risk factors include modifiable lifestyle factors such as diet, alcohol 

consumption, tobacco use, and exercise while more recently, environmental as well as social 

determinants of health are partially modifiable risk factors contributing to the development 

of CVD3–5. There is also strong evidence supporting non-modifiable risk factors such as 

age, biological sex, and inherited genetics in the development of CVD6–8. Increasingly, 

somatic or acquired mutations in a variety of tissues have been identified as risk factors for 

the development of CVD, some with a substantial impact on the development and severity of 

CVD.

Most investigations into cardiovascular disease genetics focus on inherited genetic 

mutations; however, individuals acquire mutations throughout their lifespan. Although 

acquired mutations have historically been a focus of cancer genomics, recent technological 

advances in genome sequencing have enabled a new ability to catalog this axis of genetic 

diversity. These technological advances have resulted in an emerging appreciation for how 

acquired mutations contribute to diseases beyond cancer. These new technologies include 

error-corrected deep sequencing and single cell simultaneous multi-omics; both of which 
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have scaled to higher throughput while at historically low costs. Simultaneous with the 

development of large-scale biobanks and tissue repositories, these technologies and methods 

have allowed for the discovery of mutations with low variant allele frequencies (VAF) in 

patients with CVD and led to a greater understanding of the somatic determinants of CVD.

In this review, we introduce the concept of somatic mutations leading to tissue mosaicism 

and subsequent disease, while providing an overview of the current understanding of the 

origin of this phenomenon. The most prominent example of somatic mosaicism is clonal 

hematopoiesis of indeterminate potential (CHIP) which has broad ranging effects across the 

CVD spectrum exerted primarily through an inflammatory mechanism. We then examine 

other somatic mutations in CVD, providing a framework for the consideration of somatic 

mutations in CVD more broadly. Lastly, we consider how new longitudinal cohorts with 

deep phenotyping and precision medicine derived clinical trials in combination with novel 

methods, such as deep error-corrected sequencing and single cell sequencing will enable 

re-appraisal of prior work and new discoveries.

Somatic Mutations and Mosaicism

Mutations occur throughout the life of an individual due to a variety of biological 

mechanisms9. Developmental timing determines the anatomical distribution, allele 

frequency, and clinical manifestations of these somatic mutations10. Widely known 

through our understanding of cancer development and progression, somatic mutations and 

subsequent tissue mosaicism result in a spectrum of clinical manifestations with malignancy 

at one extreme and quiescent mutations producing no clinically relevant disease at the 

other. Technological advancements over the past decade, including enhanced somatic variant 

calling, microdissection, and spatial genetics, have revealed mosaicism to be common both 

in health and disease11–13.

Somatic mutations robustly occur as early as the first cellular division of embryogenesis, 

continuing throughout embryogenesis and into adulthood via several mechanisms12,14. 

(Figure 1, left panel) The most common and reliable mechanism for somatic mutation 

formation is spontaneous deamination of 5-methylcytosine to thymine, primarily at 

methylated CpG dinucleotides15. Left unidentified for repair, this alteration is passed to 

progeny cells throughout the lifespan of the organism in a linear fashion and can serve 

as a marker of aging16. Small insertions and deletions (indels) may also commonly arise 

during non-homologous joining of DNA double-strand breaks and replication error by DNA 

polymerase, though at considerably lower rates17,18. Larger structural variations, such as 

kilobase-sized insertions, deletions, loss-of-heterozygosity, and rearrangements are even 

more rare19.

Within cardiomyocytes, a cell that rarely undergoes division, somatic mutations were 

thought to be uncommon, reinforced by several studies using next generation sequencing 

(NGS) to evaluate primary cardiac tissue13,20,21. However, single-cell whole genome 

sequencing (WGS) was recently used to identify single nucleotide variants (SNVs) 

from 48 single cardiomyocytes in 10 healthy individuals. Remarkably, this revealed 

human cardiomyocytes to have as many as 4,000 to 30,000 somatic SNVs per cell22. 
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However, given the non-dividing nature of cardiomyocytes, somatic mutations derived after 

organogenesis would not have the ability pass these mutations to progeny. This contrasts 

with somatic mutations within stem cell progenitors which can subsequently pass mutations 

to daughter cells, creating tissue mosaics.

Clonal Hematopoiesis of Indeterminate Potential

Unlike cardiomyocytes, hematopoietic stem cells (HSPCs) are constantly dividing. 

Somatic mutations in select genes confer a competitive advantage, leading to a clonal 

proliferation termed CHIP. HSPCs harboring CHIP driver mutations give rise to a similarly 

mutated population of peripherally circulating blood cells, collectively called a clone23,24 

(Figure 1, right panel). While patients harboring driver mutations are at higher risk 

for myeloproliferative neoplasms, CHIP nomenclature is used to distinguish from cancer-

related clonality as relatively few individuals with CHIP go on to develop blood cancers. 

HSPCs with CHIP driver mutations harbor the potential for malignant conversion with 

the acquisition of additional somatic mutations that would enable unchecked growth and 

organ dysfunction25. An important aspect of CHIP diagnosis and prognosis is clone size. 

Currently, CHIP is considered present if the VAF reaches 2%, corresponding to 4% of 

circulating cells, presuming heterozygosity26,27.

CHIP is strongly linked to aging and is estimated to affect greater than 10% of individuals 

older than 70 years of age28–30. Patients with CHIP have a tenfold increased risk of 

developing blood cancer; however, this risk does not fully account for the 30–40% increased 

risk of mortality associated with this condition. Rather, CHIP patients have higher rates 

of ischemic stroke and cardiovascular disease which accounts for the increased mortality 

(figure 2). In fact, the risk of developing coronary disease is twice as high in patients with 

the three most common CHIP mutations, DNMT3A, TET2, and ASXL1 while having a 

JAK2 mutation conferred a 12-fold relative risk of incident coronary artery disease (CAD)31.

Although there are ~75 CHIP driver mutations, the most common, DNMT3A, TET2, and 

ASXL1, account for two-thirds of patients with CHIP26,30,31. DNMT3A and TET2 are 

involved in DNA methylation while ASXL1 is a chromatin regulator. Loss of function 

mutations in both DNMT3A or TET2 show enhanced renewal capability in mice in vitro 
leading to the development of clonal populations32. ASXL1 mediated histone modification 

is essential in normal hematopoiesis among HSPCs; however, a clear mechanism for clonal 

expansion has not yet been elucidated in the setting of CHIP33. JAK2, PPM1D, and TP53 

are also notable CHIP mutations due to their influence on CVD. TP53 is involved with DNA 

damage response (DDR) and HSPCs harboring mutations in this gene have a competitive 

advantage over neighbors within the same compartment34. PPM1D is also part of the DDR 

pathway and mutations confer a proliferative advantage through resistance to p53 mediated 

apoptosis35. JAK2 is part of the cellular JAK/STAT signaling pathway and activating 

mutations allow for unopposed cellular proliferation, supporting clonal expansion36.

While CHIP mutations occur in somatic cells, mounting evidence suggests the presence 

of a germline predilection towards the development of CHIP mutations in HPSCs. In 

2009, a GWAS-based analysis identified an allele in the JAK2 locus that predisposes 
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to the development of JAK2p.Val617Phe (JAK2V617F) derived MPNs, a finding that has 

been affirmed by several other studies and lends credence to the notion of inherited risk 

of clonality37–41. Later, telomerase reverse transcriptase (TERT), a key enzyme in the 

maintenance of telomeres, was found to be associated with incident CHIP in a whole 

genome-based GWAS among a large Icelandic cohort30. The same germline TERT loci 

was again identified in a large study of nearly 100,000 genomes29. It is notable that TERT 

is constitutively expressed in HPSCs whereas most cells within the body lack expression 

of this gene42. TERT itself has been associated with CVD in several GWAS, but the 

role of telomeres and their regulatory environment as it pertains to HPSC clonality and 

downstream effects is not fully known and remains a focus for future research43,44. Several 

novel SNVs were identified in the same large study of 100,000 genomes, furthering the 

hypothesis of germline risk of CHIP29. This group identified an intergenic region near TET2 

(rs144418061) in patients with African ancestry which confers a 2.4-fold increased risk of 

CHIP, an association that was equal among the three most common CHIP driver mutations 

(DNMT3A, TET2, and ASXL1). Further work from the same paper showed a single locus 

within the intron of the T-cell leukemia/lymphoma 1A gene (TCL1A, rs2887399) leading 

to a 1.23-fold risk of acquiring DNMT3A-specific CHIP. There is partial overlap between 

the germline loci that give rise to CHIP mutations and germline loci associating with CVD 

that suggests a potential common genetic source for the development of CVD. The degree to 

which germline variants determine CHIP risk continue to be refined through larger studies, 

but the impact can be extrapolated from data from the above studies. For example, since the 

TET2 SNV rs144418061 confers a 2.4 fold increased risk of CHIP development for each 

copy of the risk allele, a 50 year old individual with one copy of this allele is at a similar 

risk to a 65 year old individual without this allele45,46. Future studies will further refine our 

understanding of the germline determinants of CHIP development and progression.

CHIP in Cardiovascular Disease

Atherosclerotic Coronary Artery Disease

Somatic mutations in HSPCs leading to CHIP are strongly associated with the development 

of coronary artery disease29,31,47. This association was confirmed across several of the CHIP 

driver mutations including DNMT3A, TET2, ASXL1 and JAK2. Causality in humans is 

further supported by data showing that there is a dose-response relationship with VAF/clone 

size and atherosclerosis severity as assessed by coronary artery calcification scoring31. 

Studies in animal and cell models have revealed further mutation-specific mechanistic 

insights into the development of coronary disease.

TET2 is the second most common CHIP mutation and has been the subject of multiple 

mechanistic studies by independent research groups evaluating atherosclerosis and coronary 

disease. Competitive bone marrow transplantation of TET2−/− HSPCs in a mouse model 

of hypercholesterolemia-driven atherosclerosis recapitulated the clonal expansion seen in 

TET2 CHIP patients without alterations in blood counts48. Post bone marrow transplant, 

the TET2-deficient cells expanded markedly in the marrow and led to a 60% increase 

in atherosclerotic plaque size48. A contemporaneous study evaluated the effects of TET2 

inactivation within all hematopoietic cells on the background of a diet-driven atherosclerotic 
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mouse model to find similarly, that TET2 inactivation led to 2.7 fold larger atherosclerotic 

lesion area31. Pursuing this mechanism further, myeloid lineage-specific TET2-knockout 

mice and macrophages showed accelerated atherosclerosis development dependent on an 

enhanced CXC chemokine expression and subsequent secretion of IL-1β and IL-631,48. 

These findings are supported by prior studies in primary cells where TET2 was found to 

participate in the active suppression of IL-6 transcription during inflammation in innate 

myeloid cells, including dendritic cells and macrophages. Furthermore, loss of TET2 

resulted in the upregulation of several inflammatory mediators, including IL-649. These 

fundamental studies have translational relevance as clinical data has pointed to a putative 

inflammatory mechanism implicating IL-6 in the development of coronary disease. One 

study evaluated the effects of a genetically mediated reduction in IL-6 signaling on CVD 

event rates. Utilizing a common variant in the IL-6 receptor gene that disrupts IL-6 

signaling, whole exomes were evaluated revealing that those with the mutated IL-6 signaling 

had significantly lower CVD event rates50. Furthering this notion, serum IL-6 levels are 

highly predictive of coronary artery disease as measured in patients of intermediate risk 

referred for coronary angiography51. In a sub-study of the CANTOS clinical trial, inhibition 

of IL-1β, an upstream mediator of IL-6, reduced major adverse cardiovascular events among 

high-risk atherosclerosis patients with CKD52. Building on this finding, the initial results 

of the IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE) 

trial, found that IL-6 inhibition was effective at reducing C-Reactive protein (CRP) levels 

as well as fibrinogen, and lipoprotein(a), all biomarkers relevant to the development of 

atherosclerosis53.

Similar to TET2, clonal hematopoiesis associated with JAK2V617F mutations have 

significant effects on coronary disease. JAK2V617F mutations lead to cytokine-independent 

activation of the JAK–STAT pathway, resulting in proliferation of mature myeloid cells, 

mechanistically distinct from DNMT3A and TET2 driver mutations54. Mice with myeloid-

specific JAK2V617F mutations develop accelerated atherosclerosis in concert with cellular 

proliferation underpinned by AIM2 inflammasome activation and IL-1β production55. This 

is similar to what was observed in mice transplanted with JAK2V617F positive bone marrow 

after irradiation56. These events led to an overall increase in the burden of inflammatory 

macrophages within atherosclerotic lesions but also to increased necrotic core formation 

and putative plaque instability. These effects were prevented with the use of an IL-1β 
inhibitor55,56.

Ischemic Cardiomyopathy and Heart Failure

After initial associations with CVD and CAD, CHIP was next mechanistically linked to 

congestive heart failure (CHF) in animal models and human epidemiological cohorts57,58. 

Initial investigation began in murine models of heart failure. One group evaluated TET2 

inactivation in two separate models of murine heart failure. TET2 inactivation led to cardiac 

dysfunction in both models. They posited this was through an IL-1β mediated mechanism 

as IL-1β was upregulated in their experimental models. Furthermore, inactivation of the 

upstream mediator, NOD-, LRR- and pyrin domain-containing protein 3 inflammasome 

complex (NLRP3), protected against the development of heart failure in both models 

and prevented several markers of cardiac dysfunction59. Clustered regularly interspaced 
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short palindromic repeats (CRISPR) technology was later used by this same group to 

introduce inactivating mutations in TET2 and DNMT3A in bone marrow cells which were 

subsequently engrafted into lethally irradiated mice. When challenged with an infusion 

of angiotensin II, mice with inactivating mutations in TET2 or DNMT3A displayed 

greater cardiac hypertrophy, decreased cardiac function, and higher levels of fibrosis when 

compared to wild type controls60. TET2 inactivation promoted the expression of IL-1β, IL-6 

and CCL5 whereas DNMT3A inactivation promoted the expression of CXCL1, CXCL2, 

IL-6 and CCL5 when stimulated with lipopolysaccharide in a macrophage cell line. These 

results are supportive of an inflammatory mechanism for the enhanced effects of CHIP in 

these two specific mutations60.

Beyond the CHIP genes that modulate epigenetics, JAK2, PPM1D, and TP53 also have 

notable cardiovascular consequences across several models of murine heart failure. Mice 

that underwent transduction of myeloid-restricted JAK2V617F cells had larger infarct 

size in a LAD-ligation model of myocardial injury and subsequently were found to 

have a greater reduction in cardiac function when compared to controls as a result 

of this insult61. Consistent with prior studies, myeloid-restricted JAK2V617F mice had 

greater expression of IL-6 and IL-1β but had no alterations in overall cell counts. 

Using the same transduction model, this group sought to evaluate pressure-overload 

heart failure through transverse aortic constriction surgery. In this setting, mice with 

myeloid-restricted JAK2V617F had greater cardiac hypertrophy and fibrosis along with 

decreased cardiac function61. Furthermore, heart tissue from these mice displays greater 

macrophage infiltration and IL-6 transcript expression61. In a separate line of work by 

another group, mice transplanted with bone marrow containing PPM1D-mutant cells were 

more susceptible to stress-induced cardiac remodeling and dysfunction. PPM1D-mutant 

macrophages displayed DDR pathway suppression and greater cytokine production in 

response to cardiotoxic stress via chemotherapy. Notably, NLRP3 inflammasome inhibition 

reversed the mouse phenotype that was conferred by the transplantation of the PPM1D-

mutant cells. These data suggest gain-of-function mutations in PPM1D can contribute to 

chemotherapy induced cardiomyopathy through an inflammatory mechanism and inhibition 

of upstream mediators provide potential therapeutic targets for the treatment of this 

condition62. Adding to this, Sano et al. showed doxorubicin treatment can lead to the 

rapid expansion of a pre-existing TP53 clone, producing enhanced cardiotoxicity through 

a neutrophil mediated mechanism which further supports the important role of DDR CHIP 

mutations in the development of CVD63.

Human data on CHIP in heart failure appear concordant with animal and cellular models. 

At the single cell level, Abplanalp et al. focused on DNMT3A mutations within monocytes 

and T cells and showed monocytes from heart failure patients with DNMT3A mutations 

have an increased proinflammatory signature compared to heart failure controls58. This 

included increased expression of IL-6, CXCL2, IL-1β, tumor necrosis factor (TNF), and 

NLRP3. These findings were experimentally corroborated using a DNMT3A-silenced 

human monocyte cell line. Interestingly, widespread genetic changes were found within 

both monocytes and T cells regardless of mutational status, suggesting a pleiotropic effect of 

DNMT3A mutations.
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In a clinical study of 200 older and mostly male patients with CHF, the participants 

underwent bone marrow biopsy and their samples were subsequently sequenced for CHIP 

mutations. Worse long-term clinical heart failure outcomes, as measured by death or death 

combined with heart failure hospitalization, were found in patients with either DNMT3A 

or TET2 mutations compared with non-CHIP CHF patients. There was a statistically 

significant dose-response association between clone size and clinical outcome, suggestive 

of a causal relationship64. Subsequently, a large prospective cohort study of 50,000 patients 

showed there was an association between overall CHIP presence and incident HF. Gene-

based analyses in this study demonstrated significant associations specifically for TET2, 

JAK2, and ASXL1, but interestingly, not DNMT3A57.

Aortic Stenosis

CHIP has been linked to poor outcomes after transcatheter aortic valve implantation (TAVI) 

in calcific aortic stenosis (AS). In one study, eight patients with severe degenerative 

AS and three controls underwent single-cell RNA sequencing analyses of circulating 

peripheral monocytes. AS patients who carried DNMT3A or TET2 CHIP-driver mutations 

had increased monocyte expression of IL-1β, IL-6R, and NLRP3, all potent mediators of 

inflammation. Importantly, there were no significant differences in circulating levels of 

IL-6 or high-sensitivity C-reactive protein in this cohort of patients, leading the authors 

to speculate that patients with DNMT3A or TET2 driver mutations may be primed for 

excessive inflammatory responses65. Other studies have noted increased circulating levels 

of IL-6 in patients with AS and have correlated this with disease progression. Therefore, 

increased inflammatory potential via IL-6 is a possible explanatory mechanism for poor 

outcomes in the time period after TAVI66.

Another study evaluated 279 sequentially enrolled older patients undergoing TAVI for 

critical AS in Germany67. Enrolled patients were sequenced for the presence of either 

TET2 or DNMT3A CHIP driver mutations and then followed with the primary endpoint 

of all-cause mortality. Notably, the evaluated CHIP mutations were enriched in patients 

with severe calcified AV stenosis undergoing TAVI. The primary finding of the study 

shows patients carrying either a DNMT3A or TET2 CHIP driver mutations experienced 

significantly worse clinical outcome for death during the first 8 months after TAVI with 

a hazard ratio of 3.1 when compared to non-CHIP controls. The authors subsequently 

performed FACS on a subset of the patients revealing a skew towards pro-inflammatory 

t-cell polarization in DNMT3A-CHIP patients and increased levels of circulating non-

classical monocytes in TET2-CHIP patients. Inflammatory infiltrate in surgically removed 

mineralized aortic valves is composed of macrophages, mast cells, CD4+ T cells and CD8+ 

T cells68 and as such, the cellular alterations seen in these CHIP mutations add to the notion 

that an inflammatory mechanism might be critical to poor outcomes in AS.

Peripheral Artery Disease and Venous Thromboembolism

Observations linking CHIP to atherosclerosis beyond the coronary vasculature are emerging. 

One group has identified TP53 as a potential driver of atherosclerosis in vascular beds 

across the body69. This group leveraged whole exome sequences and tested whether CHIP 

was associated with increased risk of PAD and atherosclerosis within multiple arterial 
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beds. Their preprinted work revealed the novel finding that DDR TP53 and PPM1D CHIP 

associates with incident PAD. Specifically, there were significant associations between 

TP53 and CAD, aortic and peripheral aneurysms, and chronic mesenteric ischemia. A 

mouse model of atherosclerosis transplanted with 20% Trp53−/− bone marrow cells proved 

sufficient to accelerate atherosclerosis development through a macrophage-dependent 

process69. This stands in contrast to previous work on DNMT3A and TET2 CHIP, where 

elevated expression of pro-inflammatory cytokines IL-6 and IL-1β in the aortic wall promote 

atherosclerosis suggesting a distinct mechanism for injury in this CHIP subtype.

To date there have been no studies on the effects of CHIP on VTE in the absence of 

MPN. There is one study to report negative results, where the presence of non-JAK2 

CHIP mutations seem to have no impact on VTE formation in the setting of MPNs70 For 

JAK2, patients with MPN found to have JAK2V617F mutations had significantly elevated 

rates of venous thrombosis compared to controls in a large-scale clinical cohort study71. 

They postulated this effect was through an enhanced neutrophil extracellular trap (NET) 

formation, an important factor in thrombosis. Treatment with ruxolitinib, a JAK1/2 inhibitor, 

decreased NET formation in vitro and decreased thrombosis in JAK2V617F mice in vivo71.

Pulmonary Hypertension

Evaluating a large PAH cohort revealed mutations in TET2 were associated with PAH 

independent of previously established PAH genes. Interestingly, a significant proportion 

of these mutations were predicted to be germline rather than somatic (75% vs 25%, 

respectively). The identification of somatic variants, perhaps limited by read depth of 

whole exome sequencing, may have underestimated the prevalence of somatic mutations. 

Furthermore, primary lung tissue was not used to corroborate their findings. To investigate 

the underlying mechanisms of their clinical findings, a mouse model of conditional 

hematopoietic TET2 knockout was sufficient to induce PH typified by marked vascular 

remodeling and profound microvascular loss secondary to increased inflammation72. This 

model had increased levels of IL-1B and the phenotype was recovered when treated with 

antibody-mediated IL-1B blockade. A more recent study found that JAK2 CHIP was 

associated with the development of PAH in transgenic mice as well as mice transplanted 

with JAK2V617F bone marrow cells73. These effects were mediated through the enhanced 

differentiation of neutrophils in pulmonary arterial regions leading to upregulation of 

chemokine activity and subsequent arterial remodeling. However, unlike similar models 

of clonal hematopoiesis, this model harbored baseline hematological differences, such as 

elevated white blood cell count which could confound their results. An analysis of a 

70 person PAH cohort identified an increase JAK2V617F mutations in PAH cases (7%) 

compared to aged matched controls (0%)73.

Primary Tissue Somatic Mosaicism in CVD

Marfan Syndrome

Marfan Syndrome (MFS) is a hereditary connective tissue disorder which typically 

results from heterozygous pathogenic variants in the FBN1 gene, encoding fibrillin-1. 

Cardiovascular manifestations include thoracic and abdominal aneurysms and dissections. 
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About 75% of cases have a positive family history whereas as many as 25% arise 

sporadically. Using clinically diagnosed probands, one group found 5 individuals with 

somatically-derived mutations in FBN1 in blood samples74. Pathogenic mosaics had been 

described only rarely before with two prior case reports, and therefore were thought to 

be primarily clinically asymptomatic as is commonly observed in parents of patients with 

spontaneous MFS75,76. Clinically, these five patients were heterogeneous in terms of typical 

MFS manifestations. Though still rare, this study and others illustrate somatically acquired 

mutations in the FBN1 gene are an important phenomenon and should be part of regular 

screening77. This information is especially important regarding genetic counseling and 

family planning in the proband.

Atrial Fibrillation

Atrial fibrillation is the most common arrhythmia, affecting ~1% of the population. There 

has been significant effort to define the genetic architecture of this disease82,83. Several 

pathogenic familial mutations have been identified and more recently GWAS-derived SNVs 

have been added together to produce clinically usable polygenic risk scores84,85. Somatic 

mutations have been described in a minority of cases with several studies reporting that 

there were no somatic variants within their respective populations. A 2015 study evaluating 

paired DNA from lymphocytes and left atrial appendages of 25 atrial fibrillation patients 

using high-depth NGS could not reveal any significant somatic mutations and subsequently 

concluded that atrial-specific tissue mutations are rare and that somatic mosaicism within the 

atria is unlikely to significantly contribute to AF pathogenesis21. Similarly, a later paired-

tissue study evaluated blood and left atrial tissue DNA (harvested from posterior left atrial 

wall, between the pulmonary veins) from 44 AF patients also revealed no somatic variants 

within the studied cardiac tissue86. However, both studies were designed to evaluate valvular 

AF and were limited by sample size. Conversely, other reports suggest somatic mutations 

could contribute to the development of AF. Gollob et al showed 4 out of 15 patients with 

early onset idiopathic AF had heterozygous mutations in the GJA5 (connexin 40) gene in 

surgically harvested left atrial tissue but not in peripheral lymphocytes87. Likewise, in a 

selected group of 10 patients undergoing surgical PVI, 1 was found to have a mutation in 

the coding region of the connexin 43 gene in atrial tissue only in a study from another 

group88. Studies using paired cardiac tissue and DNA from blood samples combined with 

high-quality deep sequencing technology represent the gold standard for the determination 

of somatic variants and additional studies with more patients are needed to fully evaluate this 

phenomenon.

Long QT Syndrome

Somatic mosaicism has also been described as a rare cause of Long QT syndrome (LQTS). 

One group characterized an index patient with LQTs revealing the mosaic presence of a 

mutated SCN5A gene89. Unsure if this could be causative of the patient’s presentation, 

the researchers created a model simulation which suggested somatic mosaicism within 

the Purkinje system can lead to abnormal electrophysiological propagation consistent 

with LQTS, offering a potential explanation for the development of an arrhythmia-prone 

substrate. Furthermore, somatic mosaicism appeared to account for 0.17% of undiagnosed 

cases of LQTS in a large cohort of patients being evaluated for genetically derived 
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arrhythmias, supporting the notion that LQTS is rarely derived from somatic mutations 

but could be considered in sporadic cases89.

Idiopathic VT

Idiopathic ventricular tachycardia occurs in patients without clear structural heart disease 

and in the absence of other arrhythmia syndromes such as LQTS. Notably, these arrhythmias 

primarily arise from the right ventricular outflow tract (RVOT), a defining characteristic of 

idiopathic VT. One group identified a focal somatic myocardial mutation in GNIA2 present 

in the RVOT, the site of the arrhythmogenic substrate, but nowhere else in the sampled 

myocardium90. GNAI2 codes for the alpha subunit of guanine nucleotide binding protein, 

part of a larger family of G proteins which are involved in inhibition of adenylyl cyclase, 

activation of PI-3 kinase, and modulation of K+ and Ca2+ channels91. The absence of these 

inhibitor proteins were shown to predispose transgenic mice to ventricular arrhythmias92. 

Taken together, focal somatic mutations present in the RVOT could be contributory in the 

development of idiopathic VT. However, there have been no follow up studies and no human 

studies have recapitulated these findings to date.

Congenital Heart Disease

Congenital heart disease (CHD) represents a broad spectrum of cardiovascular dysfunction 

that is present at birth and has historically been associated with inherited genetics. However, 

there exists a significant proportion of CHD cases that occur in families without a history 

of CHD, suggesting a mutational acquisition early in embryological development. Due to 

enhanced analytical methods, somatic mutations have been identified as contributing to 

CHD in recent years78–80. These findings have been very recently reviewed by Morton et al. 

and can provide the interested reader with detail beyond the scope of the current work81.

Heteroplasmy

Another facet of somatic mosaicism within the broader context of CVD is heteroplasmy. 

Heteroplasmy describes the presence of different mitochondrial DNA within the same 

organism resulting in a mosaic pattern within a particular tissue. This is thought to be 

an age-related phenomenon resulting from large deletions of mitochondrial DNA (mtDNA) 

leading to alterations in the generation of ATP or Ca2+ handling, which is especially 

important within the cardiac tissues93,94. Heteroplasmy has been identified as potentially 

contributory in arrhythmia, heart failure, and atherosclerosis while decreased mtDNA copy 

number, a specific type of acquired heteroplasmy is associated with incident CVD across 

several large, well characterized cardiovascular cohorts95.

In an animal model of accelerated accumulation of mtDNA deletions within 

cardiomyocytes, aged animals had significantly higher rates of arrhythmia than their control 

counterparts96. Similarly, a 2017 study using transgenic mice observed higher rates of 

spontaneous and inducible cardiac arrhythmias after experimental myocardial infarction 

among mice with elevated mtDNA mutations97. In humans, a prospective study evaluating 

high-risk patients undergoing CABG were more likely to have postoperative AF if higher 

levels of mitochondrial dysfunction was present in right atrial tissue98. Another study 

appeared to confirm these results; this group evaluated 88 paired atria-blood tissue samples 

Heimlich and Bick Page 10

Circ Res. Author manuscript; available in PMC 2023 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for specific mtDNA deletions. mtDNA deletions were closely associated with age and were 

present in significantly higher quantities in patients with AF99. A 2006 study revealed 

mtDNA mutations present in atrial tissue but not in mtDNA from peripheral blood cells 

of patients with chronic AF, leading the researchers to conclude that oxidative injury and 

large mtDNA deletions in cardiac muscle are increased in patients with chronic AF, which 

may lead to the pathogenesis of AF100. More recently, mtDNA copy number was inversely 

associated with the risk of incident AF in several large population-based prospective cohort 

studies (Atherosclerosis Risk in Communities (ARIC) study, the Multi-Ethnic Study of 

Atherosclerosis (MESA), and the Cardiovascular Health Study (CHS)), independent of 

traditional risk factors for the development of AF. The investigators found mitochondrial 

DNA copy number is proportional to the transcription of mitochondrial genes and is a 

marker of mitochondrial dysfunction101,102. This study however did not directly assess 

mtDNA copy number in atrial tissue, rather from peripheral blood where it is presumed to be 

a surrogate indicator for mtDNA in heart tissue. Additional studies are needed to confirm the 

role of heteroplasmy in the development of arrhythmia, especially atrial fibrillation.

Mitochondrial function is essential to cardiac physiology which is especially relevant in 

cardiac aging and heart failure. Mitochondrial dysfunction has been highly correlated with 

declining cardiac function and extensively reviewed elsewhere103–105. Alterations in mtDNA 

are one mechanism for mitochondrial dysfunction and have been associated with heart 

failure. In an animal model of ischemic cardiomyopathy, mtDNA copy number is decreased 

in the post MI failing myocardium which correlated with increased cardiac remodeling and 

systolic dysfunction106. In humans, there is reduced mtDNA replication and depletion of 

mtDNA in heart failure while up to 22% of idiopathic dilated cardiomyopathy cases can be 

attributed to mtDNA mutations107,108.

Regarding atherosclerotic coronary disease, there have been multiple studies to correlate 

mtDNA content with the presence of coronary disease109,110. One single-center study was 

able to identify mtDNA content in peripheral blood mononuclear cells as a predictor 

for CHD and further was able to correlate mtDNA content with severity of coronary 

atherosclerosis110. Higher rates of heteroplasmy have also been identified in several studies 

of post-mortem aorta samples with increased levels of atherosclerosis111–113. There does 

indeed appear to be a link between the presence of mtDNA mutations or changes in 

copy number to atherogenesis however, the mechanisms leading to this are incompletely 

understood. It is possible that the mitochondrial damage leads to increased LDL oxidation 

and subsequent formation of atherogenic LDL species or activation of the NLRP3 

inflammasome modulating the inflammation axis to promote plaque formation however 

additional studies are needed to confirm these theories114–116.

Outlook for Somatic Mosaicism and CVD

The evaluation of somatic mosaicism and its most commonly identified form, CHIP, in 

CVD is a new and growing field based on advances in sequencing technology and is 

primed to expand considerably in the upcoming years. In the CHIP space, there is a lack 

of data regarding phenotype over time. There are no published studies following CHIP 

clone size over time and therefore we do not know the complete natural history of this 
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nascent condition, particularly as it relates to CVD. At least part of the difficulty with 

establishing this data lies with the current diagnostic tools available. With the development 

of a clinical CHIP bioassay, and deep error-corrected sequencing, patients could be more 

easily identified, and clone size followed in a longitudinal manner.

Similarly, we also have limited data as to the specific CHIP mutations and their effects 

on downstream pathologies. For example, are DNMT3A R882H hotspot mutations equally 

pathogenic as DNMT3A loss of function mutations? The distinction of clone type is an 

important one since CHIP represents a heterogenous set of mutations and subsequent 

clinical impacts. Identification of the natural history for a specific mutation will be critical 

to individual risk estimation and implementation of prevention strategies. Larger prospective 

studies are needed to assist patients and clinicians to risk stratify patients in this manner. 

With the growth of mega-biobanks, such as NIH All of Us, UK Biobank and others, we 

expect that additional data will be available to answer these questions in the next few years.

Excitingly, based on the findings reviewed here, there are putative therapeutic targets 

for CHIP patients on the horizon. Given the findings of several large-scale trials testing 

anti-inflammatory approaches such as the Canakinumab Anti-inflammatory Thrombosis 

Outcome Study (CANTOS), Low Dose Colchicine 1 and 2 (LoDoCo), Colchicine 

Cardiovascular Outcomes Trial (COLCOT) there is strengthening evidence to suggest that 

inflammation plays a causal role in the pathogenesis of CVD. Indeed, a subgroup analysis of 

the CANTOS data revealed that patients who experienced the most inflammation reduction 

as measured by high-sensitivity CRP or IL-6 levels while on treatment with canakinumab 

were also the patients who derived the most benefit through decreased event rates117. 

Building on this, one team has sequenced a large proportion of the CANTOS participants 

to then sub-select for TET2 CHIP patients within the study and found treatment with the 

IL-1B inhibitor decreased relative risk of major CV events by 64% in TET2 CHIP patients 

compared to 15% overall118. In sum, the current available research supports a role of 

inflammation in the most common CHIP mutations, likely mediated via an IL-6 mechanism 

which makes the upcoming trial of Ziltivekimab (a selective IL-6 antagonist) compared to 

placebo in people with CVD (ZEUS) of particular interest; however, there are no current 

clinical trials specifically evaluating treatments for patients with CHIP. Together, these 

developments lend support for the notion that a precision medicine approach to address the 

unique pathophysiology of CHIP is increasingly feasible.

New technologies will catalyze ongoing efforts to identify and detect somatic mutations in 

all cardiovascular tissues and determine their clinical consequences. The development of 

deep error-corrected sequencing has led to an enhanced ability to identify somatic variants 

and we anticipate this trend to continue in the identification of somatic mosaicism within 

cardiovascular diseases. Revisitation of prior work may indeed yield divergent results, 

especially in the setting of evaluating somatic mutations within primary cardiovascular 

tissues. Combined with cutting edge bulk sequencing, emerging but low-throughput 

methods such as single cell DNA sequencing and multi-omics will shed light on the 

accumulation of mutations throughout the life of a particular cell and reveal critical aspects 

of pathophysiology as it pertains to cellular function over time, opening the door to new 

therapeutic modalities and the treatment of CVD.
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Non-Standard Abbreviations

AS Aortic stenosis

CAD Coronary artery disease

CANTOS Canakinumab Anti-inflammatory Thrombosis Outcome Study

CH Clonal hematopoiesis

CHIP Clonal hematopoiesis of indeterminate potential

COLCOT Colchicine Cardiovascular Outcomes Trial

CRP C-Reactive protein

HPSC Hematopoietic stem cell

Indel Insertion and deletion

LoDoCo Low Dose Colchicine Trial

NGS Next generation sequencing

NLRP3 NOD-, LRR- and pyrin domain-containing protein 3 inflammasome 

complex

SNVs Single nucleotide variants

TERT Telomerase reverse transcriptase

VAF Variant allele fraction

WGS Whole genome sequencing
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Figure 1. Mechanisms of somatic mutations giving rise to tissue mosaicism
Mosaicism results from somatic DNA mutations obtained throughout the lifespan of the 

individual. Mutations arise from a variety of mechanisms including base mismatches, single 

and double strand breaks, and various crosslinks (left panel). When these mutations occur 

in driver genes within hematopoietic stem cells (blue cells), a survival advantage can be 

conferred, leading to the enhanced proliferation of the mutated cells (right panel). Clonal 

hematopoiesis of indeterminate potential results from this selective advantage. Created with 

BioRender.com. Illustration Credit: Ben Smith.
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Figure 2. Somatic mutations in cardiovascular disease
Somatic mutations can lead to a variety of manifestations in cardiovascular disease ranging 

from conduction system alterations to the development of atherosclerotic coronary disease. 

The most commonly identified somatic mutations are CHIP mutations within hematopoietic 

stem cells which lead to deleterious downstream effects across the cardiovascular system. 

Due to technological advancements, somatic mutations are increasingly being identified and 

characterized across cardiovascular tissues. Created with BioRender.com. Illustration Credit: 

Ben Smith.
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