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Abstract

Adverse childhood experiences (ACEs) put millions of children at risk for later health problems. 

As childhood represents a critical developmental period, it is important to understand how 

ACEs impact brain development in young children. In addition, children with attention-deficit/

hyperactivity disorder (ADHD) are more likely than typically developing (TD) peers to experience 

ACEs. Therefore, the current study examined the impact of ACEs on early brain development, 

using a cumulative risk approach, in a large sample of children with and without ADHD. We 

examined 198 young children (Mage = 5.45, 82.3% Hispanic/Latino; 52.5% ADHD) across 

measures of brain volume, cortical thickness, neurite density index (NDI), and orientation 

dispersion index (ODI). Within NDI, there was a significant interaction between group and 

cumulative risk (ß = 0.18, p = .048), such that for children with ADHD, but not TD 

children, greater cumulate risk was associated with increased NDI in corpus callosum. No other 

interactions were detected. Additionally, when examining across groups, greater cumulative risk 

was associated with reduced ODI and volume in the cerebellum, although these findings did not 

survive a correction for multiple comparisons. Our results highlight the role early cumulative 

ACEs play in brain developmental across TD and children with ADHD.
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A developmental psychopathology perspective advocates for 1) studying the full range of 

variation from normality to psychopathology, 2) understanding origins and mechanisms 

underlying psychopathology, and 3) use of multiple units and levels of analysis to study 

salient domains of functioning (Garber & Bradshaw, 2020; Miklosi, Mate, & Balazs, 2020). 

In the context of this conceptual approach, we examine the effects of cumulative adverse 

childhood experiences (ACEs) on structural brain development in typically developing 
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(TD) and at-risk youth (i.e., children with attention-deficit/hyperactivity disorder; ADHD). 

Each year, ACEs put millions of children at risk for health problems (e.g., heart disease, 

obesity), psychological illness (e.g., alcoholism, depression, suicide), and even early death 

(Brown et al., 2009; Dube et al., 2002; McLaughlin et al., 2012). Typically, ACEs are 

explored in isolation, even though many of these risk factors co-occur and are cumulative 

(McLaughlin et al., 2010). Such co-occurring exogenous factors—low family income, 

parental psychopathology, stress—interact with endogenous characteristics of the child, such 

as their own psychopathology. Examining these factors within a cumulative risk model 

is thus most appropriate for understanding how ACEs affect brain development during 

early childhood, in which the brain is especially vulnerable to early experiences (Fox, 

Levitt, & Nelson, 2010). Despite this, most of the literature examining ACEs’ impact on 

brain development has been conducted with older, restricted samples that do not consider 

comorbid risk factors such as developmental disorders. This is especially problematic for 

common disorders appearing in early childhood, like ADHD, as such children are at 

increased risk for experiencing ACEs (Walker et al., 2020). Furthermore, the impact of 

ACEs on brain development may be exacerbated relative to TD children. Thus, the current 

study looks to fill these gaps by examining the impact of ACEs on early brain development, 

using a cumulative risk approach, in a large sample of young children with and without 

ADHD. In line with previous research, the current study will focus on seven ACEs: 

low family income and parental education (socioeconomic disadvantage), single-parent 

household status (family structure), and parental factors such as minority status, ADHD, 

stress, and emotion regulation (parental risk characteristics).

It is important to understand the impact of ACEs across a spectrum of presentations by 

studying the range of variation from normality to psychopathology. ACEs can lead to 

pervasive negative health outcomes that continue throughout adulthood (Mäntymaa et al., 

2012; McLanahan, Tach, & Schneider, 2013). For example, children in single-parent homes 

are at an increased risk for decreased cognitive functioning and academic performance 

(Amato & Anthony, 2014; Brown, 2010), with increased risk for later obesity, mental health 

problems, antisocial behavior, and substance use (Duriancik & Goff, 2019; McLanahan et 

al., 2013). These risks are heightened in children with ADHD, as they are more likely to 

experience multiple ACEs such as socioeconomic disadvantage (Msall et al., 1998), low 

parental education (Law, Sideridis, Prock, & Sheridan, 2014; Machlin, McLaughlin, & 

Sheridan, 2020), parental divorce (Schermerhorn et al., 2012; Wymbs et al., 2008), high 

parental stress (Craig et al., 2016; Ronald, Pennell, & Whitehouse, 2011; Theule, Wiener, 

Tannock, & Jenkins, 2013), and parent psychopathology (Chronis et al., 2003; Vidair et 

al., 2011). Understanding the impact of cumulative ACEs across presentations (i.e., TD to 

ADHD) in early childhood can illuminate pathways of risk and resilience.

In addition to well-studied mental health outcomes, a number of studies have shown that 

ACEs are associated with neurobiological outcomes, specifically in grey matter brain 

regions and the white matter connectivity supporting these networks. Most studies have 

focused on grey matter volume and cortical thickness differences in the limbic system 

as a result of various ACEs. For example, ACEs have been associated with reductions 

in volume and thickness in the hippocampus, amygdala, anterior cingulate cortex, and 
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orbitofrontal cortex (OFC), in addition to other cortical regions associated with limbic 

functions (Chad-Friedman et al., 2020; Duan, Hare, Staring, & Deligiannidis, 2019; Hanson, 

Chandra, Wolfe, & Pollak, 2011; Lawson, Duda, Avants, Wu, & Farah, 2013; Machlin et 

al., 2020; Marečková et al., 2019; Noble, Houston, Kan, & Sowell, 2012) (see Figure 1). 

Research in TD children has also shown reductions in volume of the cerebellum (Jackowski 

et al., 2008), and reduced cerebellar volume is a reliable finding in children with ADHD 

(Rubia, 2018). Indeed, the few studies examining ACEs in children with ADHD have also 

found that more ACEs were associated with reduced cerebellar volume, in addition to 

reductions in subcortical limbic regions (i.e., amygdala and hippocampus) (Machlin et al., 

2020).

Maturation of white matter in the brain is also susceptible to influence from early exposure 

to ACEs. This is not surprising, given the protracted developmental timeline of myelination 

of axons in early childhood through adolescence (Giedd et al., 1999). Several studies have 

shown reductions in volume or diffusion properties of the corpus callosum (Jackowski et 

al., 2008; McCarthy-Jones et al., 2018; Rinne-Albers et al., 2016). These changes persist 

into adulthood, suggesting prolonged negative impacts of early ACEs on brain development.

Information about gross grey matter and white matter changes are informative, but they 

do not provide information about subtle changes in local neural connections and structure. 

More recent methods, such as neurite orientation density and dispersion imaging (NODDI) 

have been developed to take advantage of the complex signal available in diffusion-weighted 

images (Zhang, Schneider, Wheeler-Kingshott, & Alexander, 2012). The neurite density 

metric (NDI) recovered from NODDI reconstruction can provide detailed information about 

how the cytoarchitecture of neurons changes in response to exposure to ACEs, specifically 

measuring the potential loss or maintenance of neurons. The advantage of this metric is 

that it can be used to investigate changes in both grey matter (primarily neurons) and white 

matter (primarily axons). Similarly, the orientation dispersion index (ODI) is sensitive to 

reduction or maintenance of the complexity of dendritic arborization. These indices can 

potentially provide information about changes in local neural organization in response to 

specific experiences, leading to a more comprehensive picture of the neural response to 

ACEs.

The Current Study

Although individual ACEs have been shown to impact later brain development (Chad-

Friedman et al., 2020; Hair, Hanson, Wolfe, & Pollak, 2015), there is extremely limited 

research examining how cumulative risk factors impact brain development as early as 

preschool (Hawkey, Tillman, Luby, & Barch, 2018). While some studies have included 

only younger children (e.g., Luby et al., 2013), most include a large age range of children 

at different stages of brain development (e.g., children aged 3-21). Further, as children with 

ADHD are at an increased risk for experiencing these aforementioned ACEs, it is extremely 

important to understand if ACEs differentially impact brain development in children with 

ADHD. The current study looked to fill these gaps by examining how ACEs, utilizing a 

cumulative risk approach, are associated with brain development in young children with 

and without ADHD. Moreover, the current study tested if the impact of cumulative risk is 
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exacerbated in children with ADHD compared to TD. The current study aimed to establish 

this comprehensive picture by examining volumetric, cortical thickness, NDI, and ODI 

differences in response to ACEs.

We hypothesized that cumulative risk would be negatively associated with children’s volume 

within the cerebellum, corpus collosum, the OFC, amygdala, hippocampus, and the anterior 

cingulate. We also hypothesized that cumulative risk would be negatively associated with 

cortical thickness in the OFC and cingulate. Given the limited studies on NDI and ODI 

within young children, we hypothesized that if cumulative risk interferes with synaptic 

formation, then a negative association with measures of NDI and a positive association with 

measures of ODI would be found. We expected to find these associations across TD children 

and those diagnosed with ADHD, although we expected that children with ADHD would 

have higher risk scores.

Methods and Materials

Participants and Recruitment

Children and their caregivers were recruited from local schools and mental health agencies 

via brochures, radio and newspaper ads, and open houses/parent workshops. All children 

were required to be enrolled in school during the previous year, have an estimated IQ of 70 

or higher, and have no confirmed history of an autism spectrum disorder.

For the ADHD sample, ADHD diagnosis and comorbid disruptive behavior disorders were 

assessed through a combination of parent structured interview (Computerized-Diagnostic 

Interview Schedule for Children; C-DISC) (Shaffer, Fisher, Lucas, Dulcan, & Schwab-

Stone, 2000), and parent and teacher ratings of symptoms and impairment (Disruptive 

Behavior Disorders Rating Scale, Impairment Rating Scale) (Fabiano et al., 2006; Pelham Jr, 

Gnagy, Greenslade, & Milich, 1992), as is recommended by standard practice (Pelham, 

Fabiano, & Massetti, 2005). Dual Ph.D. level clinician review was used to determine 

diagnosis and eligibility. For the TD sample, parents must have endorsed less than 4 

ADHD symptoms (across either Inattention or Hyperactivity/Impulsivity according to the 

DSM-5), less than 4 Oppositional Defiant Disorder (ODD) symptoms, and indicated no 

clinically significant impairment (score below 3 on the impairment rating scale). The final 

sample included 198 young children (70.7% male; Mage = 5.45, SD = .89, 82.3% Hispanic/

Latino) with an equivalent distribution of children diagnosed with ADHD (52.5%) and those 

characterized as TD (47.5%).

This study was approved by the university’s Institutional Review Board. All families 

participated in a one-time assessment, which included completion of the ADHD, ODD, 

and conduct disorder modules on the C-DISC and various questionnaires regarding their 

children’s behavioral, academic, and emotional functioning. Similar questionnaires were 

also obtained from children’s teachers. Children also completed a 25-minute MRI scan.

Risk Measures

Parental stress.—The Parenting Stress Index-Short Form (PSI-SF) (Abidin, 1995) is a 

36 item self-report scale that measures stress in the parent-child relationship due to parent 
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distress, difficult child behavior, and dysfunctional parent-child interaction. For the purposes 

of this study, the parental distress scale was used as a measure of parental stress (Cronbach’s 

a = .79).

Parental ADHD.—The ADHD Self-Report Scale (ASRS) (Kessler et al., 2005) is an 

18-item self-report measure to assess manifestation of ADHD symptoms in people aged 

18 years or older. The ASRS has previously demonstrated good internal consistency and 

concurrent validity (Adler et al., 2006). The total score was used in this study (Cronbach’s a 
= .89).

Parental emotion regulation.—The Difficulties in Emotion Regulation Scale Short 

Form (DERS-SF) (Kaufman et al., 2016; Victor & Klonsky, 2016) is an 18-item self-report 

measure that assesses the presence and frequency of symptoms of emotion dysregulation 

in adults. Responders are asked to rate the frequency at which they experience particular 

symptoms. The total score was used in this study with higher scores indicating more 

emotion dysregulation problems (Cronbach’s a = .80).

Cumulative risk index.—Consistent with prior work (Appleyard, Egeland, van Dulmen, 

& Alan Sroufe, 2005; Bagner & Graziano, 2013), we transformed seven variables into 

dichotomous variables, with a score of 1 indicating the presence of risk and 0 indicating 

no risk. The risk variables included 1) low family income; 2) parental education; 3) single-

parent household status; 4) parental minority status; 5) parental ADHD; 6) parental stress, 

and 7) parental emotion regulation. Cumulative risk was calculated for each participant by 

summing the seven dichotomized variables (possible range in scores from 0 to 7), with 

higher scores indicating greater risk. See Table 1 for details on how risk scores were 

determined for each variable.

Image Acquisition & Processing

MRI acquisition & processing.—All imaging was performed using a research-dedicated 

3-T Siemens MAGNETOM Prisma MRI scanner (V11C) with a 32-channel coil located 

on the University campus. Children first completed a mock scan. In the magnet children 

watched a child-friendly movie of their choice. Ear protection was used, and sound was 

presented through MRI compatible headphones.

We collected structural anatomical scans using a whole-head 3D T1-weighted acquisition 

inversion prepared RF-spoiled gradient echo protocol with prospective motion correction 

(Siemens vNAV; Tisdall et al., 2012). We collected 93 axial slices at 1 mm isotropic 

resolution. Each scan was reviewed by a licensed radiologist, and incidental findings 

were reported to the parent/guardian. We also collected multi-shell high-angular diffusion-

weighted imaging (Harding, Galano, Martin, Huntington, & Schellenbach) data according 

to the Adolescent Brain and Cognitive Development (ABCD) protocol (Hagler et al., 2019). 

These scans were collected with a 1.7 mm isotropic voxel size, using multiband imaging 

echo planar imaging (EPI; acceleration factor = 3). The acquisition consisted of ninety-six 

diffusion directions, six b=0 frames, and four b-values (102 diffusion directions; 6 b=500 

s/mm2, 15 b=1000 s/mm2, 15 b=2000 s/mm2, and 60 b=3000 s/mm2).
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Diffusion-weighted imaging post-processing.—Initial post-processing was 

accomplished with DTIPrep v1.2.8 (Oguz et al., 2014), TORTOISE DIFFPREP v3.1.0 

(Irfanoglu, Nayak, Jenkins, & Pierpaoli, 2017; Pierpaoli et al., 2010), AFNI (v 20.6.02), 

and FSL v6.0.1 topup (Andersson, Skare, & Ashburner, 2003; Smith et al., 2004). We 

also implemented a pre- and post-analysis quality check assessing signal-to-noise of each 

diffusion b-value (Roalf et al., 2016). Initial quality control was accomplished in DTIPrep 

to complete the following steps: 1) image/diffusion information check; 2) padding/cropping 

of data; 3) Rician noise removal; 4) slice-wise, interlace-wise, and gradient-wise intensity 

and motion checking. The number of acquisitions removed was used as a proxy for 

movement/bad data quality and was included as a covariate in subsequent regression 

analyses.

TORTOISE DIFFPREP was used to accomplish motion and eddy current correction, and 

registration to the T1-weighted structural scan, which was maintained in original subject 

space. An additional registration step established that the ROI mask (defined below) was 

appropriately registered to the diffusion image. This was accomplished in AFNI using a 12 

degree of freedom affine registration of the T1 to the first b0 image of the DWI scan (AFNI 

fat_proc_map_to_dti using 3dAllineate). Registration was visually inspected at this phase 

and to assure alignment of the diffusion image to the T1-weighted image derived from the 

Freesurfer atlas.

Neurite orientation dispersion and density imaging (NODDI) metrics.—NODDI 

is an alternative diffusion model that can distinguish among three tissue-property 

contributions to the diffusion signal: intracellular, extracellular, and cerebrospinal fluid. The 

model is possible to implement with the multi-shell HARDI protocol (Zhang et al., 2012). 

With respect to the present study, the NODDI model allows estimation of the contributions 

of neurite morphology from the diffusion signal, and such estimates such as neurite density 

from the NODDI model have been verified with histology in animals (Sato et al., 2017) 

and pathological findings in humans (Sone et al., 2020). In the present study we focus 

on the NDI and ODI metrics, derived from the NODDI model, with higher values NDI 

correlated with higher density of neuronal tissue, and higher values of ODI indicating 

increased dendritic arborization and complexity (Shao et al., 2021). We computed the 

NDI and ODI metrics using the Microstructure Diffusion Toolbox (Harms, Fritz, Tobisch, 

Goebel, & Roebroeck, 2017; Harms & Roebroeck, 2018). The two diffusivities representing 

the diffusion coefficient of the isotropic compartment (diso) and the intrinsic diffusivity of 

the intra-neurite compartments (d∥) were fixed to diso = 3.00 x 10−3 mm2 s−1 (for free 

water in the brain at 37°C) and d∥ = 1.70 x 10−3 mm2 s−1, which are the standard values 

recommended in Zhang et al., (2012).

In addition to NDI and ODI, the NODDI model provides a compartment estimating the 

free-water isotropic diffusion component (ISO). This component can be used as a mask 

to mitigate partial volume effects, especially where brain tissue directly interfaces with 

cerebrospinal fluid (i.e., near the ventricles and in the extracortical space under the skull). 

We implemented a mask here such that voxels with an ISO volume fraction > .80 were 

removed from analysis, which masked the ventricles and extracortical space.

Hare et al. Page 6

Dev Psychobiol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Construction of Cortical Surfaces and Semi-Automated Segmentation and Parcellation

For each participant, in order to provide a semi-automated segmentation of subcortical 

structures, a cortical parcellation, and an estimate of intracranial volume (Buckner et al., 

2004), we constructed individual cortical surfaces for each subject from the T1-weighted 

volume using Freesurfer v6.0 (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 

1999). We then defined regions anatomically on individual cortical surfaces using the 

semi-automated Freesurfer parcellation procedure (Desikan et al., 2006; Fischl et al., 2004), 

which is itself based on the anatomical conventions of Duvernoy (1999).

We computed cortical thickness and subcortical volume as part of the standard FreeSurfer 

reconstruction pipeline (Fischl & Dale, 2000), as these have been shown to have high 

correspondence to histological measurements (Cardinale et al., 2014). The use of a program 

originally developed for studies on adults is a legitimate concern. However, Freesurfer has 

been used to successfully create brain surface representations for children (Tamnes et al., 

2010), and even neonates (Pienaar, Fischl, Caviness, Makris, & Grant, 2008), and has been 

used in previous research on preschool children with ADHD (Jacobson et al., 2018). We 

employed a similar procedure as these prior studies.

Definition of Brain Regions

We focused on the regions reviewed in the Introduction, which comprise a distributed 

network of regions previously associated with ACEs in development, and identified several 

regions of interest (ROIs) which were based on the Destrieux parcellation from Freesurfer 

(Desikan et al., 2006; Fischl et al., 2004). These ROIs, detailed in Figure 1, were: 1) left and 

right amygdala; 2) left and right hippocampus; 3) left and right OFC; defined anatomically 

as the orbital H-shaped sulcus; 4) left and right anterior cingulate cortex, defined as the 

average of the anterior part of the cingulate gyrus and sulcus, and the middle-anterior part 

of the cingulate gyrus and sulcus; 5) cerebellum; and 6) corpus callosum. Data for volume 

were retrieved for all regions and data for cortical thickness were retrieved for cortical 

regions using Freesurfer v.6.0. The Freesurfer parcellation/segmentation was exported to the 

T1-weighted volume space in AFNI (@SUMA_Make_Spec_FS). Then NDI and ODI were 

retrieved for all regions defined in the T1-derived ROI mask (AFNI 3dROIstats), following 

visual verification of the registration of the Freesurfer parcellation/segmentation to the DWI 

scan in the volume space.

Quality Control of Magnetic Resonance Imaging Scans

Movement artifacts in T1-weighted MRI scans are common, especially in pediatric 

populations in this age range, and especially in children with ADHD. Fortunately, Freesurfer 

is robust to movement-related artifacts, as, except in extreme cases, the program is able 

to accurately identify intensity differences between white matter and grey matter inherent 

in the T1-weighted image. In some cases, however, manual intervention is necessary. In 

this manual intervention, each individual MRI scan is inspected, and in cases where the 

program does not adequately identify the appropriate regional boundaries, manual edits are 

employed. We also visually rated each T1-weighted image on a seven-point scale ranging 

from “Poor = 1” to “Excellent = 4”, with allowances for half-points (e.g., 3.5). Scans for 

both groups were generally rated “Very Good” to “Excellent”, with an average of 3.56 (SD 
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= 0.59) for the ADHD group, and 3.44 (SD = 0.68) for the TD group. There were no 

significant group differences for the quality of the scans, t(195) = −1.39, p = 0.17).

Data Analyses

All analyses were conducted using SPSS Version 26. Data were first inspected for 

missingness, with no missing data present for any variables of interest. We then examined 

whether there were differences in cumulative risk categories between ADHD and TD 

groups.

Next, multiple regression analyses were conducted to examine how cumulative risk (the 

predictor) was associated with brain measures (the outcome). Thus, we examined volume, 

NDI, and ODI of the cerebellum, corpus collosum, OFC, amygdala, hippocampus, and the 

anterior cingulate. For cortical regions (i.e., OFC and anterior cingulate) we also examined 

cortical thickness. These regions were chosen based on previous literature linking early risk 

factors to brain development, as we reviewed in the Introduction. For all regressions, the 

following covariates of non-interest were included: child age, child sex, child IQ, average 

cortical thickness (for cortical ROIs), intracranial volume (for brain volume measures), 

average brain NDI (for NDI measures), and average brain ODI (for ODI measures). 

Intracranial volume was defined using the procedure from Buckner et al., (2004).

The first set of regressions also included diagnostic status as a moderating variable on 

cumulative risk (i.e., group [ADHD vs. TD] by cumulative risk interaction). This assesses 

whether the impact of ACEs on brain development is exacerbated in children with ADHD 

relative to TD children. In a second set of regressions, we removed the categorical 

ADHD diagnosis and examined, as covariates, more continuous measures of inattention, 

hyperactivity, and oppositional defiant behaviors from the Disruptive Behaviors Disorders 

(DBD) rating scale. For the DBD, the highest score from either the parent or the teacher was 

used.

Correction for Multiple Comparisons

We focused on a small number of brain regions based on our review of the literature, but 

the number of comparisons necessitates statistical correction to control for Type I error. We 

employed the False Discovery Rate (FDR) correction (Benjamini & Hochberg, 1995) at two 

different nominal levels (q = .05 and .10), which defines the proportion of errors committed 

by falsely rejecting null hypotheses. Family was defined within each brain measure. Thus, 

there were ten comparisons each for volume, NDI and ODI, and four comparisons for 

cortical thickness. We interpret results in the context of these FDR proportions, and in the 

context of effect sizes considered against the associated 95% CIs.

Results

Descriptive and demographic variables are presented in Table 1. As expected, there were 

significant group differences in inattention, hyperactivity, and oppositional defiant behaviors. 

In addition, there were significant differences in several risk categories, including single 

parent status, parental stress, parental ADHD, parental emotion dysregulation, and total 

cumulative risk scores.
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Confirming group differences, we examined whether group status moderated the association 

between cumulative risk and brain outcomes. There was a significant interaction between 

group and cumulative risk when predicting the corpus callosum NDI (ß = 0.18, B = 0.009, 

t(189) = 1.99, p = .048, [B CI 95% 0.0001, 0.016]; see Figure 2). Probing of the interaction 

revealed there was no association for TD children (ß = 0.03, B= .001, t(88) = 0.49, p = 

.62, [B CI 95% −.005, .007]). However, for children with ADHD, greater cumulative risk 

scores were associated with increased NDI (ß = 0.17, B= .008, t(97) = 2.81, p = .006, [B CI 

95% .002, .013]; see Figure 2). There were no significant interactions across other areas of 

interest (p’s > .05).

Next, we examined the main effect of cumulative risk across the diagnostic groups, adding 

the continuous measures of inattention, hyperactivity, and ODD as covariates. Table 2 shows 

these results. Within NDI, higher cumulative risk scores were significantly associated with 

increased NDI in the corpus callosum. However, this main effect is best interpreted in the 

context of the significant group by risk interaction (noted above) showing that the effect 

holds for children with ADHD, but not TD children.

Examining the ODI measure, cumulative risk was significantly associated with reduced 

ODI of the cerebellum. However, this result did not survive FDR correction at q = .05 or 

.10. No other statistically significant effects for ODI were identified. Examining volume, 

we found that cumulative risk was negatively associated with cerebellar volume, although 

again this did not survive the multiple comparison correction. For the thickness measure, no 

statistically significant effects were identified in any regions that were examined.

Discussion

In this study, we demonstrated that greater cumulative ACEs were associated with increased 

NDI in the corpus collosum across all children. However, an interaction emerged indicating 

that for the TD children, there was no significant association between cumulative risk 

and neurite density. In contrast, for children diagnosed with ADHD, increased risk was 

associated with increased NDI. The differential association between cumulative ACEs and 

microstructural indices of neurite density in corpus callosum underscores the potential 

negative consequences to brain development in this region, especially in children who 

are at increased risk for cumulative ACEs (Jackowski et al., 2008; McCarthy-Jones et 

al., 2018; Rinne-Albers et al., 2016). Furthermore, this interaction reinforces the notion 

that endogenous characteristics of the child (i.e., existing psychopathology) interact with 

environmental factors to affect brain development in early childhood. Taken together, our 

results highlight the role early cumulative ACEs play in brain developmental across TD and 

children with ADHD.

Adverse Childhood Experiences Affect Axonal Density in Corpus Callosum

The strongest effect of ACEs on brain development in our preschool sample was detected 

using the more sensitive measure of brain morphology, namely in the novel measure of 

neurite density derived from the NODDI diffusion model. Thus, we did not detect strong 

effects for more common metrics of volume and cortical thickness, even though these effects 

have been reported in the previous literature (Chad-Friedman et al., 2020; Duan et al., 2019; 

Hare et al. Page 9

Dev Psychobiol. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lawson et al., 2013; Machlin et al., 2020; Marečková et al., 2019; Noble et al., 2012). 

Further, while one effect for ODI (in cerebellum) was nominally significant, it did not 

survive FDR correction even at the more liberal q = .10 level. The finding for cerebellar 

volume also does not survive this FDR correction. Thus, we focus our initial discussion on 

the NDI metric as it pertains to corpus callosum microstructure.

Interpretation of the NDI metric as it pertains to white or grey matter microstructure must 

proceed with caution. The diffusion signal in grey matter is derived from a combination of 

several tissue components, including axons, dendrites, and cell bodies of both neurons and 

glia. The NODDI model helps to segregate these contributions to some degree, and indeed in 

grey matter, the NDI metric from the NODDI model has been verified in several histologic 

studies to be sensitive to the density of neurons, such that reduced NDI is associated with the 

loss or reduction of neurons in cases of lesion or tumor (Shao et al., 2021) or degenerative 

disease (Kamagata et al., 2016). There is also some modest sensitivity to density differences 

in cytoarchitectonically diverse tissue samples (Crombe et al., 2018).

In white matter, signal contributions are derived mainly from axons and glia. Developmental 

studies of neurite density, measured by the NODDI model, show increases in NDI in the 

white matter from ages 7 to 63 years (Chang et al., 2015) and in grey matter from ages 0 

to 14-years (Zhao et al., 2021). However, our main finding is with respect to NDI in the 

corpus callosum, which is a dense collection of interhemispheric fibers, and thus the NODDI 

measure in this region is most sensitive to axonal density, not neural or glial cell body 

density or dendritic density. Fortunately, two studies have linked NDI in the corpus callosum 

to histological differences in axonal density in developmental and adult samples. Indeed, 

NODDI of the corpus callosum closely aligns with the known longitudinal distribution of 

fiber density in the corpus callosum, such that the NDI metric decreases with a high degree 

of correlation as fiber density increases (Garic, Yeh, Graziano, & Dick, 2021; Genc, Malpas, 

Ball, Silk, & Seal, 2018). These studies found that this association applies to children in 

the age range we study here. We can thus speculate that the maintenance of callosal fibers 

following exposure to ACEs, indicated by the positive association with NDI and cumulative 

risk, may reflect a disruption of callosal axonal pruning, a process that takes place in typical 

development in response to experience (LaMantia & Rakic, 1990). Atypical axonal pruning 

in the corpus callosum is linked with a number of psychopathologies (Raine et al., 2003) 

and seems to mainly affect excitatory rather than inhibitory interhemispheric connections 

(Saugstad, 1994). Functionally, this may translate to altered network connectivity across 

the two hemispheres, such that typical processes of establishment of functional laterality 

over development are disrupted (Everts et al., 2009). Such disruption may impact the neural 

processes implementing several cognitive and affective functions, including the onset of 

mental health disorders associated with early risk exposure (McLaughlin et al., 2012). 

Notably, this disruption seems to be specific to children with ADHD who are repeatedly 

exposed to stressful situations, as the association with ACEs and corpus callosum NDI only 

applied to the ADHD group (Figure 2). One can speculate that children with ADHD already 

differ to some degree in terms of their trajectories of brain development relative to TD 

children (Rubia, 2007), and that the additional burden of repeated ACEs exacerbates these 

differences. However, the directionality of this proposed causal pathway is speculative given 
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the quasi-experimental nature of the study design. That said, it is an intriguing possibility 

that could be explored in future work.

Adverse Childhood Experiences May Influence Cerebellar Development

Two findings related to ODI and volume of the cerebellum were nominally significant, but 

did not survive FDR correction. Thus, our brief Discussion below should be considered 

in that context. Here, we found that greater cumulative risk scores were associated with 

reduced ODI and volume of the cerebellum. This is an interesting result when considered 

in the context of cerebellar development and function. First, with respect to cerebellar 

development, the cerebellum is unique with respect to the rest of the brain because, unlike 

regions of the cortex and other subcortical areas, neural proliferation in the cerebellum 

proceeds beyond birth, and refinement of cerebellar neuronal maps is heavily experience-

dependent (Sotelo, 2004). Thus, the cerebellum may be especially sensitive to cumulative 

ACEs, as developmental processes related to neural proliferation may be affected both 

pre- and postnatally. Second, with respect to cerebellar function, the cerebellum has been 

implicated in a number of cognitive, affective, and sensorimotor processes, and it is densely 

connected to cortical regions supporting function in these domains. For example, lesions of 

the posterior lobe of the cerebellum result in a well-described cerebellar cognitive affective 

syndrome, which manifests as deficits in executive function, visual spatial processing, 

linguistic processing, and emotion regulation (Schmahmann, 2019). The cerebellum is part 

of a comprehensive cortico-subcortical network supporting these functions and given its 

potential susceptibility to experiential influences during development, it may contribute 

significantly to negative outcomes following exposure to ACEs in both children with and 

without ADHD.

Limitations

While the current study represents the first step in understanding how cumulative risk 

impacts brain development in young children with and without ADHD, it is not without 

limitations. First, the current study is cross-sectional, which substantially limits our 

ability to make causal claims. Longitudinal investigation of the cumulative impact over 

development is necessary to better understand the neurobiological sequelae of ACEs 

throughout development. However, this snapshot of the preschool period does provide an 

opportunity to understand resilience to ACEs as children develop and may especially be 

relevant for understanding what factors predict later resilience. The current study also 

focuses on children diagnosed with ADHD as the clinical group of interest, which may 

limit generalizability to other clinical disorders that emerge in childhood. However, as 

children with ADHD are notably at higher risk for experiencing ACEs, a finding that 

was replicated in the present study, the current study extends our understanding of this 

common childhood disorder. Finally, an additional methodological limitation was the use 

of the standard recommended values for the diffusion coefficients of diso and the intrinsic 

diffusivity of the intra-neurite compartments d∥, which were fixed to diso = 3.00 x 10−3 

mm2 s−1 (for free water in the brain at 37°C) and d∥ = 1.70 x 10−3 mm2 s−1. Studies have 

shown that these simplifying model assumptions for parallel diffusivity are reasonable for 

white matter in adults, but may be sub-optimal for grey matter, or for infants earlier in 

development (Fukutomi et al., 2018; Guerrero et al., 2019). Such optimal parallel diffusivity 
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values may vary across the brain, which may lead to better fitting NODDI models in some 

regions as opposed to others. This is a limitation when both grey matter and white matter 

regions are considered in the same analysis.

Conclusion

Taken together, the impact of cumulative ACEs on microstructural indices of cellularity 

across TD and children with ADHD underscores the potential negative consequences of 

early ACEs on brain. Future work should investigate if early intervention of malleable risk 

factors (e.g., parent stress, parent ADHD) will prevent and/or reverse the negative impact of 

ACEs on brain development and alter subsequent psychosocial functioning.
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Figure 1. Cortical and Subcortical Regions of Interest.
Figure shows all regions of interest examined, including the orbital frontal cortex (OFC), 

anterior cingulate, corpus collosum (cortical regions), amygdala, hippocampus, and the 

cerebellum (subcortical regions).
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Figure 2. Diagnostic Group Moderates Association between corpus callosum NDI and 
Cumulative Risk.
Figure show the significant interaction of group (i.e., ADHD and typically developing 

children; TD) and cumulative risk. Analyses controlled for child age, child sex, child IQ, and 

mean white matter neurite density index (NDI).
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Table 1.

Descriptives and Cumulative Risk Factors

Total Sample
(N=198)

ADHD only
(n=104)

TD Only
(n=94) p

Child Age 5.45 (.89) 5.47 (.91) 5.43 (.87) .742

Child Sex (% male) 70.7% 74% 67% .279

Child IQ 99.74 (12.63) 96.17 (12.92) 103.68 (11.08) < .001

Child Ethnicity (% Latinx) 82.3% 81.7% 83% .712

P/T DBD Inattention 1.27 (1.06) 2.25 (.60) .39 (.41) < .001

P/T DBD Hyperactivity 1.53 (1.03) 2.37 (.56) .59 (.47) < .001

P/T DBD ODD .97 (.88) 1.58 (.76) .30 (.37) < .001

Risk Categories *

 Low Income
a 36.9 % 38.5 % 35.1 % .625

 Parental Education
b 31.3% 31.7% 30.9% .894

 Minority Status
c 87.4 % 88.5 % 86.2 % .628

 Single Parent
d 26.8 % 25.0 % 17.0 % .003

 Parent Stress
e 16.2 % 25.2 % 6.4 % < .001

 Parent ADHD
f 23.7 % 33.7 % 12.8% .001

 Parent ER
g 19.7 % 26.9 % 11.7% .007

Cumulative Risk Scores *

 0 4.0 % 1.9 % 6.4 %

 1 28.3 22.1 % 35.1 %

 2 24.2 % 20.2 % 28.7 %

 3 21.2 % 26.0 % 16.0 %

 4 14.1 % 16.3 % 11.7%

 5 4.5 % 8.7 % 0.0 %

 6 2.5 % 2.9 % 2.1%

 7 1.0% 1.9% 0.0%

Total Risk Score 2.41 (1.46) 2.80 (1.52) 2.00 (1.26) < .001

*
= percent in risk group. Abbreviations: ADHD = attention-deficit/hyperactivity disorder, TD = typically developing, P/T = highest teacher or 

parent report, DBD = disruptive behaviors disorders rating scale, ODD = oppositional defiant disorder, ER = emotion regulation

a
Low income was dummy coded as above/below 150% of the poverty line.

b
Parental education was dummy coded as either parent having/not having a 4-year college degree.

c
Although race/ethnicity itself is not a risk factor, there is persistent evidence of racial/ethnic disparities in domains, such as health care, that 

may mitigate negative outcomes. Parental minority status is included as a proxy for such disparities, with a dummy code indicating Caucasian/
Non-Hispanic or not.

d
Single parent was dummy coded as either single parent/not single parent household.

e
Parent report of clinically elevated distress on the Parenting Stress Index-Short was dummy coded as above/below 85th percentile.
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f
Parent report of clinically elevated levels of ADHD on the ADHD Self-Report Scale was dummy coded as clinically elevated/not elevated.

g
Parent report of clinically elevated levels of emotion dysregulation on the Difficulties in Emotion Regulation Scale Short Form was dummy coded 

as clinically elevated/not elevated.
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Table 2.

Associations between cumulative risks and brain morphometric measures

B (SE) β t-value p 95% CI for B

Neurite Density Index (NDI)

Corpus Collosum .006 (.002) .08 2.67 .009 ++ .002, .010

Cerebellum −.008 (.005) −.08 −1.64 .10 −.020, .002

Left Hemisphere

 OFC .0008 (.002) −.02 0.36 .72 −.004, .005

 Amygdala .002 (.002) .03 0.77 .44 −.002, .006

 Hippocampus .0001 (.002) .003 0.06 .95 −.004, .004

 Cingulate −.0003 (.002) −.01 −0.14 .89 −.004, .004

Right Hemisphere

 OFC −.002 (.002) −.05 −1.11 .27 −.007, .002

 Amygdala .004 (.002) .07 1.85 .07 −.0002, .008

 Hippocampus −.002 (.002) −.03 −0.77 .44 −.005, .002

 Cingulate .0003 (.002) .01 0.15 .88 −.004, .004

Orientation Dispersion Index (ODI)

Corpus Collosum −.0002 (.004) −.003 −0.06 .95 −.008, .008

Cerebellum −.01 (.005) −.10 −2.02 .045 −.021, −.0003

Left Hemisphere

 OFC .001 (.003) .02 0.37 .71 -.005, .008

 Amygdala −.0007 (.002) −.02 −0.32 .75 −.005, .004

 Hippocampus −.0005 (.002) −.01 −0.21 .83 −.005, .004

 Cingulate −.001 (.003) −.03 −0.47 .64 −.007, .004

Right Hemisphere

 OFC −.001 (.003) −.03 −1.55 .12 −.001, .010

 Amygdala .0005 (.002) .01 0.22 .83 −.004, .005

 Hippocampus −.001 (.003) .02 0.47 .64 −.004, .006

 Cingulate −.002 (.003) −.04 −0.86 .39 −.007, .003

Volume

Corpus Collosum 5.09 (3.81) .09 1.33 .18 −2.43, 12.61

Cerebellum −410.57 (185.06) −.11 −2.22 .028 −775.63, −45.52

Left Hemisphere

 OFC .000 (.000) .02 0.21 .83 −.001, .001

 Amygdala 2.34 (6.92) .02 0.34 .74 −11.31, 15.98

 Hippocampus −6.64 (14.52) −.03 −0.46 .65 −35.33, 22.03

 Cingulate .000 (.000) .03 0.42 .67 −.001, .001

Right Hemisphere

 OFC .000 (.000) .02 0.31 .75 −.001, .001

 Amygdala 4.04 (8.02) .03 0.50 .62 −11.78, 19.87

 Hippocampus −25.19 (14.88) −.10 −1.69 .09 −54.54, 4.16

 Cingulate .000 (.000) −.02 −0.26 .79 −.001, .001
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B (SE) β t-value p 95% CI for B

Cortical Thickness

Left Hemisphere

 OFC .008 (.008) .08 1.00 .32 −.008, .024

 Cingulate .008 (.005) .10 1.50 .14 −.003, .019

Right Hemisphere

 OFC .007 (.008) .07 0.91 .36 −.008, .022

 Cingulate .004 (.006) .05 0.77 .45 −.006, .013

Bold indicates that the p value is less than the nominal alpha of .05. p-values marked with + indicate that these effects survived a False Discovery 
Rate (FDR) correction for multiple comparisons at q = .05. Those with ++ indicate survival at q = .10. Abbreviations: OFC = orbital frontal cortex. 
All regressions controlled for child symptoms of inattention, hyperactivity, oppositional defiant disorder, child age, child sex, and child IQ. Volume 
regressions controlled for total cranial volume, thickness regression controls for total average thickness, and NDI and ODI regressions controlled 
for mean white matter NDI or ODI, respectively.

Dev Psychobiol. Author manuscript; available in PMC 2023 January 01.


	Abstract
	The Current Study
	Methods and Materials
	Participants and Recruitment
	Risk Measures
	Parental stress.
	Parental ADHD.
	Parental emotion regulation.
	Cumulative risk index.

	Image Acquisition & Processing
	MRI acquisition & processing.
	Diffusion-weighted imaging post-processing.
	Neurite orientation dispersion and density imaging (NODDI) metrics.

	Construction of Cortical Surfaces and Semi-Automated Segmentation and Parcellation
	Definition of Brain Regions
	Quality Control of Magnetic Resonance Imaging Scans
	Data Analyses
	Correction for Multiple Comparisons

	Results
	Discussion
	Adverse Childhood Experiences Affect Axonal Density in Corpus Callosum
	Adverse Childhood Experiences May Influence Cerebellar Development
	Limitations

	Conclusion
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.

