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Abstract

Multi-task learning (MTL) refers to the paradigm of learning multiple related tasks together. 

In contrast, in single-task learning (STL) each individual task is learned independently. MTL 

often leads to better trained models because they can leverage the commonalities among related 

tasks. However, because MTL algorithms can “leak” information from different models across 

different tasks, MTL poses a potential security risk. Specifically, an adversary may participate 

in the MTL process through one task and thereby acquire the model information for another 

task. The previously proposed privacy-preserving MTL methods protect data instances rather than 

models, and some of them may underperform in comparison with STL methods. In this paper, 

we propose a privacy-preserving MTL framework to prevent information from each model leaking 

to other models based on a perturbation of the covariance matrix of the model matrix. We study 

two popular MTL approaches for instantiation, namely, learning the low-rank and group-sparse 

patterns of the model matrix. Our algorithms can be guaranteed not to underperform compared 

with STL methods. We build our methods based upon tools for differential privacy, and privacy 

guarantees, utility bounds are provided, and heterogeneous privacy budgets are considered. The 
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experiments demonstrate that our algorithms outperform the baseline methods constructed by 

existing privacy-preserving MTL methods on the proposed model-protection problem.
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Subspace Learning

1 Introduction

Multi-task learning (MTL) [12] refers to the paradigm of learning multiple related tasks 

together. In contrast, single-task learning (STL) refers to the paradigm of learning each 

individual task independently. MTL often leads to better trained models because the 

commonalities among related tasks may assist in the learning process for each specific 

task. For example, an infant’s ability to recognize a cat might help in developing the 

ability to recognize a dog. In recent years, MTL has received considerable interest in a 

broad range of application areas, including computer vision [48, 75], natural language 

processing [2] and health informatics [64, 68]. The key to MTL is to relate learning tasks 

via a shared representation, which, in turn, benefits the tasks to be learned. Each possible 

shared representation encodes certain assumptions regarding task relatedness. Because MTL 

approaches explore and leverage the commonalities among related tasks within the learning 

process, either explicitly or implicitly, they pose a potential security risk. Specifically, an 

adversary may participate in the MTL process through a participating task, thereby acquiring 

the model information for another task. A predictive model may identify a causality between 

system inputs and outputs. Knowledge of the causality makes it possible or easier for an 

adversary to change a system input to trigger an irrational or even harmful output, which 

can be regarded as a generalized adversarial attack. The system could be a predictive system 

for traffic-sign recognition or face identification, as studied by recent adversarial-attack 

approaches [65, 51, 46, 72, 57, 56, 52]. As noted by Finlayson et al. [26], adversarial 

attacks on medical machine learning are increasingly rampant and easy to implement (e.g., 

by simply rotating a picture to upload to a specific angle), especially in medical fraud 

which is a $250 billion industry. Therefore, model-information leakage during an MTL 

process could realize or escalate such adversarial attacks to increase fraudulent medical 

costs or insurance claims. In addition, the aforementioned system could well be a real 

human body. For example, consider personalized predictive modeling [53, 74], which has 

become a fundamental methodology in health informatics. This type of modeling builds 

a custom-made model for each patient. In modern health informatics, such a model may 

include patient disease conditions/causes (e.g., which foods can induce an allergic reaction 

in a patient). If such information were to be leaked, an adversary might use the information 

to deliberately introduce the food into a patient meal to trigger an allergic reaction.

Because of the concerns discussed above, a secure training strategy must be developed for 

MTL approaches to prevent information from each model leaking to other models. In this 

paper, we propose a model-protected multi-task learning (MP-MTL) approach that enables 

the joint learning of multiple related tasks while simultaneously preventing model leakage 
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for each task. Our approach is based on differential privacy [22] which provides a strong, 

cryptographically motivated definition of privacy based on rigorous mathematical theory 

and has recently received significant research attention due to their robustness to known 

attacks [16, 27]. This scheme is useful when one wishes to prevent potential attackers from 

acquiring information on any element of the input dataset based on a change in the output 

distribution.

To focus on the main issue, our MP-MTL method is designed simply based on linear 

multi-task models [39, 49]. We assume that the model parameters are learned by minimizing 

an objective that combines an average empirical prediction loss and a regularization term. 

The regularization term captures the commonalities among the different tasks and couples 

their model parameters. The solution process for this type of MTL method can be viewed 

as a recursive two-step procedure. The first step is a decoupled learning procedure in which 

the model parameters of each task are estimated independently using some precomputed 

shared information among tasks. The second step is a centralized transfer procedure in 

which some of the information shared among tasks is extracted for distribution to each task 

for the decoupled learning procedure in the next step. Our MP-MTL mechanism protects the 

models by adding perturbations during the second step. Note that we assume a curator that 

collects models for joint learning but never needs to collect task data. We develop a rigorous 

mathematical definition of the MP-MTL problem and propose an algorithmic framework to 

obtain the solution. We add perturbations to the covariance matrix of the parameter matrix 

because the tasks’ covariance matrix is widely used as a fundamental source from which 

to extract useful knowledge to share among tasks [49, 77, 39, 5, 79, 64], which is the key 

observation that enables the proposed framework. The usage of the perturbed covariance 

matrix depends on the specific MTL method applied. Consequently, our technique can cover 

a wide range of MTL algorithms and is generally applicable for many optimization schemes, 

such as proximal gradient methods [39, 49], alternating methods [5] and Frank-Wolfe 

methods [37]. We introduce Wishart noise into the covariance matrix to ensure model 

security. Fig. 1 illustrates the key ideas of the main framework.

We further develop two concrete approaches as instantiations of our framework, each 

of which transforms an existing MTL algorithm into a private version. Specifically, we 

consider two popular types of basic MTL models: 1) a model that learns a low-rank 

subspace by means of a trace norm penalty [39] and 2) a model that performs shared 

feature selection by means of a group-ℓ1 (ℓ2,1 norm) penalty [49]. We first choose to learn a 

low-rank subspace of the model matrix because it is typical to learn a shared representation, 

which is the key to relating tasks in MTL. In addition, it is also typical to learn correlated 

but different parameters for multiple models that share the same model structure, which 

is also commonly encountered in MTL. This is a typical/mainstream approach in MTL, 

as stated by Zhang and Yang [76] in their MTL survey as well as by Su et al. [63] and 

Gu et al. [31]; (see, e.g., Ando and Zhang [4], Chen et al. [17], Xu and Lafferty [71], 

Han and Zhang [34], and Zhen et al. [78]). On the other hand, learning a shared feature 

selection is also typical in MTL and can be regarded as learning a specific type of low-rank 

subspace. In both cases, we instantiate our framework by approximating proximal gradient 
descent methods, which were presented by Ji and Ye [39] and Liu et al. [49]. The covariance 

matrix is used to build a linear transform matrix used to project the models into new feature 
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subspaces; then, the most useful subspaces are selected. The projection matrix is related to 

the generalized inverse of the singular value matrix (or the diagonal matrix) of the perturbed 

covariance matrix for the instantiation with a trace norm penalty (or the instantiation with 

a group-ℓ1 penalty). Wishart noise is positive definite; thus, it renders the singular values 

of the perturbed covariance matrix “larger” and those of the generalized inverse “smaller”. 

Consequently, under a high noise level, the projection matrix tends to be an identity matrix 

that shares no information between models but keeps the models intact. This means that our 

algorithms will not underperform in comparison with STL methods under high noise levels; 

hence, participation in the joint learning process has no negative effect on training any task 

model. Approximating the proximal operators with Wishart noise makes it possible for the 

added noise to destroy the covariance matrix without destroying the projected models, which 

is a key observation that enables our instantiated algorithms.

We provide privacy guarantees. Utility analyses are also presented for both convex and 

strongly convex prediction loss functions and for both the basic and accelerated proximal-

gradient methods. Furthermore, we consider heterogeneous privacy budgets for different 

iterations of our algorithms and present a utility analysis for privacy-budget allocation. We 

also validate the effectiveness of our approach on both benchmark and real-world datasets.

Our proposed MP-MTL algorithms fall into a larger scope of MTL algorithms based on 

differential privacy (i.e., MTL algorithms with randomness added using differential privacy 

tools). Within this scope, Pathak et al. [58] proposed a differentially private aggregation 

(DP-AGGR) method and provided the associated privacy guarantee and utility analysis. 

However, DP-AGGR works for homogeneous tasks only, i.e., the coding procedures for 

both features and targets are the same for different tasks. In contrast, Gupta et al. [33] 

proposed a differentially private multi-task relationship learning (DP-MTRL) method to 

handle heterogeneous tasks. However, they did not provide utility analyses. In addition, 

they provided the privacy guarantee for each iteration only, neglecting the additional privacy 

loss due to multiple iterations of their algorithm (see Kairouz et al. [42]). Moreover, their 

privacy guarantee holds only if the adopted loss function has a closed-form solution (e.g., 

the least-square loss). Both DP-AGGR and DP-MTRL protect a single data instance instead 

of the model of each task, and neither of them considers privacy-budget allocation or 

the associated utility analyses. Therefore, to our knowledge, we are the first to consider 

allocation strategies for heterogeneous privacy budgets and the associated utility analyses. 

In addition, we are also the first to present a utility analysis for heterogeneous tasks. 

Moreover, we are also the first to provide privacy guarantees for heterogeneous tasks with 

loss functions that may have no closed-form solutions (e.g., logistic loss).

Since our method is the first to address the model-protected problem in the MTL setting, 

we construct baseline MP-MTL methods for comparison by exploiting existing privacy-

preserving MTL methods, which are referred to as instance-protected multi-task learning 

(IP-MTL) methods because they protect the security only of data instances rather than that 

of models. The IP-MTL methods are transformed into their respective MP-MTL methods 

by directly enforcing the group privacy [22] of the entire dataset coming from a single 

learning task. The experimental results demonstrate that our proposed algorithms outperform 

the constructed baseline MP-MTL methods.
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Our contributions are highlighted as follows.

• We are the first to propose and address the model-protection problem in an MTL 

setting.

• We develop a general algorithmic framework to solve the MP-MTL problem 

to obtain secure estimates of the model parameters. We derive concrete 

instantiations of our algorithmic framework for two popular types of MTL 

models, namely, models that learn the low-rank and group-sparse patterns of 

the model matrix. By approximating the proximal operators with Wishart noise, 

we can guarantee that our algorithms will not underperform in comparison with 

STL methods under high noise levels.

• We provide privacy guarantees. We also present utility analyses for both 

convex and strongly convex prediction loss functions and for both the basic 

and accelerated proximal-gradient methods. Heterogeneous privacy budgets are 

considered for different iterations of our algorithms, and a utility analysis for 

privacy-budget allocation is presented.

• Within the larger scope of MTL algorithms based on differential privacy, to the 

best of our knowledge, we are the first to 1) consider allocation strategies for 

heterogeneous privacy budgets and the associated utility analyses, 2) present a 

utility analysis for heterogeneous tasks, and 3) provide privacy guarantees for 

heterogeneous tasks with loss functions that may have no closed-form solutions.

• For comparison, we construct baseline MP-MTL methods using IP-MTL 

methods (i.e., existing privacy-preserving MTL methods). The experiments 

demonstrate that our proposed algorithms significantly outperform the baseline 

methods.

The remainder of this paper is organized as follows. Section 2 discusses related works and 

definitions of differential privacy. Section 3 introduces the background on MTL problems 

and the definition of the proposed model-protection problem. The algorithmic framework 

and concrete instantiations of the proposed MP-MTL method are presented in Section 4, 

along with the analyses of utility and privacy-budget allocation. Section 5 presents an 

empirical evaluation of the proposed approaches, and Section 6 provides conclusions.

2 Related Works

2.1 Privacy-preserving MTL Approaches

Few privacy-preserving MTL approaches have been proposed to date [50, 9, 58, 61, 33]. 

Moreover, such approaches protect only the security of data instances rather than that of 

models. A typical focus of research is distributed learning [50, 9], in which the datasets for 

different tasks are distributively located. The local task models are trained independently 

using their own datasets before being aggregated and injected with useful knowledge shared 

across tasks. Such a procedure mitigates the privacy problem by updating each local model 

independently. However, these methods do not provide theoretical privacy guarantees.
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In contrast, Pathak et al. [58] proposed the DP-AGGR method in a distributed learning 

scheme with privacy guarantees in which they first trained local models distributively and 

then averaged the models of the tasks before adding noise based on the output perturbation 

method of [20]. The final solution for each task is the averaged model. However, because 

this method performs only averaging, it has a limited ability to address more complicated 

task relations such as low-rank [4], group-sparse [66], clustered [30] or graph-based [77] 

task structures. Considering the task relationships, Gupta et al. [33] proposed the DP-MTRL 

method to transform the multi-task relationship learning proposed by Zhang and Yeung [77] 

into a differentially private version. They adopt the output perturbation method. In addition 

to their limitations mentioned in the introduction, their privacy-preserving MTL methods 

underperformed on their synthetic datasets compared with non-private STL methods (which 

can guarantee optimal privacy against cross-task information leakage), which suggests that 

there is no reason to use their proposed methods. Both DP-AGGR and DP-MTRL add noise 

directly to the models, which is unnecessary to avoid information leakage across tasks and 

may jeopardize the utility of the algorithms.

2.2 Related Works of Differential Privacy

Several related definitions of privacy are listed as follows.

Joint differential privacy.—In a game theory setting, Kearns et al. [45] and Kearns et al. 

[44] proposed to guarantee that for each player, the output to other players reveals little input 

information about that player.

One-analyst-to-many-analyst privacy.—In a database query setting, Hsu et al. [36] 

proposed a method for protecting the privacy of all the queries of one analyst from other 

analysts.

Both joint differential privacy and one-analyst-to-many-analyst privacy are similar to our 

proposed MP-MTL (defined in Definition 6) from a very high-level perspective: when the 

input of one object is replaced, the joint distribution of the output of other objects will 

not be significantly affected. However, both definitions are different from our proposed 

MP-MTL in both the modeling objects and the input characteristics. We discuss the detailed 

differences in the supplementary material (Appendix C).

Differential privacy for streams.—This definition considers continual/iterative 

observations, and was proposed by Chan et al. [13] and Dwork et al. [21]. Because machine 

learning algorithms are generally iterative, this paper also involves the concept of iteration 

in the definitions of MP-MTL and IP-MTL algorithms, and it simply aims to directly use 

composition theorems of differential privacy to bound the total privacy-budgets.

Local private learning algorithms.—This definition was proposed by Kasiviswanathan 

et al. [43] to characterize that each individual’s data are added independent randomness 

before further processing. Algorithms that accomplish this task are referred to as input 

perturbation. The idea can be adopted to propose possible solutions to the MP-MTL 

problem. For example, independent randomness can be added to each task model. Both 

DP-MTRL and DP-AGGR can be regarded as examples, although they protect data 
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instances rather than models. However, because local private learning algorithms have 

some limitations (e.g., they may require exponentially more data than do general private 

algorithms [43]), we did not adopt this idea in this paper.

Secure multi-party computation (SMC).—In Section 1, we assume the use of a 

trusted curator that collects the task models, and this assumption raises privacy concerns 

in untrusted curator settings. Such concerns are related to the demand for SMC [58, 28], 

the purpose of which is to avoid the leakage of data instances to the curator. We present an 

extended framework that considers SMC in the supplementary material (Appendix B).

In addition to the above related definitions, the sample-aggregate framework proposed by 

Nissim et al. [55] is also related. This framework first randomly partitions a database 

into multiple small databases, executes the same algorithms on all the sub-databases, 

aggregates all the outputs, and finally adds randomness according to the smooth sensitivity 

of the aggregation function. For model-protection, this framework may be applicable 

for homogeneous tasks (which is the setting considered by DP-AGGR) to extend their 

method for empirical risk minimization: instead of data instances, tasks can be randomly 

partitioned into groups to perform the above procedures. However, applying this framework 

to heterogeneous tasks is not trivial.

2.3 Methods that Privately Release the Covariance Matrix

Several methods have been proposed to privately release the covariance matrix [41, 23, 

10]. Considering an additive noise matrix, based on our utility analysis, the overall utility 

of the MTL algorithm depends on the spectral norm of the noise matrix. A list of the 

bounds on the spectral norms of additive noise matrices can be found in Jiang et al. [41]. 

We choose to add Wishart noise [41] to the covariance matrix for four reasons: (1) For 

a given privacy budget, this type of noise matrix has a better spectral-norm bound than 

does a Laplace noise matrix [41]. (2) Unlike a Gaussian noise matrix, which enables an 

(ϵ, δ)-private method with a positive δ, this approach enables an (ϵ, 0)-private method and 

can be used to build an iterative algorithm that is entirely (ϵ, 0)-private, which provides 

a stronger privacy guarantee. (3) Unlike the Gaussian and Laplace noise matrices cases, 

the Wishart noise matrix is positive definite and can be exploited to guarantee that our 

method will not underperform compared with STL methods under high noise levels. (4) This 

approach allows arbitrary changes to any task, unlike the method of Blocki et al. [10].

3 Preliminaries and the Proposed Problem

In this section, we introduce the MTL background and the definition of model-protection 

problems for MTL. The notations and symbols that will be used throughout the paper are 

summarized in Table 1.

Extensive MTL studies have been conducted on linear models using regularized approaches. 

The basic MTL algorithm that we consider in this paper is as follows:

W = argmin
W

∑i = 1
m ℒi Xiwi, yi + λg(W), (1)
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where m is the number of tasks. The datasets for the tasks are denoted 

by Dm = Xm, ym = X1, y1 , …, Xm, ym  where for each i ∈ [m], Di = Xi, yi , where 

Xi ∈ ℝni × d and yi ∈ ℝni × 1 denote the data matrix and target vector of the i-th task with 

ni samples and dimensionality d, respectively. ℒi is the prediction loss function for the 

i-th task. In this paper, we focus on linear MTL models in which wi denotes the model/

predictor for task i and W = w1, w2, ⋯, wm ∈ ℝd × m is the model parameter matrix. g(·) is a 

regularization term that represents the structure of the information shared among the tasks, 

for which λ is a pre-fixed hyper-parameter. As a special case, STL can be described by (1) 

with λ = 0.

The key to MTL is to relate the tasks via a shared representation, which, in turn, benefits 

the tasks to be learned. Each possible shared representation encodes certain assumptions 

regarding task relatedness.

A typical/mainstream assumption is that the tasks share a latent low-rank subspace [76, 

63, 31, 4, 17, 71, 34, 78]. The formulation leads to a low-rank structure of the model 

matrix. Because optimization problems involving rank functions are intractable, a trace-

norm penalty is typically used [3, 39, 59], as in the following problem, which will be 

referred to as the trace-norm-regularized MTL problem.

min
W

∑i = 1
m ℒi Xiwi, yi + λ‖W‖* . (2)

Another typical assumption is that all tasks share a subset of important features. Such task 

relatedness can be captured by imposing a group-sparse penalty on the predictor matrix to 

select shared features across tasks [66, 70, 49]. One commonly used group-sparse penalty is 

the group ℓ1 penalty [49, 54], as in the following problem, which will be referred to as the 

group-ℓ1-regularized MTL problem.

min
W

∑
i = 1

m
ℒi Xiwi, yi + λ‖W‖2, 1 . (3)

Next, we present a compact definition of the model-protection problem in the context of 

MTL and discuss the general approach without differential privacy. As (1) shows, as a result 

of the joint learning process, wj may contain some information on wj, for i, j ∈ [m] and i ≠ j, 

making it possible for the owner of task j to use such information to attack task i. Thus, we 

define the model-protection problem:

Definition 1 (Model-protection Problem for MTL).

The model-protection problem for MTL has three objectives:

1. to minimize the information on wi that can be inferred from w[ − i], for all i ∈ [m]

2. to maximize the prediction performance of wi, for all i ∈ [m]; and
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3. to share useful predictive information among tasks.

Now, consider such a procedure in which a trusted curator collects independently-trained 

models, denoted by w1, …, wm, for all tasks without their associated data to be used as 

input. After the joint learning process, the curator outputs the updated models, denoted by 

W, and sends each updated model to each task privately. The model collection and joint 

learning processes are performed alternately.

We note that the trace-norm-regularized MTL problem and the group-ℓ1-regularized MTL 
problem are unified in the multi-task feature learning framework, which is based on the 

covariance matrix of the tasks’ predictors [6, 24, 7]. Many other MTL methods also fall 

under this framework, such as learning clustered structures among tasks [30, 79] and 

inferring task relations [77, 25, 11]. As such, we note that the tasks’ covariance matrix 

constitutes a major source of shared knowledge in MTL methods; hence, it is regarded as the 

primary target for model protection.

Therefore, we address the model-protection problem by rephrasing the first objective in 

Definition 1 as follows: to minimize the changes in w[ − i] and the tasks’ covariance matrix 

(WWT
 or WTW) when task i participates in the joint learning process for all i ∈ [m]. Thus, 

the model for this new task is protected. Then, we find that the concept of differential 

privacy (minimizing the change in the output distribution) can be adopted to further rephrase 

this objective as follows: to minimize the changes in the distribution of w[ − i] and the tasks’ 

covariance matrix when task i participates in the joint learning process for all i ∈ [m].

In differential privacy, algorithms are randomized by introducing some type of perturbation.

Definition 2 (Randomized Algorithm).

A randomized algorithm A:D θ ∈ C is built by introducing some type of perturbation into 
some mapping D θ ∈ C. Algorithm A outputs A(D) = θ with a density p(A(D) = θ) for 
each θ ∈ C. The probability space is over the perturbation introduced into algorithm A.

In this paper, A denotes a randomized machine learning estimator, and θ denotes the view 

of potential adversaries, which includes the model parameters that we wish to estimate. 

Perturbations can be introduced into the original learning system via the (1) input data [47, 

8], (2) model parameters [14, 40], (3) objective function [15, 73], or (4) optimization process 

[62, 69].

The formal definition of differential privacy is as follows.

Definition 3 (Dwork et al. [22]).

A randomized algorithm A provides (ϵ, δ)-differential privacy if, for any two adjacent 
datasets D and D′ that differ by a single entry and for any set S,

ℙ(A(D) ∈ S) ≤ exp(ϵ)ℙ A D′ ∈ S + δ,

where A(D) and A D′  are the outputs of A on the inputs D and D′, respectively.
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The privacy loss pair (ϵ, δ) is referred to as the privacy budget/loss, and it quantifies the 

privacy risk of algorithm A. The intuition is that it is difficult for a potential attacker to infer 

whether a certain data point has been changed in (or added to) the dataset D based on a 

change in the output distribution. Consequently, the information of any single data point is 

protected.

Furthermore, note that differential privacy is defined in terms of application-specific 

adjacent input databases. In our setting, these are each task’s model and dataset pair, which 

are treated as a “single entry” by Definition 3.

Several mechanisms exist for introducing a specific type of perturbation. A typical type 

is calibrated to the sensitivity of the original “unrandomized” machine learning estimator 

f:D θ ∈ ℝd. The sensitivity of an estimator is defined as the maximum change in its 

output due to a replacement of any single data instance.

Definition 4 (Dwork et al. [22]).

The sensitivity of a function f:D ℝd is defined as

S(f) = max
D, D′

f(D) − f D′

for all datasets D and D′ that differ by at most one instance, where ||·|| is specified by a 
particular mechanism. For example, the Gaussian mechanism [23] requires the ℓ2 norm, and 
the Laplace mechanism [22] requires the ℓ1 norm.

The use of additive noise such as Laplace [22] or Gaussian noise [23] with a standard 

deviation proportional to S(f) is a common practice for guaranteeing private learning. In this 

paper, we adopt the Wishart noise for covariance matrices [41], which is defined as follows.

Definition 5 (Gupta and Nagar [32]).

A d × d random symmetric positive definite matrix E is said to have a Wishart distribution E 
∼ Wd(ν,V) if its probability density function is

p(E) =
E (ν − d − 1)/2exp −tr V−1E /2

2
νd
2 |V |1/2Γd(ν/2)

,

where ν > d − 1 and V is a d × d positive definite matrix.

Because machine learning schemes are usually presented as sequential paradigms with 

multiple iterations and usually output multiple variables simultaneously, several differential 

privacy properties are particularly useful for ensuring privacy in machine learning, such as 

post-processing immunity, group privacy, composition properties and adaptive composition. 

The details of these properties are introduced in the supplementary material (Appendix F).
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4 Methodology

We present our methodology in this section: the modeling of and rationale for our MP-

MTL framework, two instantiations and utility analyses. Regarding the theoretical results, 

we present only the main results; the detailed derivations are included in the provided 

supplementary material (Appendix H).

4.1 The General MP-MTL Framework

Consider an MTL algorithm A with T iterations. For t = 1, …, T, a trusted curator 

collects the models of m tasks, respectively, denoted by w1
(t − 1), …, wm(t − 1). Then, a model-

protection and shared-information-extraction procedure is performed, and the updated 

models w1
(t), …, wm(t) are output and sent back to their respective tasks.

Remark 1.—In each iteration, the curator collects only the models. The dataset for each 

task can be regarded as the input for the entire MTL algorithm, but it is not the input for the 

curator.

In such a setting, for each i ∈ [m], we wish to protect the dataset Di = Xi, yi  of task i and 

its entire input model-sequence (wi
(0), …, wi

(T − 1)) (denoted by wi
(0:T − 1) for short). For the 

i-th task, the entire output model-sequence of other tasks, w[ − i]
(1:T ), belongs to the view of a 

potential adversary (i.e., the information that the adversary can acquire to infer the unique 

information of task i). Note that although the output model-sequence of each task is what we 

ultimately wish to protect, the unique information within each task is contained in the task’s 

dataset and input model-sequence, which are actually protected.

The idea for using differental privacy tools is as follows. For simpilicity, we assume that T 

= 1 and omit the iteration-step indices. Let D = {(w1
(0), D1), …, (wm(0), Dm)} be an augmented 

dataset; i.e., let (wi
(0), Di) be treated as the i-th “data instance” of the augmented dataset 

D, for all i ∈ [m]. Thus, the m datasets and m models associated with the m tasks are 

transformed into a single dataset D with m “data instances”. Then, we define m outputs 

θ = (θ1, …, θm) such that for each i ∈ [m], θi ∈ Ci denotes the view of an adversary for 

task i, which includes w[ − i]
(1) . Thus, an (ϵ, δ) - MP-MTL algorithm A(ℬ) should satisfy the 

following m inequalities. For each i ∈ [m], for all neighboring datasets D and D′ that differ 

by the i-th “data instance”, and for any set Si ⊆ Ci, we have

ℙ(θi ∈ Si ∣ ℬ = D) ≤ eϵℙ(θi ∈ Si ∣ ℬ = D′) + δ . (4)

We formally define an MP-MTL algorithm as follows.

Definition 6 (MP-MTL).—Let A be a randomized MTL algorithm with a number of 

iterations T. In the first iteration, A performs the mapping W(0) ∈ ℝd × m, Dm θ1 ∈ C1, 
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where θ1 includes W(1) ∈ ℝd × m. For t = 2, …, T, in the t-th iteration, A performs 

the mapping W(t − 1) ∈ ℝd × m, Dm, θ1, …, θt − 1 θt ∈ Ct, where θt includes W(t) ∈ ℝd × m. 

Then, A is an (ϵ, δ) - MP-MTL algorithm if for all i ∈ [m], for all t ∈ [T], and for 

neighboring input pairs W(t − 1), Dm  and ((W′ (t − 1), D′)m) that differ only by the i-th task 

such that wi
(t − 1) ≠ wi′ (t − 1) or Di ≠ Di′, the following holds for some constants ϵ, δ ≥ 0 and 

for any set S ⊆ ℝd × (m − 1) × T :

ℙ(w[ − i]
(1:T ) ∈ S ∣ ∩

t = 1
T ℬt) ≤ eϵℙ(w[ − i]

(1:T ) ∈ S ∣ ∩
t = 1

T ℬt′) + δ, (5)

where for all t ∈ [T], ℬt, ℬt′ denote the inputs for the t-th iteration:

ℬt = W(t − 1), Dm, θ1: t − 1 , ℬt′ = ( W′ (t − 1), D′ m, θ1: t − 1),

and

θ1: t − 1 =
∅ , t = 1
θ1, θ2, ⋯, θt − 1, t ≥ 2.

Note that in Definition 6, we view the model sequence w[ − i]
(1:T ) as a single output of the 

algorithm for each task i ∈ [m]. The definition of neighboring inputs allows the model and 

dataset for any task to change in all rounds of the iterative optimization rather than in only a 

single round.

Definition 6 is defined based on differential privacy. Specifically, an algorithm is always 

first proven to satisfy the constraints of differential privacy and then proven to satisfy 

the constraints of our proposed MP-MTL. Thus, some results (e.g., composition) from 

differential privacy are also applicable to prove whether an algorithm is an MP-MTL 

algorithm.

STL can easily be shown to be optimal for avoiding information leakage across tasks 

because the individual task models are learned independently.

Claim 1.—Any STL algorithm that learns each task independently is a (0, 0) - MP-MTL 
algorithm.

From this claim, we learn that when no information is shared across tasks, no leakage across 

tasks will occur.

Our MP-MTL framework is elaborated in Algorithm 1, which considers heterogeneous 

privacy budgets for different iteration steps. To maintain the total privacy budget below a 

specified value using the adaptive composition theorem provided by Kairouz et al. [42], we 

define a composition bound of a series of privacy budgets (the equation is taken directly 

from Theorem 3.5 of Kairouz et al. [42]):
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Definition 7 (Composition Bound of Privacy Budgets).—For an integer T ≥ 1, a 
series of privacy budgets, ϵ1, …, ϵT ≥ 0, and a specified privacy loss δ ≥ 0, the composition 
bound of {ϵt} is defined as CB({ϵt}, δ), which equals

min ∑
t = 1

T
ϵt, ∑

t = 1

T eϵt − 1 ϵt

eϵt + 1
+ ∑

t = 1

T
2ϵt2log 1

δ ,

∑
t = 1

T eϵt − 1 ϵt

eϵt + 1
+ ∑

t = 1

T
2ϵt2log e +

∑t = 1
T ϵt2

δ .
(6)

In Algorithm 1, as mentioned in Section 3, we choose to protect the tasks’ covariance 

matrix, which is denoted by Σ = WWT or Σ = WTW, depending on the MTL method 

selected. As previously stated, Wishart noise [41] is added. Fig. 1 illustrates the key concepts 

of the framework. In detail, Step 1 of Algorithm 1 ensures that the total privacy budgets 

satisfy the specified values ϵ and δ, respectively. The purpose of norm clipping in Step 3 

is simply to render the models in a bounded space, which helps us compute a proper noise 

scale to add to satisfy the privacy constraint defined in Definition 6. Step 4 extracts the 

shared information between tasks—the tasks’ covariance matrix. Step 5 adds a perturbation 

into the shared information. Step 6 further extracts useful information from the perturbed 

covariance matrix. Step 7 sends the extracted useful information to each task to perform 

decoupled learning. If no noise is added, Steps 4–7 could be a proximal gradient descent 

step, i.e., first performing a proximal operator step and then taking a gradient descent 

step; see, e.g., Ji and Ye [39] and Liu et al. [49]. This framework is applicable for many 

optimization schemes, such as proximal gradient methods [39, 49], alternating methods [5] 

and Frank-Wolfe methods [37].

Note that we mainly provided theoretical and experimental results for the WWT type of 

covariance matrix. Nonetheless, the WTW type of covariance matrix can be regarded as 

a natural alternative to include in our framework, since it was successfully used to learn 

relationships between tasks [77, 33, 76].

Remark 2.—In Algorithm 1, a curator who collects models and performs centralized 
transfer needs to run only Steps 4–6 and does not need to collect the datasets (Xm, ym), 

which are used only in STL algorithms.

Algorithm 1

MP-MTL framework

Input: Datasets Xm, ym = X1, y1 , …, Xm, ym , where ∀i ∈ [m], Xi ∈ ℝni × d
 and yi ∈ ℝni × 1

. 

Privacy loss ϵ, δ ≥ 0. Number of iterations T. Initial shared information matrix M(0). Initial task models W(0), which can 
be acquired via arbitrary STL methods.

Output: W(1:T).

1: Set {ϵt} such that CB({ϵt}, δ) ≤ ϵ, where CB({ϵt}, δ) is the composition bound of {ϵt}.

2: for t = 1 : T do
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3: Norm clipping: wi
(t − 1) = wi

(t − 1)/max(1,
wi

(t − 1)
2

K ), for all i ∈ [m]. Let W(0) = W(0)
.

4: Σ(t) = W(t − 1)(W(t − 1))
T

 (or Σ(t) = (W(t − 1))
T

W(t − 1)
).

5: Σ(t) = Σ(t) + E, where E W d(d + 1, K2
2ϵt

Id) (or E W m(m + 1, K2
2ϵt

Im)) is a sample from the Wishart 

distribution, Id denotes the d × d identity matrix, and diag(·) transforms a vector into a diagonal matrix.

6: Perform an arbitrary mapping f:Σ(1: t) M(t), e.g., take the diagonal elements of Σ(t) or the singular value 
decomposition of Σ(t).

7: wi
(t) = Ast, i(M(t), wi

(0: t − 1), Xi, yi), for all i ∈ [m], where Ast, i is an arbitrary STL algorithm for the i-th 

task and the wi
(0: t − 1)

 are used for initialization.

8: end for

4.2 Instantiations of the MP-MTL Framework

In this section, we instantiate our MP-MTL framework (described in Algorithm 1) by 

approximating the proximal gradient descent methods presented by Ji and Ye [39] and 

Liu et al. [49] for the trace-norm-regularized MTL problem and the group-ℓ1-regularized 
MTL problem, respectively. Both proximal gradient descent methods solve the respective 

MTL problems by alternately performing a proximal operator step and a gradient descent 

step. Taking the trace-norm-regularized MTL problem as an example, the loss function, 

∑iℒi, is minimized by the gradient descent steps, while the regularization term, the trace-

norm, is minimized by the proximal operator steps. The proximal operator minimizes the 

regularization term, keeping the variable near the result of a previous gradient descent step. 

Specifically, we instantiate Steps 4–7 of Algorithm 1 by approximating a proximal gradient 

descent step, i.e., first performing a proximal operator step and then taking a gradient 

descent step. It is similar for the group-ℓ1-regularized MTL problem, but the difference lies 

in the instantiations of Step 6 of Algorithm 1 because different regularization terms lead to 

different optimal solutions for the proximal operators. Note that both instantiations use the 

WWT type of covariance matrix, which is required by the optimal solutions [39, 49].

First, we instantiate the MP-MTL framework for the trace-norm-regularized MTL problem, 

as shown in Algorithm 2. Generally speaking, the algorithm uses an accelerated proximal 

gradient method. Steps 4–9 approximate the following proximal operator [39]:

W(t − 1) = argmin
W

1
2η‖W − W(t − 1)‖F

2
+ λ‖W‖*, (7)

where W(t − 1) can be regarded as the result of the gradient descent step in the previous 

iteration, assuming K is sufficiently large. In detail, Steps 6–8 of Algorithm 2 instantiate 

Step 6 of Algorithm 1 by constructing a projection matrix, M(t) = USηλUT, from the 

result of singular vector decomposition of the perturbed covariance matrix. Steps 9–11 of 

Algorithm 2 instantiate Step 7 of Algorithm 1 by first projecting the models (in Step 9) and 

then performing accelerated gradient descent.
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We provide a running example for model leakage and model protection under different 

settings of Algorithm 2, as shown in Fig. 2. We generate models for m = 10 tasks, in which 

the data dimension is d = 5. The 10th task (the rightmost task), is an anomaly task that 

requires privacy protection. In Fig. 2 (a), the matrix denoted by W(0) is first generated from 

an i.i.d. uniform distribution U(0, 1). Then, the rightmost column is multiplied by 100. For 

MTL with model leakage, we execute Algorithm 2, setting T = 1, η = 1, ϵ1 = ϵ = 1e40, 

δ = 0, K = 100 5 and λ = 50. Because ϵ is sufficiently large, the sampled noise matrix E 

added to the covariance matrix is approximately a zero matrix. Then, it can be regarded that 

the MTL runs using a normal proximal operator. The output model matrix W(1)
 is shown 

in Fig. 2 (b), in which the 10th task results in significant influences on the parameters of 

other models: other models’ parameters are similar to those of the 10th task, e.g., for each 

task, the first feature is the largest, and the fifth feature is the smallest. For MTL with model 

protection, we execute Algorithm 2 with the same setting as above except that we set ϵ1 = ϵ 

= 0.1. The output model matrix W(1)
 is shown in Fig. 2 (c), in which the influences from the 

10th task are not significant: other models’ parameters are not similar to those of the 10th 

task. Meanwhile, for W(0), shown in Fig. 2 (a), for tasks 1–9, the ℓ2 norms of the second and 

fifth rows are the two largest ones; these are clearly shown in Fig. 2 (c). This result means 

that the shared information between tasks is to use the second and fifth features, which is 

successfully extracted by our method.

Algorithm 2

MP-MTL Low-rank Estimator

Input: Datasets (Xm, ym) = (X1, y1), …, (Xm, ym) , where ∀i ∈ [m], Xi ∈ ℝni × d
 and yi ∈ ℝni × 1

. 

Privacy loss ϵ, δ ≥ 0. Number of iterations T. Step size η. Regularization parameter λ > 0. Norm clipping parameter K > 
0. Acceleration parameters {βt}. Initial task models W(0).

Output: W(1:T )
.

1: Set {ϵt} such that CB({ϵt}, δ) ≤ ϵ, where CB({ϵt}, δ) is the composition bound of {ϵt}.

2: for t = 1 : T do

3: Norm clipping: wi
(t − 1) = wi

(t − 1)/max(1,
wi

(t − 1)
2

K ), for all i ∈ [m]. Let W(0) = W(0)
.

4: Σ(t) = W(t − 1)(W(t − 1))
T

.

5: Σ(t) = Σ(t) + E, where E W d(d + 1, K2
2ϵt

Id) is a sample from the Wishart distribution.

6: Perform singular vector decomposition: UΛUT = Σ(t).

7: Let Sηλ be a diagonal matrix, and let Sηλ, ii = max{0, 1 − ηλ/ Λii}, for i = 1, …, min{d, m}.

8: M(t) = USηλUT.

9: Let wi
(t) = M(t)wi

(t − 1)
, for all i ∈ [m].

10: Let zi
(t) = wi

(t) + βt(wi
(t) − wi

(t − 1)), for all i ∈ [m].
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11: Let wi
(t) = zi

(t) − η
∂ℒi(Xizi

(t), yi)

∂zi
(t) , for all i ∈ [m].

12: end for

Second, we instantiate the MP-MTL framework for the group-ℓ1-regularized MTL problem 
defined in (3), as shown in Algorithm 3. Steps 4–8 approximate the following proximal 

operator [49]:

W(t − 1) = argmin
W

1
2η W − W(t − 1)

F
2

+ λ‖W‖2, 1 . (8)

The only difference between Algorithm 3 and Algorithm 2 is the way they obtain the 

projection matrix M(t) for the models (see the differences between Steps 6–8 of Algorithm 2 

and Steps 6–7 of Algorithm 3). Because Algorithm 3 minimizes the group-sparse penalty, it 

focuses on only the diagonal elements of the perturbed covariance matrix.

The error bounds for the proximal operator approximations are provided in Section 4.4.

We use the following result to show that under high noise levels, our algorithms share no 

information between models but keep the models intact; thus, they degrade to STL methods 

but in such a way they do not underperform compared with STL methods.

Algorithm 3

MP-MTL Group-sparse Estimator

Input: Datasets (Xm, ym) = (X1, y1), …, (Xm, ym) , where ∀i ∈ [m], Xi ∈ ℝni × d
 and yi ∈ ℝni × 1

. 

Privacy loss ϵ, δ ≥ 0. Number of iterations T. Step size η. Regularization parameter λ > 0. Norm clipping parameter K > 
0. Acceleration parameters {βt}. Initial task models W(0).

Output: W(1:T )
.

1: Set {ϵt} such that CB({ϵt}, δ) ≤ ϵ, where CB({ϵt}, δ) is the composition bound of {ϵt}.

2: for t = 1 : T do

3: Norm clipping: wi
(t − 1) ≡ wi

(t − 1)/max(1,
wi

(t − 1)
2

K ), for all i ∈ [m]. Let W(0) = W(0)
.

4: Σ(t) = W(t − 1)(W(t − 1))
T

.

5: Σ(t) = Σ(t) + E, where E W d(d + 1, K2
2ϵt

Id) is a sample of the Wishart distribution.

6: Let Sηλ be a diagonal matrix, where for i = 1, …, d, Sηλ, ii = max{0, 1 − ηλ/ Σii
(t) }.

7: M(t) = Sηλ.

8: Let wi
(t) = M(t)wi

(t − 1)
, for all i ∈ [m].

9: Let zi
(t) = wi

(t) + βt(wi
(t) − wi

(t − 1)), for all i ∈ [m].
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10: Let wi
(t) = zi

(t) − η
∂ℒi(Xizi

(t), yi)

∂zi
(t) , for all i ∈ [m].

11: end for

Proposition 1.—For Algorithm 2, the projection matrix USηλUT degrades to an identity 
matrix, and the algorithm degrades to an STL algorithm with no random perturbation if the 
smallest singular value of E satisfies σd(E) = Cλ2 for a sufficiently large C > 0.

For Algorithm 3, the projection matrix Sηλ degrades to an identity matrix, and the algorithm 
degrades to an STL algorithm with no random perturbation if the smallest diagonal element 
of E satisfies minj Ejj = Cλ2 for sufficiently large C > 0.

We also consider other complex MTL frameworks for instantiation. For example, Gong et 

al. [29], Chen et al. [18], Jalali et al. [38] and Chen et al. [19] considered a decomposed 

parameter/model matrix to handle heterogeneities among tasks, e.g., detecting entry-wise 

outliers in the parameter matrix [38, 19] and detecting anomalous tasks [29, 18]. These 

detection procedures are claimed to be beneficial for the knowledge sharing process in 

cases of heterogeneous tasks. Our MP-MTL framework can be naturally extended to such 

a model-decomposed setting because the additional procedures are still STL algorithms; 

hence, the privacy loss will not increase. Please see the supplementary material (Appendix 

A) for additional details.

4.3 Privacy Guarantees

The following two results show that our proposed framework and the two instantiated 

algorithms satisfy the privacy constraint defined in Definition 6.

Theorem 1.—Algorithm 1 is an (ϵ, δ) - MP-MTL algorithm.

The proof of Theorem 1 can be found in the supplementary material (Appendix H.3).

Corollary 1.—Algorithm 2 and Algorithm 3 are (ϵ, δ) - MP-MTL algorithms.

Corollary 1 follows Theorem 1 because Algorithm 2 and 3 are instantiations of Algorithm 

1. The necessary property to be satisfied is that the instantiation of Step 7 of Algorithm 1 

is an STL algorithm. The proof of Corollary 1 can be found in the supplementary material 

(Appendix H.4).

4.4 Utility Analyses

We build utility analyses specifically for our instantiations, i.e., Algorithms 2 and 3 instead 

of Algorithm 1, because 1) Algorithm 1 is a framework that allows the minimization of a 

variety of regularization terms and many optimization schemes. Specifically, Steps 6 and 

7 of Algorithm 1 include arbitrary mappings and arbitrary STL algorithms, respectively. 

Therefore, the analysis is not trivial and requires additional assumptions. 2) Algorithms 
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2 and 3 correspond to trace-norm and group-ℓ1-norm regularization, respectively, which 

correspond to two mainstream MTL approaches.

Our utility analyses are built upon the matrix perturbation error bounds of Wishart noise 

presented by Jiang et al. [41], the error bounds with arbitrary heterogeneous residues of 

inexact proximal-gradient descent presented by Schmidt et al. [60], and the two optimal 

solutions for proximal operators presented by Ji and Ye [39] and Liu et al. [49]. The 

following parts of the utility analyses are novel: 1) the derivations of the approximation 

error bounds for both the proximal operators in (7) and (8); 2) the derivations of 

runtime and utility bounds, considering three cases of composition bounds of privacy 

budgets, two privacy-budget allocation strategies, two specific regularization terms, both 

convex and strongly convex prediction loss functions, and both the basic and accelerated 

proximal-gradient methods, subject to the elaborate composition theorem of privacy; 3) 

the optimizations of the utility bounds with respect to the parameters of privacy-budget 

allocation strategies.

We studied the utility bounds for three cases of the composition bound of {ϵt} defined in (6). 

It can be perceived that three composition theorems bound the total privacy loss given {ϵt}. 

For different {ϵt}, the best bound may be different. Specifically, the results corresponding 

to the bound for the low-privacy budget regime (e.g., ϵ + eδ ≤ 1) are presented in the main 

paper, while the results corresponding to the other two bounds are similar and reported in the 

supplementary material (Appendix D) because the low-privacy budget regime may receive 

the most attention. Under such a regime, the bound is as follows.

∑
t = 1

T eϵt − 1 ϵt
eϵt + 1

+ ∑
t = 1

T
2ϵt2log e +

∑t = 1
T ϵt2

δ .

First, we make some assumptions.

Parameter space.—A bounded parameter space is assumed for model matrices:

W = {W ∈ ℝd × m: max
i ∈ [m]

wi 2 ≤ K},

where K is the norm clipping parameter.

Properties of objective functions.—We consider the loss function 

f(W) = 1
m ∑i = 1

m ℒi Xiwi, yi  and assume that mf(W) is convex and has an L-Lipschitz-

continuous gradient (as defined in Schmidt et al. [60]). Let W * = argminWmf(W) + λg(W), 
where g(·) = ||·||∗ for Algorithm 2 and g(·) =||·||2,1 for Algorithm 3. Without loss of generality, 

we assume that W* ∈ W and f(W(0)) − f W* = O K2Lm . We define q = min{d, m}.

The number of tasks.—The number of tasks is assumed to be sufficient as follows.

Liang et al. Page 18

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Assumption 1.: For Algorithm 2, we assume that for sufficiently large C > 0,

m > CK2d2log2(d)(log(e + ϵ/ 2δ) + 2ϵ)/ϵ2 .

For Algorithm 3, we assume that for sufficiently large C > 0,

m > Clog(d) log(e + ϵ/ 2δ) + 2ϵ ϵ .

Then, we present the results. Before reporting the utility bounds, we report two intermediate 

results: the approximation error bounds for proximal operators with trace-norm (low-rank) 

and group-ℓ1 (group-sparse) penalties, respectively. Now the noise matrix E is allowed to be 

arbitrary.

Lemma 1 (Low rank).: Consider Algorithm 2. For t ∈ [T], in the t-th iteration, let 

C = W(t − 1). Let rc = rank(C) ≤ q be the rank of C. Suppose that an index k ≤ q exists 

such that σk(C) > ηλ and σk+1(C) ≤ ηλ. Assume that 2σ1(E) ≤ σj(C) − σj + 1(C) for j ∈ 

[k]. Then for any E ∈ ℝd × d:

1
2η‖W(t) − C‖F

2 + λ‖W(t)‖*

− min
W

1
2η‖W − C‖F

2 + λ‖W‖*

≤ 1
η

σ1
2(C)
ηλ + σ1(C)

⋅ k2

ηλ + 2k σ1(E) + max 0, rc − k σ1(E) .

(9)

Lemma 2 (Group Sparse).: Consider Algorithm 3. For t ∈ [T], in the t-th iteration, let 

C = W(t − 1). Let the indices of the non-zero rows of C be denoted by ℐc = j:Cj ≠ 0 , 

and let rc, s = ℐc ≤ d. Let Σ0 = CCT. Suppose that an integer k ≤ d exists such that 

∑j = 1
d I Σjj, 0 ≥ ηλ = k, where I(·) is the indicator function. Then for any E ∈ ℝd × d, we 

have:

1
2η‖W(t) − C‖F

2 + λ‖W(t)‖2, 1

− min
W

1
2η‖W − C‖F

2 + λ‖W‖2, 1

≤ 1
η

rc, s
ηλ max

j ∈ [d]
‖Cj‖2

2
+ max

j ∈ [d]
‖Cj‖2

⋅ k
2ηλ max

j ∈ [d]
Ejj + max 0, rc, s − k max

j ∈ [d]
Ejj .

(10)

We find that the approximation error bounds both depend on σ1(E) (note that maxj |Ejj| ≤ 

σ1(E)).
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Note that Lemma 1 requires ηλ to fall between the k-th and the (k + 1)-th singular values in 

every iteration for the same k. Under Assumption 1 (the number of tasks is sufficiently 

large), when the initial task models in W(0) are acquired via proper STL methods, a 

significant margin will always exist between the k-th and the (k + 1)-th singular values 

of the normalized model matrix C for the same k. Therefore, the above requirement is easily 

satisfied. It is similar for the requirement of k in Lemma 2.

Now, we present guarantees regarding both utility and runtime. In the following, E 
is assumed to be a Wishart random matrix. The privacy budgets {ϵt} are considered 

heterogeneous, i.e., different with respect to t.

We consider two cases for the loss function f(W): convex and strongly convex. For each 

case, we report the results of both Algorithms 2 (the low-rank estimator) and 3 (the 

group-sparse estimator). For each algorithm, we present the results for both the basic and 

accelerated proximal gradient descent methods.

For the convex case of the loss function f(W), according to Propositions 1 and 2 of Schmidt 

et al. [60], the weight for the approximation error of each iteration grows polynomially 

with respect to t. To minimize the bound for the total error, the approximation error should 

decrease polynomially. Considering that the approximation error bounds depend on σ1(E) 

and that σ1(E) = O(1/ϵt) (shown by Jiang et al. [41]), we should let ϵt grow polynomially. 

Therefore, we set ϵt = Θ(tα) for α ∈ ℝ and t ∈ [T], and define

M0 = log(e + ϵ/ 2δ) + 2ϵ/ 2α + 1 ϵ,

which is used for both Theorems 2 and 3.

Theorem 2 (Low rank - Convexity).: Consider Algorithm 2. For an index k ≤ q that 
satisfies the conditions given in Lemma 1 for all t ∈ [T], η = 1/L, and λ = Θ(LK m), assume 
that ϵt ≤ 4Kk2d(log d)/q2 for t ∈ [T]. Define

M = M0Kkdlogd/ m .

No acceleration: If we set βt = 0 for t ∈ [m] and then also set T = Θ(((α/2 − 2)2)ϕ(α)/2) for 

ℰ = f(W(T )) − f W* , we have, with high probability,

ℰ = O(K2L(M/(α/2 − 1)2)ϕ(α)), (11)

where

ϕ(α) =
2/(2α + 1), α > 2;
2/5, −1/2 < α < 2;
1/(2 − α), α < − 1/2;

(12)
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Use acceleration: If we set βt = (t − 1)/(t + 2) for t ∈ [m] and then also set T = Θ(((α/2 − 

2)2)ϕ(α)/2) for ℰ = f W(T ) − f W* , we have, with high probability,

ℰ = O(K2L(M/(α/2 − 2)2)ϕ(α)), (13)

where

ϕ(α) =
4/(2α + 1), α > 4;
4/9, −1/2 < α < 4;
2/(4 − α), α < − 1/2;

(14)

Theorem 3 (Group sparse - Convexity).: Consider Algorithm 3. For an index x∈ k ≤ d that 
satisfies the condition given in Lemma 2 for all t ∈ [T], η = 1/L, and λ = Θ(LKd m), assume 
that ϵt ≤ k2 log(d)/4Kd(d − k)2m for t ∈ [T]. Define

M = M0klogd/m .

No acceleration: If we set βt = 0 for t ∈ [m] and then also set T = Θ(((α/2 − 2)2)ϕ(α)) for 

ℰ = f( 1
T ∑t = 1

T W(t)) − f W* , we have, with high probability,

ℰ = O(K2L(M/(α/2 − 1)2)ϕ(α)), (15)

where ϕ(α) is defined in (12).

Use acceleration: If we set βt = ( t – 1)/(t + 2) for t ∈ [m] and then also set T = Θ(((α/2 − 

2)2)ϕ(α)/2) for ℰ = f(W(T )) − f W* , we have, with high probability,

ℰ = O(K2L(M/(α/2 − 2)2)ϕ(α)), (16)

where ϕ((α) is defined in (14).

It can be observed that the group sparsity leads to better/smaller bounds compared with the 

low-rank case. This is because the group-sparse estimator only uses the diagonal elements 

of the perturbed covariance matrix and therefore introduces only a small part of the noise 

from the noisy matrix E. In contrast, the low-rank estimator exploits the whole perturbed 

covariance matrix, hence introducing all the noise.

Next, we assume that mf(W) is μ-strongly convex and has an L-Lipschitz-continuous 

gradient, where μ < L. In this case, according to Propositions 3 and 4 of Schmidt et al. [60], 

the weight for the approximation error of each iteration grows exponentially with respect to 

t. Therefore, we set ϵt = Θ(Q−t) for Q > 0 and t ∈ [T]. Define

M0′ = log(e + ϵ/ 2δ) + 2ϵ/ 1 − Q2 ϵ,
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which is used for both Theorems 4 and 5.

Theorem 4 (Low rank - Strong convexity).: Consider Algorithm 2. For an index k ≤ q that 
satisfies the conditions given in Lemma 1 for all t ∈ [T], η = 1/L, and λ = Θ(LK m), assume 
that ϵt ≤ 4Kk2d(log d)/q2 for t ∈ [T], denoted by

M = M0′ Kkdlogd/ m .

No acceleration: If we set βt = 0 for t ∈ [m] and then let Q0 = 1−μ/L and 

set T = Θ(log1/ψ(Q, Q0
2)((Q0/ Q − 1)2/M)) for ℰ = 1

m‖W(T ) − W*‖F , we have, with high 

probability,

ℰ = O(K(M/(Q0/ Q − 1)2)
logψ(Q, Q0

2)Q0
), (17)

where for any Q ∈ (0, 1),

ψ(Q, Q) =
Q, 0 < Q < Q;
Q, Q < Q < 1;
Q/Q, Q > 1.

(18)

Use acceleration: If we set βt = (1 − μ/L)/(1 + μ/L) for t ∈ [m] and then let Q0′ = 1 − μ/L

and set T = Θ(log1/ψ(Q, Q0′ )(( Q0′ / Q − 1)2/M)) for ℰ = f(W(T )) − f(W*), we have, with high 

probability,

ℰ = O(K(M/( Q0′ / Q − 1)2)
logψ(Q, Q0′ )Q0′

), (19)

where ψ(·, ·) is defined in (18).

Theorem 5 (Group sparse - Strong convexity).: Consider Algorithm 3. For an index k ≤ 

d that satisfies the condition given in Lemma 2 for all t ∈ [T], η = 1/L, and λ = Θ(LKd m), 
assume that ϵt ≤ k2 log(d)/4Kd(d − k)2m for t ∈ [T]. Define

M = M0′ klogd/m .

No acceleration: If we set βt = 0 for t ∈ [m] and then let Q0 = 1−μ/L and 

set T = Θ(log1/ψ(Q, Q0
2)((Q0/ Q − 1)2/M)) for ℰ = 1

m‖W(T ) − W*‖F , we have, with high 

probability,

ℰ = O(K(M/(Q0/ Q − 1)2)
logψ(Q, Q0

2)Q0
), (20)
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where ψ(·, ·) is defined in (18).

Use acceleration: If we set βt = (1 − μ/L)/(1 + μ/L) for t ∈ [m] and then let Q0′ = 1 − μ/L

and set T = Θ(log1/ψ(Q, Q0′ )(( Q0′ / Q − 1)2/M)) for ℰ = f(W(T )) − f(W*), we have, with high 

probability,

ℰ = O(K(M/( Q0′ / Q − 1)2)
logψ(Q, Q0′ )Q0′

), (21)

where ψ(·, ·) is defined in (18).

4.5 Privacy Budget Allocation

In this section, we optimize the utility bounds presented in Theorems 2–5 with respect to 

α and Q, respectively, which results in optimized privacy-budget allocation strategies. Then, 

we discuss the optimized results.

Theorem 6.—Consider Algorithms 2 and 3.

For a convex f, we use Theorems 2 and 3.

1. No acceleration: The bounds for the low-rank and group-sparse estimators both 
reach their respective minima w.r.t. α at α = 0. Meanwhile, ϕ(α) = 2/5.

2. Use acceleration: The bounds for low-rank and group-sparse estimators both 
reach their respective minima w.r.t. α at α = 2/5. Meanwhile, ϕ(α) = 4/9.

For a strongly convex f, we use Theorems 4 and 5.

1. No acceleration: The bounds for the low-rank and group-sparse estimators 

both reach their respective minima w.r.t. Q at Q = Q0
2/5. Meanwhile, 

logψ(Q, Q0
2)Q0 = 1/2.

2. Use acceleration: The bounds for low-rank and group-sparse estimators 

both reach their respective minima w.r.t. Q at Q = (Q0′ )1/5. Meanwhile, 

logψ(Q, Q0′ )Q0′ = 1.

the results correspondinging to the optimized privacy-budget allocation strategies (with 

δ > 0) are summarized in Table 2, where the terms with respect to K, L, k, and 

log(e + ϵ/ 2δ) + 2ϵ are omitted, and the results associated with the setting ϵ = ∑t = 1
T ϵt are 

included, providing (ϵ, 0) - MP-MTL algorithms.

We learn from Theorem 6 that 1) for all four settings, a non-decreasing series of {ϵt} 

results in a good utility bound, since the best α = 0, 2/5 ≥ 0 for ϵt = Θ(tα) and the best 

Q = Q0
2/5, (Q0′ )1/5 < 1 for ϵt = Θ(Q−t). Intuitively, this means adding non-increasing noise 

over the iterations—which is reasonable because the initial iterations may move quickly in 

the parameter space while the last iterations may only fine-tune the model slightly. 2) Both 

the strong-convexity condition and the acceleration strategy improve the utility bounds: both 

Liang et al. Page 23

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



increase the powers of those bounds that are far less than 1 under Assumption 1. 3) By 

setting α and Q to their optimized values, the acceleration strategy improves the runtime, as 

shown in Claim 2.

Claim 2.—Assume Assumption 1. Consider Theorems 2–5 and set α and Q to the 
optimized values in Theorem 6, respectively. Assume μ/L < 0.3819. The values for T are 
smaller when using the acceleration strategy compared to those with no acceleration.

Now, we introduce a concrete strategy to set {ϵt} in both Algorithm 2 and Algorithm 3. 

We assume that T, ϵ and δ are given. Note that this strategy is optimal if α and Q are set 

according to the optimal settings stated by Theorem 6.

For a convex f, if no acceleration is to be used, then set βt = 0 for t ∈ [m] and set α ∈ ℝ (e.g., 

α = 0); otherwise, set βt = (t − 1)/(t + 2) for t ∈ [m] and set α ∈ ℝ (e.g., α = 2/5). Then, for t 
∈ [T], let ϵt = ϵ0tα and find the largest ϵ0 that satisfies CB({ϵt}, δ) ≤ ϵ, where CB({ϵt}, δ) is 

the composition bound of {ϵt} defined in (6).

For a μ-strongly convex mf(W) with a known value of μ (e.g., μ
2 ‖wi‖2

2 is added to each ℒi), 

if no acceleration is to be used, then set βt = 0 for t ∈ [m] and set Q > 0 (e.g., Q = (1 − 

μ/L)2/5, if L is known); otherwise, if L is known, set βt = (1 − μ/L)/(1 + μ/L) for t ∈ [m] 

and set Q > 0 (e.g., Q = (1 − μ/L)1/5). Then, for t ∈ [T], let ϵt = ϵ0Q−t and find the largest 

ϵ0 that satisfies CB({ϵt}, δ) ≤ ϵ, where CB({ϵt}, δ) is the composition bound of {ϵt} defined 

in (6).

4.6 Baseline MP-MTL Constructed by IP-MTL

IP-MTL algorithms prevent a single data instance in one task from leaking to other tasks and 

are formally defined:

Definition 8 (IP-MTL).—Let A be a randomized MTL algorithm with a number of 

iterations T. In the first iteration, A performs the mapping (W(0) ∈ ℝd × m, Dm) θ1 ∈ C1, 

where θ1 includes W(1) ∈ ℝd × m. For t = 2, …, T, in the t-th iteration, A performs 

the mapping (W(t − 1) ∈ ℝd × m, Dm, θ1, …, θt − 1) θt ∈ Ct, where θt includes W(t) ∈ ℝd × m. 

Here, A is an (ϵ, δ) - IP-MTL algorithm if—for all i ∈ [m] and for all neighboring datasets 

Dm and (D′)m that differ by a single data instance for the i-th task—the following holds for 

some constants ϵ, δ ≥ 0 and for any set S ⊆ ℝd × (m − 1) × T :

ℙ(w[ − i]
(1:T ) ∈ S ∣ ∩

t = 1
T ℬt) ≤ eϵℙ(w[ − i]

(1:T ) ∈ S ∣ ∩
t = 1

T ℬt′) + δ, (22)

where for all t ∈ [T], ℬt, ℬt′ denote the inputs for the t-th iteration:

ℬt = (W(t − 1), Dm, θ1: t − 1), ℬt′ = ((W′)(t − 1), (D′)m, θ1: t − 1),

and
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θ1: t − 1 =
∅ , t = 1
θ1, θ2, ⋯, θt − 1, t ≥ 2,

and (W′)(t−1) is associated with the case where a single data instance for the i-th task has 
been replaced.

IP-MTL is similar to the one-query-to-many-analyst privacy defined by Hsu et al. [36]. 

However, these two definitions are different in both the modeling objects and the input 

characteristics.

We present examples of IP-MTL as follows.

Proposition 2.—Both DP-AGGR [58] and DP-MTRL [33] are IP-MTL algorithms with T 
= 1 and T ≥ 1, respectively.

Now, we can construct baseline MP-MTL methods by IP-MTL methods based on the 

result of Proposition 3: to guarantee an (ϵ, δ) - MP-MTL algorithm, one can use an (ϵ/n, 
δ/(nexp(ϵ)) - IP-MTL algorithm.

Proposition 3.—For task sample sizes of n1, …, nm, any (ϵ, δ) - IP-MTL algorithm is a 
(nϵ, nexp(nϵ)δ) - MP-MTL algorithm when n = maxi∈[m] ni.

The proof of Proposition 3 can be found in the supplementary material (Appendix H.14), 

directly following the proof of the group privacy Lemma stated by Lemma 2.2 of Vadhan 

[67]. Therefore, Proposition 3 is regarded as the group privacy property of differential 

privacy applied to a “group” of the entire dataset for a single task.

5 Experiments

In this section, we evaluate the proposed MP-MTL method. We evaluate two instantiations 

of our method, Algorithm 2 and Algorithm 3 with respect to their ability to capture the 

low-rank and group-sparse patterns, respectively, in the model matrix. We use both synthetic 

and real-world datasets to evaluate these algorithms. All the algorithms were implemented in 

MATLAB.

5.1 Methods for Comparison

We use least-square loss and logistic loss for the least-square regression and binary 

classification problems, respectively.

For each setting, we evaluate three types of methods: 1) non-private STL methods, in which 

each task is learned independently without the introduction of any perturbation; 2) MP-

MTL methods, including our proposed MP-MTL methods and baseline MP-MTL methods 

constructed by IP-MTL methods; and 3) non-private MTL methods, which correspond to the 

original MTL methods without the introduction of any perturbation.
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To select the IP-MTL methods for constructing the baseline MP-MTL methods, because few 

such approaches have been proposed, we first consider DP-MTRL [33]. Since DP-MTRL 

does not consider the privacy-loss increase resulting from its iterative update procedure, we 

adopted the same composition technique as in our method. We also corrected DP-MTRL 

to consider the Lipschitz constants of the loss functions when computing the sensitivities 

in its 4th step, which were omitted. For all i ∈ [m], the Lipschitz constant Li of the loss 

function ℒi is estimated as Li = maxj ∈ ni ℒi′(xijwi, yij) , which is smaller than the true 

value. Thus, intuitively, we add less noise to DP-MTRL than would otherwise be added. For 

the binary classification case, we still let DP-MTRL minimize the least-square loss because, 

in each of its outer iterations, DP-MTRL requires a closed-form solution to guarantee the 

theoretical privacy results. However, if the logistic loss is used, an iterative optimization 

is required in each outer iteration; consequently, the requirement of a closed-form solution 

cannot be satisfied. Therefore, DP-MTRL provides no privacy guarantee for the logistic loss. 

Moreover, it is not trivial to modify DP-MTRL for loss functions that require an iterative 

optimization in each outer iteration because additional leakage will occur in each inner 

iteration.

The DP-AGGR method proposed by Pathak et al. [58] which outputs an averaged model as 

the final solution, is also considered to be an IP-MTL method that transforms into a baseline 

MP-MTL method.

Remark 3.—We continue to refer to the baseline MP-MTL methods constructed by IP-

MTL methods (DP-MTRL and DP-AGGR) using their respective names.

Differentially private STL methods are not considered because 1) empirically, they are 

always outperformed by non-private STL methods [16, 69], and 2) our MP-MTL method 

always outperforms STL methods, as will be demonstrated later.

5.2 Experimental Setting

For the non-private methods, the regularization parameters and the numbers of iterations 

were optimized via 5-fold cross-validation on the training data, and acceleration was used 

without considering the strong convexity of the loss function f. For the private methods, the 

regularization parameters, the number of iterations, the optimization strategy (whether to use 

acceleration and whether to consider strong convexity via adding ℓ2 norm penalties), and 

the privacy-budget allocation hyper-parameters (α and Q) under each privacy loss ϵ were 

optimized via 5-fold cross-validation on the training data. In the case considering strong 

convexity, μ
2 ‖wi‖2

2 was added to each ℒi with μ = 1e − 3.

Note that the parameter tuning step using cross-validation was not included in the privacy 

budget for the algorithms. In this paper, we regarded the hyper-parameters generated by 

cross-validation as given not only for our methods but also for the baseline methods (DP-

AGGR and DP-MTRL). We plan to explore an effective cross-validation method using the 

minimum privacy budget with the optimum utility in future work.
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For all the experiments, the δ values in the MP-MTL algorithms were set to 1/mlog(m), 

where m is the number of tasks as suggested by Abadi et al. [1], and the δ values in the 

baseline MP-MTL methods, i.e., DP-MTRL and DP-AGGR, were set in accordance with 

Proposition 3.

All experiments were replicated 100 times under each model setting.

5.3 Evaluation Metrics

We adopt the evaluation metrics commonly encountered in MTL approaches. For least-

square regression, we use nMSE [18, 29], which is defined as the mean squared error (MSE) 

divided by the variance of the target vector. For binary classification, we use the average 

AUC [19], which is defined as the mean value of the area under the ROC curve for each 

task.

5.4 Simulation

We created a synthetic dataset as follows. The number of tasks was m = 320, the number 

of training samples for each task was ni = 30, and the feature dimensionality of the training 

samples was d = 30. The entries of the training data Xi ∈ ℝni × d (for the i-th task) were 

randomly generated from the normal distribution N(0, 1) before being normalized such that 

the ℓ2 norm of each sample was one.

To obtain a low-rank pattern, we first generated a covariance matrix Σ ∈ ℝm × m as shown in 

Fig. 3 (a). Then, the model parameter matrix W ∈ ℝd × m (see Fig. 3 (d)) was generated from 

a matrix variate normal (MVN) distribution [32], i.e., W ∼ MV N(0, I, Σ). Whereas to obtain 

a group-sparse pattern, we generated the model parameter matrix W ∈ ℝd × m such that the 

first 4 rows were nonzero. The values of the nonzero entries were generated from a uniform 

distribution in the range [−50,−1]∪[1,50].

Without loss of generality, we consider only the simulation of least-square regression. The 

results for logistic regression are similar. The response (target) vector for each task was 

yi = Xiwi + εi ∈ ℝni(i ∈ [m]), where each entry in the vector εi was randomly generated from 

N(0, 1).

The test set was generated in the same manner; the number of test samples was 9ni.

5.4.1 Privacy Budget Allocation—The privacy-budget allocation strategies in Section 

4.5 were evaluated based on the synthetic data associated with the low-rank model matrix. 

The results shown in Fig. 4 are from a 5-fold cross-validation on the training data. The 

prediction performances increase when acceleration is used, and achieve local optima at 

small positive values of the horizontal axes, which is consistent with our utility analyses. 

A local optimum exists in the negative horizontal axis in Fig. 4 (b) when acceleration is 

used—perhaps because m is not sufficiently large as assumed in Assumption 1.

5.4.2 Noise-to-Signal Ratio—Based on the setting in Section 5.4.1, the noise-to-

signal ratios under the best privacy-budget allocation strategy (using acceleration and 
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considering basic convexity) are shown in Fig. 5, in which we executed Algorithm 

2 on the synthetic data set with the low-rank pattern. In contrast, for DP-MTRL, 

log10(‖E‖F /‖Σ(t)‖F) = 0.2670 ± 0.0075 under the best iteration number T = 1. The output 

model matrices of DP-MTRL and our method are shown in Fig. 3 (e) and (f), and their 

respective covariance matrices are shown in Fig. 3 (b) and (c), respectively. These plots 

show that our method successfully learned the task relationships (every 75 tasks are similar) 

and the model parameters (which are similar to those in Fig. 3 d), while DP-MTRL did not. 

The results suggest that the high levels of noise added in our method had little influence 

on the output model matrix and the pattern in its covariance matrix, because our method 

adds noise only to the knowledge-sharing process and our method degrades to an STL 

method under high noise levels (as shown in Proposition 1). In contrast, in DP-MTRL, 

the output model matrix and the pattern in the covariance matrix are significantly affected 

or even destroyed because the noise was added directly to the model matrix, resulting in 

negative side effects. This result may also have occurred because DP-MTRL is a local 
private learning algorithm, which needs a much larger m to achieve acceptable utility (see 

the discussion in Section 2.2).

5.4.3 Privacy-Accuracy Tradeoff—In Fig. 6, the performances of both of our MP-

MTL algorithms (i.e., Algorithms 2 and 3) fall between those of the non-private STL and 

non-private MTL methods, suggesting that our methods are useful as MTL methods but may 

be affected by the introduced noise. In Fig. 6 (a), Algorithm 3 underperforms compared with 

Algorithm 2, because the true model matrix is not group-sparse. DP-MTRL outperforms the 

STL method and our Algorithm 3 when ϵ is large because it suits the true model matrix, 

in which the relatedness among tasks is modeled by a graph. In Fig. 6 (b), the true model 

matrix is group-sparse and is not suitable for DP-MTRL; hence, DP-MTRL underperforms 

compared with the STL method even when ϵ is large. Algorithm 2 rivals Algorithm 3 

because the true model matrix is also low-rank. In both panels of Fig. 6, Algorithm 2 rivals 

the non-private MTL when ϵ = 10.

Fig. 7 shows the detailed performances for DP-MTRL and DP-AGGR corresponding to 

those in Fig. 6. Fig. 7 (c) is used to show that the accuracy of DP-AGGR grows with ϵ under 

the same setting as in Fig. 7 (b). As discussed previously, DP-AGGR performs only model 

averaging, which is not suitable for the true model matrices in both settings of Fig. 7 (a) and 

(b); hence, the accuracies of DP-AGGR are much worse than those of the respective STL 

methods.

5.4.4 Varying the Number of Tasks—Based on the setting in Section 5.4.1, the 

average performances of the first 20 of the 320 total tasks are shown in Fig. 8 under different 

numbers of training tasks. The accuracy increases with the number of tasks involved, which 

is consistent with our utility analyses. Specifically, when we consider all the epsilon values, 

the nMSE values are significantly smaller when the number of tasks m is larger: Mann–

Whitney–Wilcoxon (MWW) tests [35] showed a p-value = 0.0068 for nMSE values of m 
= 40 smaller than those of m = 20, and a p-value = 1.57e − 6 for nMSE values of m = 80 

smaller than those of m = 40. Second, for each epsilon value, when the log10 ϵ is in the 

range of [−1.67,3], the nMSE values are significantly smaller when the number of tasks m is 
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larger: MWW tests showed that p-values ≤ 0.0013 for nMSE values of m = 40 smaller than 

those of m = 20, and p-values ≤ 1.55e − 11 for nMSE values of m = 80 smaller than those 

of m = 40. It is worth mentioning that the p-values are still small when log10 ϵ is above 1 

because the standard deviations are small.

5.5 Application

5.5.1 Data Description—We also evaluate the considered methods on the following two 

real datasets.

School Data.: The School dataset1 is a popular dataset for MTL [29] that consists of the 

exam scores of 15,362 students from 139 secondary schools. Each student is described by 27 

attributes, including both school-specific information and student-specific information such 

as gender and ethnic group. The problem of predicting exam scores for the students can be 

formulated as an MTL problem: the number of tasks is m = 139, the data dimensionality is d 
= 27, and the number of data samples is ∑ini = 15, 362.

LSOA II Data.: These data are from the Second Longitudinal Study of Aging (LSOA II) 
2. LSOA II was a collaborative study conducted by the National Center for Health Statistics 

(NCHS) and the National Institute of Aging from 1994 to 2000. A national representative 

sample of 9,447 subjects of 70 years of age and older were selected and interviewed. 

Three separate interviews were conducted with each subject, one each during the periods 

of 1994–1996, 1997–1998, and 1999–2000, referred to as WAVE 1, WAVE 2, and WAVE 

3, respectively. Each wave of interviews included multiple modules covering a wide range 

of assessments. We used data from WAVE 2 and WAVE 3, which include a total of 4,299 

sample subjects and 44 targets (each subject corresponded to 44 targets). We extracted 188 

features from the WAVE 2 interviews. The targets include m = 41 binary outcomes used 

in this study. These outcomes fall into several categories: 7 measures of fundamental daily 

activity, 13 of extended daily activity, 5 of social involvement, 8 of medical condition, 4 of 

cognitive ability, and 4 of sensation condition.

The features include demographic, family structure, daily personal care, medical history, 

social activity, health opinions, behavior, nutrition, health insurance and income and asset 

attributes, the majority of which are binary values.

Both the targets and the features have missing values due to non-responsed and 

questionnaire filtering. The average missing value rates of the targets and features are 13.7% 

and 20.2%, respectively. To address the missing values among the features, we adopted 

the following preprocessing procedure. For the continuous features, missing values were 

imputed with the sample mean. For binary features, it is better to treat the missing values 

as a third category because the absence of a value may also carry important information. 

Therefore, two dummy variables were created for each binary feature with missing values 

(no third variable is necessary in such a case) resulting in a total of d = 295 features. To 

1. http://www.cs.ucl.ac.uk/staff/a.argyriou/code/ 
2.https://www.cdc.gov/nchs/lsoa/lsoa2.htm.
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address the missing values among the targets, we included the samples associated with the 

observed targets for each task, resulting in maxi∈[m] ni = 3,473.

For both real-world datasets, we randomly selected 30% of the samples from each task to 

form the training set and used the remaining samples as the test set. For all the tasks, each 

data point was normalized to have a unit length.

5.5.2 Privacy-Accuracy Tradeoff—From Fig. 9, we can observe results similar to 

those seen in Fig. 6. In addition, our MP-MTL algorithms outperform the baseline MP-MTL 

methods, DP-MTRL and DP-AGGR, especially when ϵ is small. DP-AGGR underperforms 

compared with the STL method because its model averaging approach assumes that the 

tasks are homogeneous. In Fig. 9 (b), the aAUC values of DP-MTRL and our Algorithms 

2 and 3 increase slowly because the feature dimension is large and the number of tasks 

is insufficient, which is consistent with our utility analyses. Fig. 10 shows the detailed 

performances of DP-AGGR. In Fig. 10 (b), because the dimension is large and the number 

of tasks is insufficient, the accuracy of DP-AGGR barely grows with ϵ.

Because the MTL behavior may change when the training-data percentage (the size of the 

training data divided by the size of the entire dataset) changes, we evaluated the methods on 

both real-world datasets at different training-data percentages and achieved similar results; 

see the supplementary material (Appendix E) for more details.

6 Conclusions

In this paper, we discussed the potential security risks of multi-task learning approaches and 

presented a rigorous mathematical formulation of the model-protected multi-task learning 

(MP-MTL) problem. We proposed an algorithmic framework for implementing MP-MTL 

along with two concrete framework instantiations that learn the low-rank and group-sparse 

patterns in the model matrix. We demonstrated that our algorithms are guaranteed not to 

underperform compared with single-task learning methods under high noise levels. Privacy 

guarantees were provided. The utility analyses suggested that both the strong-convexity 

condition and the acceleration strategy improve the utility bounds and that the acceleration 

strategy also improves the runtime. A utility analysis for privacy-budget allocation yielded 

a recommendation for privacy budgets that are non-decreasing over the iterations. The 

experiments demonstrated that our algorithms significantly outperform baseline methods 

constructed by existing privacy-preserving MTL methods on the proposed model-protection 

problem. Some interesting future research directions include extending our approach for 

nonlinear or deep models and developing concrete MP-MTL algorithms for other MTL 

approaches and other optimization schemes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Model-protected multi-task learning framework. The solution process is a recursive two-step 

procedure. The first step is a decoupled learning procedure in which the model parameters 

for each task are estimated independently using the precomputed shared information among 

tasks. The second step is a centralized transfer procedure in which the information shared 

among tasks is extracted for distribution to each task for the decoupled learning procedure 

in the next step. The shared information is extracted from the tasks’ covariance matrix, into 

which Wishart noise is introduced to ensure model security.
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Figure 2. 
Examples of model leakage and model protection showing model matrices, where columns 

correspond to tasks and rows correspond to features. The columns shown have been divided 

by their respective ℓ2 norms.
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Figure 3. 
Task relationships and output model matrices for the synthetic data experiments: (a), (b) and 

(c) are task relationship matrices, (d), (e) and (f) are the output model matrices. In (a), a 

high-value entry of the matrix indicates that a pair of tasks have similar model parameters. 

As in (d), a column shows the model parameters of one task, and every 75 columns are 

similar, which is consistent with (a). (b) and (c) are learned relationship matrices, in which 

the task-relationship patterns reflected by the relative values of entries are suppose to be 

similar to the pattern in (a). In addition, (e) and (f) are learned model matrices, and every 75 

columns are supposed to be similar as in (d). Moreover, in (e) and (f), the relative values in 

each column are also supposed to be similar to those in the correspond column in (d). The 

results shown are the averages of 100 runs with ϵ = 0.1.
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Figure 4. 
Evaluations for privacy-budget allocation strategies. In (a), we set ϵt = Θ(tα), for t ∈ [T]; in 

(b), we set ϵt = Θ(Q−t), for t ∈ [T]. Q0 = 1 − μ ≈ 0.9684. The results shown are averages of 

100 runs with ϵ = 1. For the non-private MTL method, the nMSE was 0.0140.
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Figure 5. 
Noise-to-signal ratios over the iterations of Algorithm 2. The results shown are averages of 

100 runs with ϵ = 0.1.
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Figure 6. 
Privacy-accuracy tradeoff on synthetic datasets. For (a), the data associated with the low-

rank model matrix were used; for (b), the data associated with the group-sparse model 

matrix were used. MP-MTL-LR denotes Algorithm 2, MP-MTL-GS denotes Algorithm 3, 

and STL denotes the ℓ2-norm-penalized STL method. In both panels, STL and MTL denote 

non-private methods. In (b), the nMSEs of DP-MTRL are above 0.16; in both panels, the 

nMSEs of DP-AGGR are above 0.78. Detailed results of DP-MTRL and DP-AGGR are 

presented in Fig. 7.
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Figure 7. 
Detailed privacy-accuracy tradeoff on synthetic datasets for DP-MTRL and DP-AGGR. For 

(a), the data associated with the low-rank model matrix were used; for (b) and (c), the data 

associated with the group-sparse model matrix were used. In (c), the plot shows the same 

performances of DP-AGGR as those in (b) but with a finer vertical axis. Other settings are 

the same as those used for Fig. 6.
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Figure 8. 
Behaviors based on the number of tasks m used for training. We used 320 tasks for MTL 

training.
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Figure 9. 
Privacy-accuracy tradeoff on real-world datasets. In both panels, MTL denotes the method 

with the best performance among the four non-private MTL methods proposed by Ji and 

Ye [39], Liu et al. [49], Zhang and Yeung [77] and DP-AGGR without perturbations; MP-

MTL-LR denotes Algorithm 2, whereas MP-MTL-GS denotes Algorithm 3; STL denotes 

the method with the better performance between the ℓ1- and ℓ2-regularized methods. In (b), 

the aAUCs of DP-AGGR are below 0.66. The detailed performances of DP-AGGR are 

presented in Fig. 10.
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Figure 10. 
Detailed privacy-accuracy tradeoff on real-world datasets for DP-AGGR. All the settings are 

the same as those in Fig. 9.
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Table 1

Notations and Symbols

[k] the index set {1, 2, …, k}

[−i] the index set with index i removed

||⋅||* the trace norm of a matrix (sum of the singular values of the matrix)

||⋅||2, 1 the ℓ2,1 norm of a matrix (sum of the ℓ2 norms of the row vectors of the matrix)

tr(·) the trace of a matrix (sum of the diagonal elements of the matrix)

σj(·) the j-th largest singular value of a matrix, j ∈ [m]
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Table 2

Utility results.

Low rank Group sparse

δ = 0

No
Acceleration

Convex O((dlog(d)
mϵ )

1
3) O(( log(d)

mϵ )
1
3)

Strong convex O((dlog(d)
mϵ )

1
2) O(( log(d)

mϵ )
1
2)

Use
Acceleration

Convex O((dlog(d)
mϵ )

2
5) O(( log(d)

mϵ )
2
5)

Strong convex O(dlog(d)
mϵ ) O( log(d)

mϵ )

δ > 0

No
Acceleration

Convex O((dlog(d)
mϵ )

2
5) O(( log(d)

mϵ )
2
5)

Strong convex O((dlog(d)
mϵ )

1
2) O(( log(d)

mϵ )
1
2)

Use
Acceleration

Convex O((dlog(d)
mϵ )

4
9) O(( log(d)

mϵ )
4
9)

Strong convex O(dlog(d)
mϵ ) O( log(d)

mϵ )
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