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Abstract 

Background:  Whole-body bone scan is the widely used tool for surveying bone metastases caused by various 
primary solid tumors including lung cancer. Scintigraphic images are characterized by low specificity, bringing a 
significant challenge to manual analysis of images by nuclear medicine physicians. Convolutional neural network can 
be used to develop automated classification of images by automatically extracting hierarchal features and classifying 
high-level features into classes.

Results:  Using convolutional neural network, a multi-class classification model has been developed to detect skeletal 
metastasis caused by lung cancer using clinical whole-body scintigraphic images. The proposed method consisted 
of image aggregation, hierarchal feature extraction, and high-level feature classification. Experimental evaluations 
on a set of clinical scintigraphic images have shown that the proposed multi-class classification network is workable 
for automated detection of lung cancer-caused metastasis, with achieving average scores of 0.7782, 0.7799, 0.7823, 
0.7764, and 0.8364 for accuracy, precision, recall, F-1 score, and AUC value, respectively.

Conclusions:  The proposed multi-class classification model can not only predict whether an image contains lung 
cancer-caused metastasis, but also differentiate between subclasses of lung cancer (i.e., adenocarcinoma and non-
adenocarcinoma). On the context of two-class (i.e., the metastatic and non-metastatic) classification, the proposed 
model obtained a higher score of 0.8310 for accuracy metric.
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Key points

•	 Automated detection of lung cancer-caused skeletal 
metastasis is first studied.

•	 Convolutional neural network is exploited to develop 
automated classification method.

•	 Clinical scintigraphic images are used to experimen-
tally evaluate the proposed classification model.
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Background
Skeletal metastasis is common in several of prevalent 
cancers including prostate, breast, and lung cancers [1], 
with 80% of all skeletal metastatic lesions originating 
from one of these primary sites [2]. The percentage of 
metastasis-related death reaches up to 90% for all lung 
cancer mortality [3]. Early detection of skeletal metasta-
sis is extremely important not only for decreasing mor-
bidity but also for disease staging, outcome prediction, 
and treatment planning [4].

Skeletal scintigraphy (bone scan) and positron emis-
sion tomography (PET) are commonly used for sur-
veying bone metastasis [5, 6]. Compared to PET, bone 
scan is more affordable and available due to its low-cost 
equipment and radiopharmaceutical. Bone scan is typi-
cally characterized by high sensitivity but low specificity, 
bringing significant challenge to manual analysis of bone 
scan images by nuclear medicine physicians. The reasons 
of low specificity are multi-fold, mainly including low 
spatial resolution, accumulation of radiopharmaceutical 
in normal skeletal structures, soft tissues or viscera, and 
uptake in benign processes [7].

Automated analysis of bone scan images becomes 
therefore desired for accurate diagnosis of skeletal metas-
tasis. There has been a substantial amount of works 
aimed at developing automated diagnosis approaches 
using conventional machine learning models to classify 
bone scan images into classes [5, 8–11], where the image 
features were manually extracted by researchers. The 
handcrafted features, however, often suffer from insuffi-
cient capability and unsatisfied performance for clinical 
tasks [6].

Convolutional neural network (CNN), a mainstream 
branch of deep learning techniques, has gained huge suc-
cess in automated analysis of natural images [12–14] and 
medical images [14–17] due to their ability to automati-
cally extracting hierarchical features from images in an 
optimal way. CNN-based automated classification meth-
ods have been proposed to detect metastasis caused by a 
variety of various primary tumors including prostate can-
cer [18–23], breast cancer [22–24], lung cancer [25, 26], 
and both of them [25–27]. The main purpose of exist-
ing works is to develop two-class classification models 
to determine whether or not an image contains metas-
tasized lesion(s) by classifying this image (normal and 
metastatic). Differently, a series of CNN-based methods 
has been proposed to classify whole-body scintigraphic 
images for automated detection of skeletal metastases in 
our previous works [28, 29], in which we did not distin-
guish between the primary cancers.

Targeting at automated detection of skeletal metas-
tasis caused by lung cancer, in this work, we propose a 
CNN-based multiclass classification network to classify 

whole-body scintigraphic images acquired from patients 
with clinically diagnosed lung cancer using a SPECT 
(single photon emission computed tomography) imag-
ing device (i.e., GE SPECT Millennium MPR). The pro-
posed network can not only determine whether an image 
contains lung cancer-caused skeletal metastasis, but also 
differentiate between subclasses of lung cancer (i.e., ade-
nocarcinoma and non-adenocarcinoma).

The main contributions of this work can be summarized 
as: First, to the best of our knowledge, we are the first to 
attempt to solve the problem of automated detection of 
skeletal metastasis originated from various subclasses of 
lung cancer. Second, we convert the detection problem 
into the multiclass classification of low-resolution, large-
size scintigraphic images using a CNN-based end-to-
end network that first extracts hierarchal features from 
images, then aggregates these features, and finally classi-
fies those high-level features into classes. Lastly, we use 
a group of scintigraphic images acquired from patients 
with clinically diagnosed lung cancer to evaluate the pro-
posed method. Experimental results have shown that our 
CNN-based classification network performs well for dis-
tinguishing SPECT images between non-metastatic and 
metastatic as well as their sub-classes of metastasis.

The rest of this paper is organized as follows. We pre-
sent in “Methods” section the proposed method. We 
report in “Results” section the experimental evaluation 
conducted on clinical SPECT images. In “Discussion” 
secton, we provide a brief discussion on the reasons that 
cause the misclassifications. In “Conclusions” section, 
we conclude this work and point out the future research 
directions.

Methods
To automatically detect metastasis of lung cancer in 
scintigraphic images, image fusion operation is first 
employed to enhance the lesion(s) in low-resolution 
whole-body scintigraphic images through aggregating 
the anterior- and posterior-view images of each bone 
scan. Parametric variation-based data augmentation is 
then applied to expand the size of the dataset used in 
this work to improve the performance of CNN-based 
network on classifying images as much as possible. A 
CNN-based end-to-end network is developed to classify 
the fused images by first extracting hierarchal features 
from images, then aggregating features, and finally clas-
sifying high-level features into classes of concerns, i.e., 
without metastasis (NoMet), adenocarcinoma metastasis 
(ADMet) and non-adenocarcinoma metastasis (nAD-
Met). Figure  1 provides an overview of the proposed 
multiclass classification method, comprising of three 
main steps, i.e., view aggregation, data augmentation, and 
image classification.
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View aggregation
During the SPECT imaging, two whole-body images 
were collected for each patient, corresponding to the 
anterior- and posteriorviews, respectively. When a pri-
mary tumor (e.g., lung cancer) invades into bone tissue, 
there will be an area of increased radionuclide’s uptake in 
the image. It is common, however, the metastatic areas 
have varied intensity of uptake in anterior- and posterior-
view images. How to enhance the metastatic areas in 
images becomes crucial for accurate detection of metas-
tasis. A pixel-wise view aggregation method is proposed 
to ‘excite’ those metastatic pixels, while ‘squeeze’ the nor-
mal pixels by fusing two views as shown in Fig. 2.

Let IAnt and IPost denote the anterior- and posterior-
view image respectively, the pixel-wise view aggregation 
method works as follows.

Image flipping
The posterior-view image IPost is flipped horizontally 
around its central vertical line to obtain an image IT Post.

Pixel aligning
A horizontal line sweeps the image (i.e., IAnt and IT Post) 
line by line to find out the critical points PCeil and PFloor by 
examining the pixel value that represents uptake inten-
sity. Similarly, we use a vertical line to sweep image line 

Fig. 1  Overview of the proposed CNN-based multiclass classification method

Fig. 2  Illustration of view aggregation for enhancing metastatic lesions
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by line to find out the critical points PLeft and PRight. Two 
images IAnt and IT

Post will be aligned according to these 
four critical points.

Pixel‑wise image addition
The aligned images, IAnt and IT

Post, will be aggregated to 
generate a composite image, IComp, according to Eq. 1.

where f is aggregation function, i.e., pixel-wise addition 
operation.

Data augmentation
It is widely accepted that the classification performance 
of CNN-based models depends on the size of dataset, 
with high classification accuracy always corresponding to 
the large dataset. Currently, a variety of various methods 
can be utilized to augment dataset including the para-
metric variation and adversarial learning techniques. In 
this work, we use the parametric variation technique 
to augment our dataset since the parametric variation-
based data augmentation can obtain samples that have 
the same distribution as the original ones with the lower 
time complexity. Specifically, image translation and rota-
tion are used, which are detailed as follows [30].

(1)IComp = f
(

IAnt, I
T
Post

)

Image rotation
Given a constant r ∈ [0, rT], an image will be randomly 
rotated by ro in either the left or right direction around 
its geometric center. The parameter rT is experimentally 
determined according to the distribution of the radi-
otracer uptake of all images in the dataset. Figure  3d 
depicts the obtained image by rotating the image in 
Fig. 3a to the right direction by 3°.

Image translation
Given a constant r ∈ [0, tT], an image will be randomly 
translated by + t or −t pixels in either the horizontal or 
vertical direction. The parameter tT is experimentally 
determined according to the distribution of the radi-
otracer uptake of all images in the dataset. Figure  3c 
shows a resulting example by translating the given image 
in Fig. 3a + 3 pixels horizontally.

CNN‑based classification network
Table  1 outlines the structure of the proposed 26-layer 
CNN-based classification network, consisting of one con-
volution layer (Conv), one normalization layer (Norm), 
one pooling layer (Pool), a set of residual convolution 
layer attached attention (RA-Conv) with varied kernel, 
one global average pooling layer (GAP), and 1 Softmax 
layer.

Fig. 3  Illustration of translating and rotating whole-body SPECT scintigraphic image. a Original posterior image; b Translated image; and (c) rotated 
image by 3° to the left direction
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An input 256 × 1024 scintigraphic image is convolved 
by the Conv layer with filter of 7 × 7 to calculate a feature 
map made of neurons, followed by a batch normalization 
layer and a max pooling layer with kernel of 3 × 3. The 
subsequent convolutional layers are organized as residual 
convolution with hybrid attention inside or outside of 
the convolution. A global average pooling layer is used to 
alleviate the over-fitting problem while speeding up the 
training process. The Softmax layer points out the class 

of an image with a real number. The main layers will be 
detailed as follows.

Normalization layer
Batch normalization [31] is used to accelerate the net-
work training by making normalization a part of the 
model architecture and performing the normalization for 
each training mini-batch. With batch normalization, we 
can thus use much higher learning rates and be less care-
ful about initialization.

RA‑Conv layer
Figure 4 demonstrates the structure of residual convolu-
tion with hybrid attention mechanism. We use residual 
connection to reduce the training parameters and train-
ing time. We also introduce hybrid attention mechanism 
to improve network focusing on those more impor-
tant areas (i.e., lesions) on the feature maps by consid-
ering only the important information. Specifically, we 
use inRA-Conv (outRA-Conv) to indicate that a hybrid 
attention module is located inside (outside) the residual 
convolution. The classifiers are accordingly named as 
Classifer-inRAC and Classifer-outRAC, respectively.

The cascaded hybrid attention module in Fig.  4 using 
channel and spatial attention mechanism is capable of 
computing complementary attention by focusing on 
‘what’ (channel attention) and ‘where’ (spatial attention), 
respectively [32]. Specifically, let F be the input of a 2D 

Table 1  Network structure of the proposed CNN-based 
classification model

Layer Configuration

Conv 7 × 7, 64, Stride = 2

Norm Batch normalization

Pool 3 × 3 Max pooling, Stride = 2

RA-Conv_2
[

3× 3, 64

3× 3, 64

]

× 2

RA-Conv_3
[

3× 3, 128

3× 3, 128

]

× 3

RA-Conv_5
[

3× 3, 256

3× 3, 256

]

× 5

RA-Conv_2
[

3× 3, 512

3× 3, 512

]

× 2

Global average pooling (GAP)

Softmax

Fig. 4  Structure of residual convolution with hybrid attention mechanism
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feature map to the channel attention sub-module. We can 
obtain a 1D output F, which will be further processed by 
the spatial attention sub-module to output a refined 2D 
feature map M according to Eq. 2.

where ⊗ is the element-wise multiplication, and fC and 
fS denotes the channel and spatial function, respectively, 
which are given in Eqs. 3 and 4.

where σ is the sigmoid function, MLP is the multi-layer 
perceptron, AvgPool (MaxPool) is the average (max) 
pooling, and fk×k is a convolutional operation with the 
kernel size of k × k.

Softmax layer
The network output nodes apply the Softmax function 
for the number of the unordered classes. A Softmax 
function is defined in Eq. 5 [33].

where f (xj) is the score of the j-th output node, xj is the 
network input to j-th output node, and n is the number 
of output nodes. In fact, all of the output values f (x) are a 
probability between 0 and 1, and their sum is 1.

Results
In this section, we provide an experimental evaluation of 
the proposed network using a set of clinical whole-body 
scintigraphic images.

Dataset
In this retrospective study, the whole-body scintigraphic 
images were collected from the Department of Nuclear 
Medicine, Gansu Provincial Tumor Hospital from Jan 
2014 to Dec 2019 using a single-head gamma camera 
(GE SPECT Millennium MPR). SPECT imaging was 
performed between 2 and 3  h after intravenous injec-
tion of 99mTc-MDP (20–25  mCi) using a parallel-beam 
low-energy high-resolution (LEHR) collimator (energy 
peak = 140  keV, intrinsic energy resolution ≤ 9.5%, 
energy window = 20%, and intrinsic spatial resolution 
≤ 6.9 mm). Each SPECT image was stored in a DICOM 
(Digital Imaging and Communications in Medicine) 
file with the imaging size of 256 × 1024. Every ele-
ment in an image is represented by a 16-bit unsigned 

(2)M = fS
(

fC(F)⊗ F
)

⊗ F,

(3)
fC(F) = σ

(

MLP
(

AvgPool(F)
)

+MLP(MaxPool(F))
)

,

(4)fS(F) = σ

(

f k×k
(

[AvgPool(F);MaxPool(F)]
)

)

,

(5)f (xj) =
exj

∑n
i=1 e

xi
,

integer, differing from the natural images in which ele-
ment ranges from 0 to 255.

A total of 506 patients who were clinically diagnosed 
with lung cancer were encompassed in this study. Fig-
ure  5 demonstrates the distribution of patients with 
respect to gender and age.

There are 1011 images collected from 506 patients due 
to the phenomenon of images being not successfully 
recorded. We categorize all these images into three sub-
classes, i.e., NoMet (n = 614, ≈ 60.73%), ADMet (n = 237, 
≈ 23.44%), and nADMet (n = 160, ≈ 15.83%).

To keep the balance between samples in different sub-
classes, we randomly selected 226 images from NoMet 
class and group the original images into dataset D1 as 
shown in Table 2. Applying data augmentation technique 
on D1, we obtained an augmented dataset D2. The data-
set D3 is achieved by aggregating images in D2.

For supervised image classification problem, the CNN-
based model is evaluated by comparing the automated 
classification results against ground truth (human per-
formance) that is often obtained by manually labeling 
images. However, it is time-consuming, laborious, and 
subjective to manually label low-resolution, large-size 
SPECT images. To facilitate labeling SPECT image, in 
this work, we developed an annotation system based on 
the LabelMe (http://​label​me.​csail.​mit.​edu/​Relea​se3.0/) 
released by MIT.

With LabelMe-based annotation system, imaging find-
ings including the DICOM file and the textual diagnos-
tic report can be imported into the system in advance. In 
the labeling process, three nuclear medicine physicians 
from the Department of Nuclear Medicine, Gansu Pro-
vincial Tumor Hospital manually labeled areas on the 
visual presentation of DICOM file with a shape tool (e.g., 
polygon and rectangle). The labeled area will be anno-
tated with a self-defined code combined with the name of 
disease or body part. The manually labeled results for all 
images act as ground truth in the experiments and form 
an annotation file together to feed into the classifiers.

Experimental setup
The evaluation metrics we use are accuracy, precision, 
recall, specificity, F-1 score, and AUC (Area Under ROC 
Curve), which are defined in Eqs. 6–10.

(6)Accuracy =
TP + TN

TP + TN + FP + FN
,

(7)Precision =
TP

TP + FP
,

http://labelme.csail.mit.edu/Release3.0/
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(8)Recall =
TP

TP + FN
,

(9)Specificity =
TN

TN + FP
,

where the notations are TP = True Positive, TN = True 
Negative, FP = False Positive and FN = False Negative.

It is desirable that a classifier shows both a high true 
positive rate (TPR = Recall), and a low false positive rate 
(FPR = 1–Specificity) simultaneously. The ROC curve 
shows the true positive rate (y-axis) against the false posi-
tive rate (x-axis), and the AUC value is defined as the area 
under the ROC curve. As a statistical explanation, the 
AUC value is equal to the probability that a randomly 
chosen positive image is ranked higher than a randomly 
chosen negative image. Therefore, the closer to 1 the AUC 
value is, the higher performance the classifier achieves.

(10)F − 1 = 2×
Precision× Recall

Precision+ Recall
,
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Fig. 5  Distribution of patients included in the dataset of whole-body scintigraphic images. a Gender; and (b) age

Table 2  An overview of the datasets used in this work

Dataset ADMet nADMet NoMet Total

D1 237 160 226 623

D2 624 640 614 1878

D3 318 320 307 945
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We divided every dataset (D1, D2 and D3) into two 
parts: training set and testing set, with the ratio of them 
being 7: 3. It means that we use 70% of samples in each 
dataset to train the classifiers, and the rest 30% for test-
ing the classifiers. Images including the augmented ones 
from the same patient were not divided into the differ-
ent subsets because they would show similarities. The 
parameters setting is shown in Table 3.

The experiments are run in Tensorflow 2.0 on an Intel 
Core i7-9700 PC with 32 GB RAM running Windows 10.

Experimental results
For the proposed multiclass classifiers Classifer-inRAC 
and Classifer-outRAC, Table 4 reports the scores of the 
defined evaluation metrics obtained on the testing sam-
ples in dataset D3.

Table  4 shows that the classifier Classifer-inRAC per-
forms better than Classifer-outRAC. Results in Table  5 
further show that Classifer-inRAC obtains the best per-
formance on the aggregated samples in augmented data-
set (i.e., D3).

Table 3  Parameters setting of the proposed classification 
network

Parameter Value

Learning rate 0.01

Optimizer Adam

Batch size 32

Epoch 300

Table 4  Scores of evaluation metrics obtained by Classifer-
inRAC and Classifer-outRAC on testing samples in dataset D3

Best value in each column is highlighted in bold

Classifier Accuracy Precision Recall F-1 score

Classifer-inRAC​ 0.7782 0.7799 0.7823 0.7764
Classifer-outRAC​ 0.6725 0.7233 0.6831 0.6723

Table 5  Scores of evaluation metrics obtained by Classifer-
inRAC on the testing samples in datasets D1, D2, and D3

Best value in each column is highlighted in bold

Dataset Accuracy Precision Recall F-1 score

D1 0.6150 0.6324 0.6227 0.6058

D2 0.6968 0.7001 0.7024 0.6930

D3 0.7782 0.7799 0.7823 0.7764

Fig. 6  ROC curve and AUC value obtained by Classifer-inRAC on 
classifying the testing samples in D3

Fig. 7  Confusion matrix obtained by Classifer-inRAC on classifying 
the testing samples in D3

Precision Recall F-1 score
nADMet 0.6907 0.8272 0.7528
ADMet 0.8333 0.6796 0.7487
NoMet 0.8155 0.8400 0.8276

0.00

0.20

0.40

0.60

0.80

1.00

nADMet ADMet NoMet
Fig. 8  Scores of evaluation metrics obtained by Classifer-inRAC on 
classifying subclasss on the testing samples in D3
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Figure 6 shows the ROC curve and AUC value obtained 
by Classifer-inRAC on classifying the testing samples in 
D3, where AUC value = 0.8364.

We further examine the ability of Classifer-inRAC on 
differentiating between the subclasses of images in data-
set D3 by providing confusion matrix in Fig. 7 and scores 
of evaluation metrics in Fig. 8.

Experimental results in Figs. 7 and 8 show that differ-
entiating subclasses between images with metastasis is 
more challenging than differentiating between metastatic 
and non-metastatic images. There are 22 ADMet images 
that have been incorrectly identified as nADMet ones.

With the testing samples in dataset D3, we show the 
impacts of network structure and depth on classifica-
tion performance obtained by the proposed classifier 
Classifer-inRAC.

Table  6 reports the scores of evaluation metrics 
obtained by Classifer-inRAC after we remove the 
residual connection and hybrid attention module from 
Classifer-inRAC.

It shows that the best performance can be obtained 
if Classifer-inRAC has residual connection and hybrid 
attention module simultaneously from the scores of eval-
uation metrics as shown in Table  6. Separately, residual 
connection has more positive impact than hybrid atten-
tion mechanism on the classification performance.

Following the architectural design of Classifer-inRAC, 
we define two classifiers with different network depth, 
which are given in Table 7.

Figure  9 reports the scores of evaluation metrics 
obtained by the classifiers defined in Table 7 and Classi-
fer-inRAC, showing comparative advantage of the pro-
posed classifier on classifying whole-body images.

Table 6  Effects of network structure on classification 
performance obtained on dataset D3

Best value in each column is highlighted in bold

Residual Attention Accuracy Precision Recall F-1 score

× × 0.6937 0.7032 0.7000 0.6940

× √ 0.7042 0.7416 0.7047 0.7031

√ × 0.7500 0.7614 0.7532 0.7497

√ √ 0.7782 0.7799 0.7823 0.7764

Table 7  Overview of classifiers with similar structure but 
different depth from Classifer-inRAC​

Clasifier-18 Clasifier-34 Clasifier-inRAC​
Layer Configuration

Conv 7 × 7, 64, Stride = 2

Norm Batch normalization

Pool 3 × 3 Max pooling, Stride = 2

RA-Conv
[

3× 3, 64

3× 3, 64

]

× 2

[

3× 3, 64

3× 3, 64

]

× 3

[

3× 3, 64

3× 3, 64

]

× 2

RA-Conv
[

3× 3, 128

3× 3, 128

]

× 2

[

3× 3, 128

3× 3, 128

]

× 4

[

3× 3, 128

3× 3, 128

]

× 3

RA-Conv
[

3× 3, 256

3× 3, 256

]

× 2

[

3× 3, 256

3× 3, 256

]

× 6

[

3× 3, 256

3× 3, 256

]

× 5

RA-Conv
[

3× 3, 512

3× 3, 512

]

× 2

[

3× 3, 512

3× 3, 512

]

× 3

[

3× 3, 512

3× 3, 512

]

× 2

Global average pooling (GAP)

Softmax

0.6

0.7

0.8

0.9

Clasifier-18 Clasifier-34 Clasifier-inRAC

Sc
or

e 
of

 m
et

ri
cs

Classifier

Accuracy Precision Recall F-1 score

Fig. 9  Classfication performance comparison between different 
classifiers in Table 7

Table 8  Two-class classification performance obtained by 
Classifer-inRAC​

Accuracy Precision Recall F-1 score AUC​

0.8310 0.8696 0.8696 0.8696 0.8147

Fig. 10  Confusion matrix of two-class classification obtained by 
Classifer-inRAC​
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We further test the performance of Classifer-inRAC 
on two-class classification by merging the metastatic 
subclasses (i.e., ADMet and nADMet) in the dataset 
D3. Specifically, the dataset for two-class classification 
is consisted of metastatic images (n = 638, ≈ 67.51%) 
and non-metastatic images (n = 307, ≈ 32.49%). Table 8 
reports the scores of evaluation metrics on two-class 

classification of testing samples and Fig.  10 depicts the 
corresponding confusion matrix.

The results of two-class classification show that our 
classifier performs better on differentiating between 
metastatic and non-metastatic images than classifying 
images in different subclasses.

A comparable analysis has also been performed 
between the proposed model and two classical deep 
models Inception-v1 [34] and VGG 11 [35], which are 
given in Table 9 by providing their network structures.

The scores of evaluation metrics obtained by three classi-
fiers on the dataset D3 are reported in Table 10, showing that 
our model is more suitable for classifying lung cancer-caused 
images than the classical models. The possible reason is that 
the network structure of our model (i.e., residual convolu-
tion combined with hybrid attention) is capable of extracting 
more representative features of metastatic lesions.

Table 9  An overview of two classical CNNs-based models used for comparative analysis

Model Number of weight layers Filter Activation Learning rate

Inception-v1 9 Inception blocks 1 × 1, 3 × 3, 5 × 5 ReLU 10–2

VGG 11 11 3 × 3 ReLU 10–2

Table 10  Scores of evaluation metrics obtained by the 
proposed model and two classical models

Best value in each column is highlighted in bold

Model Accuracy Precision Recall F-1 score

Inception v1 0.5387 0.6003 0.5490 0.5415

VGG 11 0.7324 0.7309 0.7333 0.7309

Classifer-inRAC​ 0.7782 0.7799 0.7823 0.7764

Fig. 11  An illustration of the classified images by multiclass classifier Classifer-inRAC. a NoMet incorrectly detected as metastatic; b ADMet 
incorrectly detected as nADmet; c Correctly detected nADMet image; and (d) Correctly detected ADMet image
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Discussion
In this section, we provide a brief discussion about the 
reasons that may cause the misclassifications by provid-
ing a group of examples in Fig. 11.

Now, we provide the reasons for misclassification 
explained by one nuclear medicine physician and one 
oncologist from Gansu Provincial Tumor Hospital.

Misclassification between the metastatic 
and non‑metastatic
Uptake of 99mTc-MDP in benign processes (i.e., knee 
arthritis) is detected as metastatic lesions by the devel-
oped classifier due to the visually similar appearances 
to skeletal metastasis (see Fig. 11a). Furthermore, a nor-
mal bone would show a higher concentration of activ-
ity in trabecular bone with a large-mineralizing surface 
area like the spine. This brings huge challenge to the 
CNN-based automated classification of SPECT images, 

hence the metastatic images being misclassified as 
non-metastatic.

Misclassification between the diseased subclasses
It is very challenging to accurately classify metastatic 
images since skeletal metastases are often distributed 
irregularly in the axial skeleton and typically show vari-
ability in size, shape, and intensity [7]. The irregularly dis-
tributed radioactivity of ADMet can mimic nADMet, and 
vice versa, resulting in misclassification between ADMet 
and nADMet (see Fig. 11b).

Multiclass classification vs. two‑class classification
Multiclass classification aims to not only determine 
whether an image contains lung cancer-caused skeletal 
metastasis, but also differentiate between subclasses of 
lung cancer (i.e., ADMet and nADMet). This is more 
difficult than to answer that an image whether contains 
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metastasis (i.e., two-class classification). So, the proposed 
classifier Classifer-inRAC obtained score of 0.8310 and 
0.7782 for accuracy metric for multiclass and tow-class 
classification problems, respectively.

Metastatic lesions are further examined by providing 
statistical analysis of shape, location (body region), and 
uptake intensity in Fig.  12. The mottling, patchy, punc-
tate lesions dominate both the ADMet and nADMet 
metastasis as shown in Fig. 12a. The chest (vertebra and 
ribs) acts the main location (i.e., body region) where the 
lung cancer-caused metastasis is frequently present in as 
shown in Fig. 2b. As shown in Fig. 12c, the distribution 
of detected uptake intensity ranges widely, with 44% of 
lesions falling into [50, 100]; and much higher uptake can 
often be detected in the regions of urinary bladder and 
injection point. This further reveals that it is more diffi-
cult to develop an automated method for analyzing scin-
tigraphic images than natural images in which the value 
of pixel ranges from 0 to 255.

To alleviate the issues mentioned above, technical solu-
tions need to be developed in the future. With a large-
scale dataset of SPECT images, representative image 
features can be extracted for each kind of subclasses by 
CNN-based end-to-end classifiers. This would contribute 
to improving the performance of distinguishing between 
metastatic and non-metastatic images. Moreover, statisti-
cal analysis conducted on large-scale SPECT images and 
pathologic findings would have the potential to develop a 
multi-modal fusion classifier, enabling to achieve higher 
classification performance between metastatic images 
caused by various subclasses of lung cancer.

Conclusions
Targeting the automated detection of lung cancer-
caused metastasis with SPECT scintigraphy, we have 
developed a convolutional neural network with the 
hybrid attention mechanism in this work. Parametric 
variation was first conducted to augment the dataset 
of original images. An end-to-end CNN-based clas-
sification network has been proposed to automatically 
extract features from images, aggregate features, and 
classify high-level features into classes. Clinical whole-
body scintigraphic images were utilized to evaluate the 
developed network. Experimental results have dem-
onstrated that our self-defined network performs well 
in detecting lung cancer-caused metastasis as well as 
differentiating between subclasses of lung cancer. The 
analysis has also been conducted to compare the pro-
posed model with other related models. The results 
reveal that our method can be used for determining 
whether an image contains lung cancer-caused skeletal 
metastasis and differentiating between subclasses of 
lung cancer.

In the future, we plan to extend our work in the follow-
ing directions. First, we intend to collect more data of 
images and laboratory findings to improve the proposed 
multiclass classification model. Hopefully, a robust and 
effective computer-aided diagnosis system will be devel-
oped. Second, we attempt to develop deep learning-based 
approaches that can classify whole-body SPECT images 
with multiple lesions from various primary diseases that 
may present in a single image.
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