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Development and validation of a prognostic and
predictive 32-gene signature for gastric cancer
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Genomic profiling can provide prognostic and predictive information to guide clinical care.
Biomarkers that reliably predict patient response to chemotherapy and immune checkpoint
inhibition in gastric cancer are lacking. In this retrospective analysis, we use our machine
learning algorithm NTriPath to identify a gastric-cancer specific 32-gene signature. Using
unsupervised clustering on expression levels of these 32 genes in tumors from 567 patients,
we identify four molecular subtypes that are prognostic for survival. We then built a support
vector machine with linear kernel to generate a risk score that is prognostic for five-year
overall survival and validate the risk score using three independent datasets. We also find
that the molecular subtypes predict response to adjuvant 5-fluorouracil and platinum therapy
after gastrectomy and to immune checkpoint inhibitors in patients with metastatic or
recurrent disease. In sum, we show that the 32-gene signature is a promising prognostic and
predictive biomarker to guide the clinical care of gastric cancer patients and should be
validated using large patient cohorts in a prospective manner.
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ARTICLE

enomic profiling provides prognostic and predictive

information about tumor biology that can guide clinical

care and improve treatment selection for cancer
patients!=. Systemic therapies are an essential component of the
treatment regimen for most gastric cancer patients. However,
many patients do not derive benefit from the potentially toxic
therapies. For example, fluoropyrimidine-platinum doublet is
standard of care therapy in the adjuvant setting; however, it only
confers an approximate 9% improvement in long-term survival®.
Thus, biomarkers that predict patient response to chemotherapy
are needed to improve treatment precision. We recently reported
a single patient classifier system for resectable gastric cancer based
on the expression of four genes that is prognostic and predictive
of response to fluorouracil-based adjuvant chemotherapy”’.
However, refined risk and treatment stratification tools for gastric
cancer are needed to include novel therapies for patients at
advanced stage and in the palliative setting, such as immune
checkpoint inhibitors.

Recent large-scale next-generation sequencing and molecular
profiling efforts have elucidated the genomic landscape of gastric
cancer®?. However, the mutational cataloging of cancer genomes
fails to incorporate functional analyses of gene-gene interaction
and signaling pathway dynamics, and thus risks missing a
potentially rich source of prognostic informationl®. We pre-
viously developed a machine learning algorithm, NTriPath, that
integrates pan-cancer somatic mutation data, gene-gene interac-
tion networks, and pathway databases to identify prognostic
cancer-associated molecular pathways!!. We have used NTriPath
to identify prognostic gene signatures for renal cell carcinoma,
bladder carcinoma, head and neck squamous cell carcinoma, and
melanomall.

In this study, we applied NTriPath to identify key gastric
adenocarcinoma-specific pathways. Then, we generated gene
expression profiles of gastric cancer and used the NTriPath
genetic signatures to define four distinct molecular subtypes. We
tested the prognostic utility of these genetic signatures and built a
molecular subtype-based risk scoring model to predict overall
survival and response to chemotherapy and immune checkpoint
blockade. Finally, we validated our model in multiple indepen-
dent cohorts.

Results

Identification of a prognostic 32-gene signature and molecular
subtypes. The workflow to identify, test, and validate prognostic
and predictive biomarkers in gastric cancer is presented in Fig. 1.
The somatic mutation profiles of 6681 patients from 19 different
cancer types published by The Cancer Genome Atlas (TCGA)
were analyzed (Supplementary Table S1). This data was inputted
into NTriPath and pathways that were specifically altered in
gastric cancers were identified. To investigate the prognostic
utility of these gastric-cancer-specific pathways, we generated
microarray-based mRNA expression profiles from pre-treatment
tumor samples from 567 patients who underwent resection at
Severance Hospital, Yonsei University College of Medicine. 89%
of the patients had stage II or III disease and the median duration
of follow-up was 61 months (Supplementary Data 1).

We previously found that the top three pathways identified by
NTriPath yielded the most prognostic utility!!. The top three
gastric cancer-specific pathways consisted of 32 genes including
TP53, BRCAI, MSH6, PARPI, and ACTA2, which were enriched
for DNA damage response, TGF-f§ signaling, and cell prolifera-
tion pathways (Supplementary Fig. S1, Supplementary Table S2,
and Supplementary Data 2). We performed consensus clustering
of the 567-patient Yonsei cohort based on the expression level of
the 32 genes and found four distinct molecular subtypes based on

consensus cumulative distribution function (CDF) plot and delta
area plot as well as manual inspection of the consensus matrices
(Fig. 2A and Supplementary Fig. S2). Tumors from Group 1
patients overexpressed genes associated with the cell cycle and
DNA repair while cancers from Group 4 patients overexpressed
genes found in TGF-, SMAD, estrogen signaling, and mesench-
ymal morphogenesis pathways. Tumors from Group 3 patients
overexpressed genes found in apoptosis signaling and cell
proliferation pathways. Tumors from Group 2 did not show a
distinct pattern of overexpressed genes.

In univariate analysis, molecular subtypes correlated signifi-
cantly with differences in age (P=0.003), stage (P =0.021),
Lauren type (P<0.001), and perineural invasion (P <0.001)
(Table 1). Patients in Group 1 and Group 2 were older and were
more likely to have tumors with intestinal-type histology. Patients
in Group 4 had tumors that were more likely to have diffuse-type
histology and perineural invasion (Table 1). Finally, significant
differences in overall survival were observed between groups;
Group 1 patients had the best outcome with the group not
reaching median overall survival, while Group 4 patients had the
worst outcome with a median overall survival of 65 months
(Fig. 2B; P<0.001).

Previous studies showed that tumors associated with
Epstein-Barr virus (EBV) infection and microsatellite instability
(MSI) are associated with improved patient outcomes!213. We
found that there were no differences in the proportion of tumors
by that were EBV-positive or MSI (Table 1). Multivariable Cox
proportional-hazard analyses using variables that were significant
on univariable analysis showed that age, stage, and molecular
subtype were independently associated with risk of death
(Table 2). To address possible bias resulting from variable
selection, we also conducted a regularized Cox regression and
found similar results (Supplementary Tables S3 and S4). These
findings demonstrate that the 32-gene signature was prognostic
independent of clinical and pathologic variables known to
correlate with outcomes.

We previously identified 5 transcriptomic-based molecular
subtypes that predicted survival’. In that report, the inflammatory
subgroup had the best prognosis, the mesenchymal subgroup had
the worst prognosis, and the other 3 groups had intermediate
outcomes and overlapped with each other. We compared the two
classification schemes and found that each of the 32-gene groups
were generally represented in all 5 molecular subtypes (Supple-
mentary Table S5). There was an enrichment of mesenchymal
group patients, who had the worst prognosis, in Group 4, which
also had the worst survival. However, even in this situation, only
45.7% of mesenchymal group patients were in Group 4. Finally,
when we repeated the multivariate analysis that included the
other classification scheme, we found that the 32-gene subtyping
continued to associate with overall survival (Supplementary
Table S6).

We also compared the 32-gene signature to the classification
system published by the Asian Cancer Research Group (ACRG;
n=300)14. We found that Group 4 (worst survival) was
particularly enriched in the MSS/EMT group (worst survival).
Group 1 (best survival) was also enriched for MSI (best survival)
but 45% of MSI samples were found in Groups 2-4, so it was not
a direct correlation. Finally, the MSS/TP53+4 and MSS/TP53—
groups were even more evenly distributed across Groups 1-4.
Thus, the 32-gene signature is not simply a recapitulation of
previous classification systems and provides new prognostic
information.

Machine learning to identify a risk score to predict five-year
overall survival. We then sought to leverage the prognostic
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Fig. 1 Workflow of the current study. The somatic mutation profiles of 6681 patients from 19 different cancers from TCGA were inputted into NTriPath to
identify pathways that were altered specifically in gastric cancer. Microarray-based mRNA expression profiles of 567 gastric cancer patients were
generated and inputted into NTriPath. Unsupervised clustering based on the expression of 32 member genes that comprised the top three altered
pathways were used to identify molecular subtypes. The prognostic and predictive capability of the molecular subtypes were tested in multiple

independent cohorts. TCGA The Cancer Genome Atlas.

capability of the 32-gene signature into a clinically relevant tool
that will allow clinicians to estimate the probability of five-year
overall survival for gastric cancer patients. Using the Yonsei
cohort as a training set, we built a binary classifier using support
vector machine (SVM) with linear kernel. The SVM model was
trained using Groups 1 and 4. Group 1, which had the best
prognosis, was given a negative label and Group 4, which had the
worst prognosis, a positive label. We next sought the validate the
SVM model using data published by the ACRG (Gene Expression
Omnibus: GSE62254)!4, Sohn et al. (n = 267; Gene Expression
Omnibus: GSE13861 and GSE26942)!3, and The Cancer Genome
Atlas!®>. We found that risk score was prognostic of five-year
overall survival (Fig. 2C, Supplementary Fig. S3, Supplementary
Data 3-5). Importantly, we found that the risk score was prog-
nostic independent of clinical and pathologic features known to
be associated with worse outcomes across all datasets (Table 3
and Supplementary Tables S7-9). These results demonstrated
that the machine learning-derived risk score based on the 32-gene
signature predicts the probability of five-year overall survival in
gastric cancer patients.

Molecular subtypes predict responses to systemic therapies. We
next investigated whether the molecular subtypes predict
response to systemic therapies. The Yonsei cohort included
patients who were treated prior to the establishment of adjuvant
chemotherapy as standard of care. Thus, we were able to compare
patients who underwent surgery alone to patients who received
one of three adjuvant chemotherapy regimens: 5-fluorouracil (5-
FU) monotherapy, 5-FU and platinum doublet, or 5-FU plus
another class of systemic therapy. We performed multivariable

Cox proportional hazard analyses of overall survival and included
adjuvant chemotherapy regimens, cancer stage, age, lymphovas-
cular invasion and perineural invasion as covariates, within each
genetic subgroup (Supplementary Table S10). We found that the
18 Group 3 patients treated with 5-FU plus platinum showed
significantly better overall survival compared to the 28 Group 3
patients who did not receive adjuvant chemotherapy (hazard ratio
(HR), 0.28 (95% CI, 0.08-0.96), P =0.043). In contrast, the 12
Group 1 patients treated with 5-FU plus platinum had worse
survival than the 26 Group 1 patients who did not receive
adjuvant therapy (HR, 6.80 (95% CI, 1.46-31.6), P=0.015),
(Fig. 3). Receipt of therapy was not associated with survival dif-
ferences in Group 2 and 4 patients. This data suggests that
molecular subtype predicts response to adjuvant chemotherapy.

To determine whether the molecular subtypes also predicted
response to immune checkpoint inhibitors, we analyzed samples
from patients with recurrent or metastatic gastric cancer treated
with immune checkpoint inhibitors. We included 45 patients
published by Kim et all® and 45 patients treated at our
institutions for a final cohort of 90 patients. Response Evaluation
Criteria in Solid Tumors (RECIST) criteria was used to group
patients either as responders if they had a complete or partial
radiographic response or non-responders if they had stable or
progressive disease. The tumor sample from each patient was
analyzed with RNA-sequencing. We built the multiclass classifier
using SVMs with linear kernel trained with the Yonsei four
molecular subtypes. Each patient was classified into one of the
four molecular subtypes based on the 32-gene signature by the
SVM model. We observed a much higher response rate to
pembrolizumab in Group 1 (10 of 21; 48%) and Group 3 (7 of 14;
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Fig. 2 The molecular subtypes were prognostic for overall survival. A Unsupervised consensus clustering using 32-gene signature identified four
molecular subtypes in the Yonsei cohort. B Kaplan-Meier survival analysis of the four molecular subtypes in the Yonsei cohort. Survival was compared
using the log-rank test. € The risk score was applied to the Asian Cancer Research Group (ACRG), Sohn et al., and The Cancer Genome Atlas (TCGA)
cohorts as a combined group. The dashed curves indicate the 95% confidence interval. The rug plot on top of the x-axis shows the risk score for individual
patients. The green region represents patients with scores below the 25t percentile, the white area includes patients with scores from the 25t to 75th
percentile, and the purple region includes patients with scores above the 75th percentile. Source data are provided as a source data file.

50%) than in Group 2 (2 of 24; 8%) and Group 5 (4 of 31; 13%)
patients (P =0.001; Fig. 4). This showed that molecular subtype
also predicts response to immune checkpoint blockade in patients
with recurrent or metastatic gastric cancer.

Discussion

The use of next-generation sequencing has elucidated the geno-
mic landscape of a wide variety of cancers!’. In select tumor
types, mutational profiling provides prognostic and predictive
information that guides therapy!~>. However, the simple catalo-
ging of somatic mutations fails to capture the downstream effects
of gene-gene interactions and altered pathways that play essential
functional roles in cancer biology. Thus, we postulated that a
potentially rich source of prognostic and predictive information
has largely been overlooked. We previously showed that the
integration of known molecular interaction networks with
somatic mutation data via the machine learning tool we devel-
oped, NTriPath, yields prognostic information for renal cell
carcinoma, bladder carcinoma, head and neck squamous cell

carcinoma, and melanomall. In this study, we validated this
approach for gastric cancer, a disease for which there are few
biomarkers available. We generated a molecular subtyping
scheme based on the expression of 32 genes that comprised the
top three altered pathways specific to gastric cancer. We found
that the 32-gene signature predicted both overall survival and
response to treatments. Thus, generating the molecular signature
from tissue samples obtained at the time of diagnosis may provide
clinically important information for prognostication and treat-
ment planning.

We used machine learning to develop a genetic risk score that
predicted five-year overall survival. Significantly, the risk score
was generated by training on a patient cohort from one of our
institutions that allowed for the use of highly granular clinical
data, with long-term follow-up. We then validated the risk score
in multiple large independent cohorts of gastric cancer patients.
The current gold standard for risk stratification of cancer patients
is pathologic staging, which is only possible after surgical resec-
tion. To complement conventional staging modalities in the
preoperative setting, our genetic risk score is an objective measure
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Table 1 Clinical and pathologic variables of the Yonsei cohort as stratified by the four genetic subtypes.

Characteristics Group 1 (Black) Group 2 (Green) Group 3 (Blue) Group 4 (Red) Total P value?
N 114 (20.1%) 129 (22.8%) 162 (28.6%) 162 (28.6%) 567

Age

<60 years 43 (37.7%) 53 (41.1%) 90 (55.6%) 89 (54.9%) 275 (48.5%) 0.003
>60 years 71 (62.3%) 76 (58.9%) 72 (44.4%) 73 (45.1%) 292 (51.5%)

Sex

Male 77 (67.5%) 93 (72.1%) 114 (70.4%) 102 (63.0%) 386 (68.1%) 0.346
Female 37 (32.5%) 36 (27.9%) 48 (29.6%) 60 (37.0%) 181 (31.9%)

Stage

| 10 (8.8%) 3 (2.3%) 7 (4.3%) 1 (0.6%) 21 (3.7%) 0.021
Il 33 (28.9%) 36 (27.9%) 33 (20.4%) 45 (27.8%) 147 (25.9%)

1] 69 (60.5%) 87 (67.4%) 115 (71.0%) 108 (66.7%) 379 (66.8%)

v 2 (1.8%) 3 (2.3%) 7 (4.3%) 8 (4.9%) 20 (3.5%)

Tumor location

Antrum 60 (52.6%) 83 (64.3%) 85 (52.5%) 88 (54.3%) 316 (55.7%) 0.338
Body 38 (33.3%) 33 (25.6%) 57 (35.2%) 54 (33.3%) 182 (32.1%)

Cardia 4 (3.5%) 11 (8.5%) 16 (9.9%) 13 (8.0%) 44 (7.8%)

Whole 1(0.9%) 0 (0.0%) 2 (1.2%) 3 (1.9%) 6 (11%)

Missing 11 (9.6%) 2 (1.6%) 2 (1.2%) 4 (2.5%) 19 (3.4%)

Lauren type

Diffuse 21 (18.4%) 33 (25.6%) 55 (34.0%) 89 (54.9%) 198 (34.9%) <0.001
Intestinal 56 (49.1%) 60 (46.5%) 35 (21.6%) 43 (26.5%) 194 (34.2%)

Mixed 6 (5.3%) 9 (7.0%) 4 (2.5%) 6 (3.7%) 25 (4.4%)

Other 31 (27.2%) 26 (20.2%) 68 (42.0%) 24 (14.8%) 149 (26.3%)

Missing 0 (0.0%) 1(0.8%) 0 (0.0%) 0 (0.0%) 1(0.2%)
Lymphovascular invasion

Positive 57 (50.0%) 70 (54.3%) 65 (40.1%) 76 (46.9%) 268 (47.3%) 0.094
Negative 56 (49.1%) 57 (44.2%) 95 (58.6%) 86 (53.1%) 294 (51.9%)

Missing 1(0.9%) 2 (1.6%) 2 (1.2%) 0 (0.0%) 5 (0.9%)

Perineural invasion

Positive 19 (16.7%) 17 (13.2%) 28 (17.3%) 63 (38.9%) 127 (22.4%) <0.001
Negative 92 (80.7%) 109 (84.5%) 132 (81.5%) 99 (61.1%) 432 (76.2%)

Missing 3 (2.6%) 3(23%) 2 (1.2%) 0 (0.0%) 8 (1.4%)

Epstein-Barr Virus

Positive 4 (3.5%) 2 (1.6%) 7 (4.3%) 6 (3.7%) 19 (3.4%) 0.568
Negative 44 (38.6%) 51 (39.5%) 60 (37.0%) 55 (34.0%) 210 (37.0%)

Missing 66 (57.9%) 76 (58.9%) 95 (58.6%) 101 (62.3%) 338 (59.6%)

Microsatellite instability

Yes 10 (28.6%) 7 (14.0%) 2 (1.8%) 2 (2.7%) 21 0.36
No 25 (71.4%) 43 (86.0%) 15 (86.7%) 73 (97.3%) 156

Chemotherapy receipt

Yes 85 (74.6%) 104 (80.6%) 129 (79.6%) 135 (83.3%) 453 (79.9%) 0.36
No 28 (24.6%) 24 (18.6%) 32 (19.8%) 26 (16.0%) 10 (19.4%)

Missing 1(0.9%) 1(0.8%) 1 (0.6%) 1 (0.6%) 4 (0.7%)

P values were calculated using the Chi-square test.

to estimate risk and represents a powerful new risk stratification
tool that has the potential to optimize treatment choice and
sequence, on an individualized basis. Our promising results
should be validated in a prospective manner.

There are currently few predictive biomarkers to guide treat-
ment choices for gastric cancer patients. Patients with gastric
cancers with HER2 amplification benefit from trastuzumab, but
this is only applicable for a small proportion of patients!S.
Similarly, while Pietrantonio et al. recently showed that patients
with resectable gastric cancer with MSI tumors did not benefit
from chemotherapy as compared to surgery alone!?, only 5-10%
of gastric cancers are MSI®. In terms of checkpoint inhibitors,
therapy is most often guided by MSI status and PD-L1 expres-
sion, but their predictive capability is modest?0. For example, the
KEYNOTE-061 study found that pembrolizumab did not
improve the overall survival of gastric cancer patients, including
patients whose tumors had high PD-L1 expression?!. Our 32-
gene assay has the potential to augment currently available bio-
markers and improve the precision of gastric cancer care. We

found that Group 3 patients were the only ones who demon-
strated improved survival associated with adjuvant 5-FU and
platinum-based chemotherapy, while Group 1 patients had worse
survival associated with adjuvant 5-FU and platinum. Our find-
ings are potentially widely applicable as fluoropyridine and
platinum-based regimens are first-line therapy for patients with
regional and metastatic disease, with which most patients present,
especially in the West®12:22:23,

Significantly, we also found that the molecular classification is
associated with response to immune checkpoint inhibitors as
Groups 1 and 3 patients demonstrated significantly higher
response rates than patients in Groups 2 and 4. Importantly, we
did not find that MSI-H tumors were overrepresented in Groups
1 and 3. Intriguingly, Group 3 patients demonstrated a good
response rate to both 5-FU and platinum doublet chemotherapy
as well as anti-PD-1 treatments. Consideration may be given to a
clinical trial combining all three agents in this patient population.
Meanwhile, even though Group 1 patients had the best prognosis,
the use of 5-FU and platinum therapy was associated with worse
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Table 2 Multivariable analysis of the Yonsei cohort.
Characteristics Hazard ratio (95% CI) P value?
Age

<60 years Reference

>60 years 1.95 (1.51, 2.51) <0.001
Stage

| Reference

Il 1.86 (0.66, 5.25) 0.241
1 3.58 (1.31, 9.75) 0.013
\% 18.2 (6.08, 54.5) <0.001
Tumor location

Antrum Reference

Body 1.02 (0.78, 1.34) 0.871
Cardia 0.90 (0.56, 1.45) 0.671
Whole 1.49 (0.60, 3.72) 0.395
Lauren type

Diffuse Reference

Intestinal 0.89 (0.65, 1.22) 0.481
Mixed 0.71 (0.35, 1.42) 0.332
Other 1.20 (0.86, 1.68) 0.294
Perineural invasion

Negative Reference

Positive 112 (0.81, 1.55) 0.491
Molecular subtype

Group 1 Reference

Group 2 1.97 (1.31, 2.95) 0.001
Group 3 1.73 (112, 2.65) 0.013
Group 4 218 (1.44, 3.3 <0.001
3P value for the interaction term is based on the Cox proportional hazards model.

Table 3 Multivariable analysis of risk score for the combined
TCGA, ACRG, and Sohn et al. cohorts.

Characteristics Hazard ratio (95% CI) P value?
Age

<60 years Reference

>60 years 1.89 (1.53, 2.32) <0.001
Stage

| Reference

Il 1.33 (0.88, 2.01) 0.18

1l 2.65 (1.82, 3.88) <0.001
Y 5.31 (3.60, 7.83) <0.001
Risk Score (per unit increase) 1.06 (1.04, 1.09) <0.001

P value for the interaction term is based on the Cox proportional hazards model.

outcomes. For these patients, consideration may be given to
treatment with immune checkpoint blockade, to which these
patients demonstrated significant response.

Our findings build upon our previous work that identified a
genetic classifier that was prognostic and predictive of response to
adjuvant chemotherapy in stage II and III patients’. Thus, our
previous study and current report demonstrate that compre-
hensive genomic profiling of gastric cancer can provide clinically
impactful information to guide therapy. However, our current
study is limited by the retrospective nature of our analysis that
may be confounded by selection bias. For example, our training
set was based on samples obtained before adjuvant chemotherapy
was standard of care. Thus, the decision to refer a patient for
post-operative chemotherapy versus observation are unknown.
Future validation studies of the utility of the 32-gene signature to
predict response to both 5-FU and platinum therapy and immune
checkpoint inhibitors are needed to confirm our findings, which
are based on modest-sized cohorts. Ideally, these future studies

are performed in a prospective fashion. Next, while we showed
that the molecular classifier was associated with increased
response to immune checkpoint inhibitors, response may not
accurately predict overall survival. Thus, the prognostic and
predictive utility of the molecular classification scheme should be
validated prospectively using the most clinically relevant end-
points, such as overall survival and/or quality of life. Finally, the
molecular mechanisms underpinning the prognostic and pre-
dictive power of the 32-gene signature are important topics for
future study.

Methods

Patient cohorts. The study was approved by the Institutional Review Board of the
College of Medicine at Yonsei University and the Catholic University of Korea. We
analyzed samples from 567 gastric adenocarcinoma patients who underwent sur-
gical resection at Yonsei University (Seoul, Korea) from 1999 to 2010, 28 patients
treated at Seoul St. Mary’s Hospital (Seoul, Korea) from 2018 to 2020, and 17
patients from Yonsei (Seoul, Korea) from 2014 to 2017. We also examined data
from cohorts previously published by The Cancer Genome Atlas Project
(TCGA)'3, Asian Cancer Research Group (ACRG)?, Sohn et al.!13, and Kim et al.1°.

NTriPath identifies gastric cancer-associated pathways. The bioinformatics
tool NTriPath uses somatic mutation profiles, pathway databases, and gene-gene
interaction networks to identify cancer-type-specific associated pathways!!. We
inputted somatic mutation data of 6681 patients across 19 cancer types from the
TCGA via cBioPortal on October 24th 201424, We constructed a gene-gene inter-
action network by combining networks described by Zhang et al.>>. We used 4620
functional modules from human gene-gene interaction networks as a pathway
database26. NTriPath yields cancer type and pathway associations that can be used
to identify cancer type-specific altered pathways. In the exploratory study with the
Yonsei cohort, we conducted a pathway analysis using gene set enrichment analysis
to identify gastric cancer-specific biological pathways that are enriched in a list of
genes selected by NTriPath?’. Statistical analysis was performed with PANTHER
(Protein ANalysis THrough Evolutionary Relationships) Classification System using
Fisher exact test with false discovery rate (FDR) < 0.05 (http://www.pantherdb.org)
for gene set enrichment?®.

To measure the statistical significance of gastric cancer type and pathway
associations, we performed a permutation test where we randomly permuted
somatic mutation data and repeated experiments 1000 times to calculate empirical
p values. We defined gastric cancer type-specific altered pathways based on the
following strict criteria: (1) pathways must be ranked within the top Kth compared
to other pathways in each cancer type based on their association scores in matrix S
and (2) pathways must have significant Benjamini-Hochberg adjusted P values
using an FDR cutoff of 0.05. In this work, we used the top 5 ranked pathways that
had an FDR-adjusted P value < 0.05 to identify gastric cancer-specific altered
pathways.

NTriPath source code with input datasets are available at the following link:
https://github.com/hwanglab/NTriPath.

Preprocessing of gene expression data. We generated gene expression profiles of
567 gastric cancer patients treated at Yonsei University using Illumina Human-6
V2 Expression BeadChips. Raw microarray data were transformed to the log2 base
scale and then were preprocessed by quantile normalization using quantilenorm
function in MATLAB R2018b. The expression level of each gene was obtained by
averaging multiple probes from the same gene. Genes that had missing values were
excluded. This processed data was used to perform consensus clustering to identify
patient subgroups.

We downloaded the datasets published by the ACRG® (GSE62254) and Sohn
et al.!13 (GSE13861 and GSE26942) through the GEO database. The ACRG data was
generated by Affymetrix Human Genome U133 Plus 2.0 Array and was
preprocessed by Robust Multi-array Average (RMA) with Affymetrix Power Tools
package using Affymetrix default analysis settings. We downloaded the
preprocessed data and generated the expression level of each gene by averaging
multiple probes from the same gene. The Sohn et al.!3 data was generated by
Mlumina HumanHT-12 V3.0 beadchip. Raw microarray data were transformed to
the log2 base scale and then were preprocessed by quantile normalization using
quantilenorm function in MATLAB R2018b. Processed gene expression profiles
from the TCGA stomach adenocarcinoma (STAD) group were downloaded via
cBioPortal.

The raw sequencing data for the Kim et al.!® cohort was accessed via the
European Nucleotide Archive (accession number PRJEB25780). For patients
treated at Seoul St Mary’s Hospital, we used Illumina TrueSeq RNA Exome library
kit and generated 2x150 bp paired-end reads. In the datasets, the mean insert
length is 125 base pairs. An average of 143.7 million paired-end reads were
sequenced per patient. We then processed the Kim et al.!® and St. Mary’s datasets.
After Illumina universal adapters were trimmed, reads with lower quality bases or
noninformative reads were filtered out by Fastp v0.20.1 (with the input parameters:
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Fig. 3 The molecular subtypes are associated with response to adjuvant 5-fluorouracil (5-FU) and platinum chemotherapy. Kaplan-Meier curves for
overall survival for patients treated at Yonsei University, stratified by molecular subtype. Patients who underwent surgery with no adjuvant chemotherapy
are compared to ones who received surgery and adjuvant 5-FU and platinum. The log-rank test was used to test statistical significance. Source data are

provided as a source data file.

"y -c'). The RNA-seq reads were converted to transcriptome abundant matrix in
the format of TPM (Transcripts Per Kilobase Million) via Salmon v0.14.1 (with the
input parameters: '--validateMappings --libType A') The Salmon reference genome
sequence index was built on human reference transcript sequences (GRCm37.v19)
with the gene model, Gencode v19.

Unsupervised consensus clustering using top-ranked gastric cancer-
associated pathways. To investigate the prognostic utility of top-ranked gastric
cancer-associated pathway signatures generated by NTriPath, we performed con-
sensus clustering using non-negative matrix factorization (NMF). This was per-
formed with the expression profiles of the 567 Yonsei cohort patients and the
member genes of top-ranked gastric cancer-associated pathways with various
numbers of subgroups (k =2-7).

We first performed consensus NMF clustering based on expression of the 32
member genes of the top three ranked gastric cancer-associated pathways. We
identified four subgroups by visual inspection and consideration of the cophenetic
correlation coefficient, the cumulative distribution function (CDF) 6 of consensus
matrix and the Delta values for each k group (Supplementary Fig. S2A-C).

To test the robustness of NMF subgroups, we built a multiclass classifier from
four NMF subgroups using SVMs with linear kernel and performed leave-one-out
cross-validation to predict NMF subgroup membership2%-3. Specifically, we used
SVMs with linear kernel using the “all-pair comparisons” approach, where we build
@ binary classifiers and each classifier is trained to distinguish each pair of
classes. To obtain the class membership probabilities (a vector of length K) from
the prediction results (a vector of length @) of the binary classifiers, we used the
aggregation method proposed by Park et al.!l. In order to prevent overfitting, we
used a simpler model: the aggregating weights (a vector of length) assigned on
the SVM classifiers in the aggregation method were fixed to a uniform vector under

the assumption that each binary classification problem is equally important; and a
regularization parameter, in each binary classification the problem was set to 1
(equal to the default setting in LibSVM toolbox (Ver 3.17). We measured the
performance of the multiclass classifier by generating receiver operating
characteristic curves and measuring the area under curve (AUC). The mean AUC
for the classification was 0.981. We used this multiclass classifier using SVMs with
linear kernel trained with the Yonsei four subtypes to classify patients from other
cohorts into the four subtypes in the supervised classification setting.

Predictive model for risk scores to predict overall survival. SVM using linear
kernel was used to build a predictive model to generate risk scores to predict overall
survival following surgical resection of gastric cancer. We built the predictive
model based on SVM using linear kernel from the Yonsei cohort and tested the
model in the cohorts published by ACRG?, Sohn et al.13, and TCGA!®.

Since gene expression profiles from cohorts were generated by different
microarray and illumine sequencing platforms, we used ComBat (http://
www.bu.edu/jlab/wp-assets/ComBat) to remove any potential batch effects that
may result from using datasets from different platforms and/or experiments and
used the processed datasets for further analysis3!. We first selected patients from
Groups 1 and 4 from the Yonsei cohort, which had the best and worst outcomes,
respectively. We assigned “—” and “+” labels to each subgroup, respectively. We
built SVM with a linear kernel function using the 32 gene expression profiles of
patients from Groups 1 and 4 with the +/— label information.

We applied the trained SVM to the same gene expression profiles of patients
from the ACRG?, Sohn et al.!3, and TCGA!® cohorts. A SVM outputs a continuous
risk score for each test sample. A larger positive score value indicates the higher
degree of confidence that the sample belongs to the positive class (i.e., Group 4,
poor prognosis group). Similarly, a smaller negative score value indicates a higher
degree of confidence that the sample belongs to the negative class (i.e., Group 1,
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Fig. 4 The molecular subtypes are associated with response to immune
checkpoint inhibitors. Patients with advanced gastric cancer who were
treated with immune checkpoint blockade were stratified by molecular
subtypes. Response is defined by complete response (CR) or partial
response (PR). Non-response is defined as stable disease (SD) or
progressive disease (PD). The chi-square test was used to compare groups.
Source data are provided as a source data file.

good prognosis group). Thus, the risk score values of test samples can be used to
predict survival probability.

The source code and datasets for risk score prediction are available at the
following link: https://github.com/hwanglab/NTriPath.

Statistical analysis. For univariate analyses, we used chi-squared (categorical
variables) or ANOVA tests (continuous variables) to determine whether the genetic
subtype variable was correlated with other clinical variables. For multivariate
analyses, we employed a Cox proportional hazards model to relate patients’ sur-
vival time with subtype and other covariates. The clinical variables identified as
statistically significant by univariate analysis were selected as the covariates in the
multivariate analyses.

Since the results from the multivariate analysis could be biased due to the
selection step using the univariate analysis, we also conducted a regularized Cox
regression (Cox model with lasso regularization, implemented with
the glmnet package in R). Using the Yonsei cohort, we set all clinical variables
(except the variables with a high proportion of missing data, such as EBV, which
was missing in ~60% of samples) as predictors and let the model select the optimal
features for survival. We also calculated the 95% confidence interval of the hazard
ratio and the p value of each variable using bootstrapping (the null hypothesis H_0
is that each coefficient \beta_j =0). We ran the model 10,000 times in the
bootstrapping setting (the training data in each run was resampled with
replacement) and calculated the hazard ratio, 95% confidence interval, and the p
value of each coefficient based on the empirical distribution of the estimator of the
coefficient.

When generating each Kaplan-Meier (KM) plot, we used the log-rank test to
compare the survival curves. To generate the adjusted KM curves, we applied a Cox
proportional hazards model to each subgroup and averaged the predicted survival
curves by the treatment variable (i.e., 5-FU + platinum, 5-FU alone, or none) in
that subgroup. All analyses were done in R (version 4.0.3) and MATLAB R2018a.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Gene expression profiles of patients treated at Yonesi University can be found here:
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE183136] and [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437]. RNA-sequencing data for
patients treated with immune checkpoint inhibitors is available in the European
Genome-Phenome Archive under the Dataset ID EGAD00001008091: [https://ega-
archive.org/studies/EGAS00001005588]. The ACRG data file is available here: [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254]. Data from the Sohn et al.
cohort is available here: [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi] and [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi]. Data from the Kim et al cohort is available

here: [https://www.ebi.ac.uk/ena/browser/view/PRJEB25780]. Source data are provided
with this paper.

Code availability

The MATLAB and R scripts used for this study are available here: https://github.com/
hwanglab/Yonsei_gastric_cancer_32genes. The DOI for the code is https://doi.org/
10.5281/zenodo.5779446 [https://zenodo.org/record/5779446#.YbtuSH3MLOo]32.
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