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Single-cell analysis of human glioma and immune
cells identifies S100A4 as an immunotherapy
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A major rate-limiting step in developing more effective immunotherapies for GBM is our

inadequate understanding of the cellular complexity and the molecular heterogeneity of

immune infiltrates in gliomas. Here, we report an integrated analysis of 201,986 human

glioma, immune, and other stromal cells at the single cell level. In doing so, we discover

extensive spatial and molecular heterogeneity in immune infiltrates. We identify molecular

signatures for nine distinct myeloid cell subtypes, of which five are independent prognostic

indicators of glioma patient survival. Furthermore, we identify S100A4 as a regulator of

immune suppressive T and myeloid cells in GBM and demonstrate that deleting S100a4 in

non-cancer cells is sufficient to reprogram the immune landscape and significantly improve

survival. This study provides insights into spatial, molecular, and functional heterogeneity of

glioma and glioma-associated immune cells and demonstrates the utility of this dataset for

discovering therapeutic targets for this poorly immunogenic cancer.
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G lioblastoma (GBM) is the most common and aggressive
primary brain malignancy in adults1. The current stan-
dard of care includes maximal surgical resection followed

by radiotherapy and chemotherapy with temozolomide. Unfor-
tunately, this aggressive management is rarely curative; patients
with GBM have a median survival of 15.4 months, and less than
5% of patients survive over 5 years2. There is clearly an urgent
need to develop more effective treatments for GBM patients.

In theory, GBMs should be ideal candidates for immu-
notherapy, since immune cells can cross the blood-brain bar-
rier, track infiltrating glioma cells, and selectively kill cancer
cells while sparing normal brain cells. In 2019, there were over
2500 cancer immunotherapy trials involving anti-PD1/PD-L1
therapies or CAR-T cells alone3, reflecting the promise of
immunotherapy4,5. Unfortunately, most GBM immunotherapy
trials, including vaccines, adoptive cellular therapy, CAR-T
cells, and immune checkpoint blockade, have shown only
modest benefits in patients with GBM6,7. A significant barrier
to immunotherapy efficacy in GBM is the lack of tumor-
infiltrating lymphocytes (TILs; <5%) but abundant immuno-
suppressive myeloid cells1,8–11, making it an “immune cold”
tumor. By contrast, “immune hot” tumors, characterized by
abundant tumoricidal effector T cells and pro-inflammatory
gene signatures necessary to mount a meaningful attack, have
consistently higher response rates to immunotherapy8,12.

Tumor-associated myeloid cells are critical regulators of tumor
progression, metastasis, and immune evasion and are promising
therapeutic targets13,14. However, elucidating their functional and
molecular heterogeneity in human cancers has been challenging
given a lack of lineage-specific markers and their highly plastic
nature, which precludes faithful modeling and analysis in vitro11.
Recent studies suggest that in vitro defined M1/M2 cell states do
not represent in vivo tumor-associated macrophage cell states15.
Macrophages in gliomas include embryonic yolk sac-derived
brain-resident macrophages (microglia)16 and bone marrow-
derived macrophages (BMDMs) recruited to the brain after injury
or tumor formation17,18. Glioma-associated myeloid and glioma
cells secrete cytokines and metabolites that suppress TIL function.
Therefore, one approach to facilitating anti-tumor immunity in
GBM would be to repolarize myeloid cells to a more anti-
tumorigenic state, thereby enhancing effector T cell infiltration
and activation. Developing such treatments requires a compre-
hensive and high-resolution cellular and molecular understanding
of the glioma, immune, and stromal cells that form the highly
dynamic and interactive tumor ecosystem. Without gaining such
insights, the application of existing immunotherapy is likely to
remain ineffective in GBM patients.

In this work, we report multi-regional and -dimensional ana-
lyses of human gliomas and in doing so map GBM cellular het-
erotypia and spatial, molecular, and functional heterogeneity of
glioma and associated stromal cells, including immune cells. We
report the molecular phenotypes of glioma cells, microglia,
macrophages, T cells, and pericytes within the same tumor
samples in low-grade gliomas (LGGs, grades II), newly diagnosed
GBMs (ndGBM, grade IV), and recurrent GBMs (rGBM, grade
IV). We also demonstrate spatial heterogeneity of immune
infiltrates and distinct cell:cell interaction patterns within each
patient and across different patients. This integrated human
glioma analysis reveals considerable spatial, molecular, and
functional immune cell heterogeneity in human gliomas and
nominates S100A4 as an immunotherapy target.

Results
A multi-regional analysis of cancer and immune cells from
human glioma. To analyze the cellular and molecular

heterogeneity of human gliomas at the single-cell level in an
unbiased manner, we performed single-cell RNA-sequencing
(scRNA-seq) of 44 fragments of tumor tissue obtained from 18
glioma patients (2 LGG, 11 ndGBM, and 5 rGBM) (Fig. 1a,
Supplementary Data 1). In ten patients, we performed a multi-
regional sampling of the tumor to assess the spatial heterogeneity
of cancer and immune cells in each patient tumor (Supplemen-
tary Fig. 1a, b). As shown in Supplementary Data 1, we sampled a
broad spectrum of human gliomas: LGG samples included one
IDH-mutant oligodendroglioma and one IDH-mutant astro-
cytoma, while GBMs were IDH-wildtype with mutations in
common tumor suppressors and oncogenes such as TP53, PTEN,
TERT, CDKN2A, CDK4, and NF1. We also performed whole
exome-sequencing (WES) analysis from three GBM patients
(ndGBM-01, ndGBM-02, and rGBM-01) and identified both
shared and fragment-specific mutations in different regions from
the same patient and among different patients (Supplementary
Fig. 1c–e), consistent with previously reported inter- and intra-
tumoral genomic heterogeneity of GBM19. For example, all three
GBMs displayed loss of chromosome 10/10q and gain of chro-
mosome 7/7q (Supplementary Fig. 1c), which are recurring copy
number alterations in human GBMs20. Although major copy
number change events were usually shared between different
fragments in each tumor, there were also unique indel and
mutational patterns that distinguished different fragments in each
patient (Supplementary Fig. 1c–e).

Concurrent single-cell analysis of glioma and immune cells
from the same samples. To elucidate the cellular and molecular
heterogeneity of cancer and stromal cells in human gliomas,
201,986 cells from 44 samples passing all QC steps were analyzed.
Unsupervised clustering using Louvain community detection
revealed 12 clusters with distinct gene expression patterns
(Fig. 1b–e, Supplementary Fig. 2a–c, Supplementary Data 2 and
3). Individual cells were identified as either cancer or normal
based on inferred copy number alterations using the CopyKat
algorithm21 (Fig. 1b; Supplementary Fig. 3a–d), and copy number
alterations were congruent with WES in three patients (Supple-
mentary Fig. 1c). By combining CopyKat analysis and marker
gene expression (Fig. 1c, d, Supplementary Fig. 2b, Supplemen-
tary Data 2 and 3), each cluster was classified as either myeloid
cells (C1, C4, and C7; expressing PTPRC/CD45, ITGAM/CD11B,
and CD68), glioma cells (clusters C2, C6, and C9; expressing
SOX2, OLIG1, GFAP, and S100B), T cells (C3; expressing PTPRC/
CD45, CD3E, CD4, and CD8A), B cells (C11; expressing CD79A
and CD19), or other stromal cells (C8 pericytes expressing
ACTA2 and PDGFRB; C10 endothelial cells expressing PECAM;
C5 oligodendrocytes expressing OLIG2 and MBP) (Fig. 1b, c,
Supplementary Data 3). As expected from previous flow cyto-
metry, CyTOF, and single-cell analyses15,18,22–27, the two most
abundant cell types were glioma (40.5% of total) and myeloid cells
(45.0% of total), while T cells constituted 9.7% of all the cells
profiled (Fig. 1e, f, Supplementary Fig. 2d). Notably, more mye-
loid cells were present in samples from females than males (males
35.2 ± 5.534, females 65.627 ± 10.7; false-discovery rate (FDR)=
0.000041): 5 of 7 female samples contained >50% myeloid cells,
while only 4 of 11 male samples contained >50% myeloid cells. In
addition, 1 of 2 (50%) LGGs, 5 of 11 (45%) ndGBMs, and 1 of 5
(20%) rGBM samples contained >50% myeloid cells (Fig. 1f,
Supplementary Fig. 2d, Supplementary Data 1).

Molecular heterogeneity of glioma cells. To elucidate the
molecular heterogeneity of glioma cells, we extracted cells in
clusters C2, C6, and C9 (Fig. 1b) performed de novo clustering of
glioma cells and identified nine clusters (GC1-GC9) based on
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Fig. 1 Single-cell transcriptome analysis of human glioma and immune cells. a A schematic summary of the study design. b UMAP projections of 201,986
aggregate single cells from 18 patients showing the composition of different cell types in human gliomas. UMAP projections are shown by cluster numbers,
by the patient, by cluster assignment, and by diploid(normal)/aneuploid(malignant) status determined by CopyKat analysis (see Supplementary Fig. 2a). c
Top 20 differentially expressed genes in clusters, ranked by FDR, are shown in the heatmap. Gene expression values were centered, scaled, and
transformed to a scale from −2 to 2. Select signature genes are highlighted on the right. d Dot plot showing marker gene expression for different cell types
(gliomas, brain stroma (pericytes and oligodendrocytes), and immune cells). Dot sizes indicate the percentage of cells in each cluster expressing the gene,
and colors indicate average expression levels. e Fraction of cells (y-axis) from each patient sample (x-axis) color-coded for cluster IDs as in (b, c). The
numbers of cells in each cluster from all patients are also indicated in the horizontal bar graph on the right. (Also see to Supplementary Data 2). f Pie charts
representing the percentage of cells per assignment by tumor type, sex, and tumor grade color-coded for cell type assignment. Source data for e and f are
provided as a Source Data file.
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significant gene expression differences (Fig. 2a-b, Supplementary
Data 4 and 5). Neftel et al. previously reported that GBM cells can
be classified into OPC, NPC, AC, or Mes-like cell states (Neftel
glioma subtypes: NG subtypes)26. Using their published algo-
rithm, we projected our glioma cells onto a two-dimensional
butterfly plot, with each quadrant corresponding to an NG sub-
type state (Fig. 2c) and there was not a discernable pattern
between the glioma clusters and NG subtypes. On the other hand,
each tumor contained a mixture of glioma cells in different cell
states (Supplementary Fig. 3e), consistent with previous
reports26,27. Notably, even LGGs contained heterogeneous glioma
cell states: LGG-03 (a grade II astrocytoma) contained all four cell
states, and LGG-04 (a grade II oligodendroglioma) contained

NPC- and OPC-like cells and a smaller proportion of AC- and
Mes-like cells (Supplementary Fig. 3e).

To gain molecular insights into distinguishing features of our
glioma clusters, we performed pathway analyses with cluster
signature genes. Significantly enriched GSEA Hallmark pathways
included epithelial–mesenchymal–transition (EMT), hypoxia,
Myc-targets-v1, Interferon-gamma (IFNG)-response, TNFa-sig-
naling-via-NFkB, and G2M checkpoint (cell cycle) hallmarks
(Fig. 2d). We selected the top four pathways (EMT, hypoxia,
Myc-targets-v1, and INFG-response) to generate butterfly plots
by scoring each cell for its enrichment in each of the four
pathways (Fig. 2e). Similar to NG classification (Fig. 2c), most
glioma clusters had cells represented in multiple quadrants

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28372-y

4 NATURE COMMUNICATIONS |          (2022) 13:767 | https://doi.org/10.1038/s41467-022-28372-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(Fig. 2e). GC2 and GC4 clusters showed significant enrichment of
EMT and hypoxia. When plotted on the NG subtype butterfly
plots, GC2 and GC4 cells were mostly MES-like and AC-like cells
(Fig. 2c) consistent with significant correlations between EMT
and hypoxia signatures to the MES-like subtype (Fig. 2f). The
majority of GC7 cells fell in Myc-targets (Fig. 2e) and
corresponded to NPC-like cells (Fig. 2c). GC3 and GC5 clusters
showed strong proliferation hallmarks (E2F targets, G2M
checkpoint, Fig. 2d) and are assigned to Myc-targets and IFNG-
response quadrants (Fig. 2e) and they do not show enrichment
for particular subtypes by NG subtypes (Fig. 2c). Similarly, GC1 is
significantly enriched in oxidative phosphorylation (OX-PHOS)
and Myc-targets (Fig. 2d) and scores high in Myc-targets and
IFNG-response quadrants (Fig. 2d) but evenly spread among all
four NG subtype quadrants (Fig. 2e). Together, these results
suggest that molecular characteristics of glioma cell subtypes as
represented by the GSEA Hallmark pathways are orthogonal to
NG subtypes. Surprisingly, there was not a significant increase in
MES-like glioma cells in rGBM compared to ndGBM in our
cohort when only glioma cells are compared (Supplementary
Fig. 3e), unlike a previous report28.

NK and T cell phenotypes in gliomas. T and NK cells repre-
sented 6.4 ± 2.5% of ndGBMs, and 14.3 ± 8.9% of rGBMs, sug-
gesting increased T cell infiltration during glioma progression
(Fig. 1f, Supplementary Data 2). De novo clustering of 18,483T
and NK cells (Fig. 1b, Supplementary Data 2) identified 8 clusters
(Fig. 3a–c, Supplementary Data 6 and 7). Manual annotation
based on marker genes revealed three CD8+ T cell clusters (TC1,
TC2, TC6), two CD4+ T cell clusters (TC4, TC5), one naive T cell
cluster (TC3), and two NK cell clusters (TC7, TC8) (Fig. 3b, c,
Supplementary Data 7). CD8+ T cells were most abundant in
most samples (Fig. 3d), and there was no significant difference in
the T cell number or subtype composition in males and females
(Fig. 3e). TC4 expressed regulatory T cell (Treg) markers FOXP3,
CD25/IL2RA, CTLA4, TNFRSF4/OX40, TNFRSF18/GITR,
TNFRSF9/4-1BB, ICOS, and TIGIT (Fig. 3c, Supplementary
Data 7) and represented 3.5 ± 3.5% of LGG T cells, 6.6 ± 1.7% of
ndGBM T cells, and 8.2 ± 3.1% of rGBM T cells. Notably,
PDCD1/PD1 expression was low in all samples (Fig. 3f), poten-
tially explaining the low efficacy of anti-PD1/PDL1 inhibitors in
GBM29.

Nine molecular subtypes of glioma-associated myeloid cells in
gliomas. Myeloid cells (including microglia and BMDM) form
the largest stromal compartment in gliomas (Fig. 1). To gain
molecular insights into the cellular and molecular heterogeneity
of myeloid cells in gliomas, we extracted 83,479 cells in C1, C4,

and C7 and performed de novo clustering. We identified nine
myeloid clusters (MC1–MC9) with unique gene expression pat-
terns (Fig. 4a, b, Supplementary Fig. 4a, b, Supplementary Data 8
and 9). All patients contributed to each myeloid cluster (Fig. 4c,
Supplementary Fig. 4b-c). As reported by others15, glioma-
associated myeloid cell subtypes in vivo did not directly corre-
spond to in vitro-defined M0-, M1-, or M2-like macrophages
using SingleR (Supplementary Fig. 4d), a reference-based cell type
identification approach30. There was also no correlation between
in vitro-defined macrophage subtypes and in vivo myeloid cells
by expression correlation analysis of in vitro-defined M1, M2a,
M2b, M2c, and M2d markers31 with myeloid cluster signature
genes (Supplementary Fig. 4e, f). Therefore, we manually anno-
tated and defined distinct myeloid molecular subtypes in human
gliomas using lineage markers and the molecular phenotypes of
cells contained in each cluster (Fig. 4b, Supplementary Data 9).

Four clusters, MC1, MC2, MC6, and MC7, expressed
previously identified microglia markers P2RY12 and
TMEM11915,32 (Fig. 4b, Supplementary Fig. 4g) and also high
levels of markers BHLHE41, SORL1, SPRY1, and SRGAP28
(Fig. 4b, Supplementary Data 9). MC1 (i-Mic) expressed high
levels of activated microglia markers33 CCL3/MIP-a (macrophage
inflammatory protein-1 alpha), CCL4/MIP-β, CCL3L3, CCL4L2,
and CD83 (Fig. 4b, Supplementary Data 9) as well as TNF, IL1B,
and NFKBIZ (Fig. 4b). In contrast, MC2 (h-Mic) expressed the
highest level of CST3 (Supplementary Fig. 4g), a homeostatic
microglia marker34. MC6 (AP-Mic) expressed both microglia and
macrophage markers in addition to CX3CR1, CD86, IFNGR1,
TGFB1, and B2M. MC7 (a-Mic) separated from MC1 and MC2
by differential expression levels of SPRY1, PYRY13, and microglia
activation markers (Fig. 4b, Supplementary Fig. 4g).

Among the BMDM cells, MC8 (DC) represented antigen-
presenting cells (APCs) expressing traditional dendritic cell
markers CD1C, BATF3, and MHC-II genes (Fig. 4b, Supplemen-
tary Fig. 4h). MC4 (MDSC) expressed high levels of MIF and
lower levels of mature macrophage markers CD68, CD163,
CD204/MSR1, CD206/MRC1, and CD49d/ITGA4 than the
remaining MCs (Fig. 4b, Supplementary Data 9). MC3 (s-
Mac1) expressed high levels of monocyte marker CD14 and
alternatively polarized, M2-like macrophage markers CD163 and
CD204/MSR1 (Fig. 4b, Supplementary Data 9). MC5 (s-Mac2)
expressed high levels of CD163, S100A4, LYZ, and markers of
immune suppression: VEGFA, TGFB1, and IL10 (Fig. 4b,
Supplementary Data 9). MC9 (p-Mac) expressed a high level of
MKI67, indicating that BMDMs actively proliferate in situ to
expand their numbers.

To determine whether these myeloid cell types are associated
with particular molecular or signaling pathways, we next
performed Gene Set Enrichment Analysis (GSEA; using the

Fig. 2 Molecular characteristics of glioma cells. Glioma cells in clusters 2, 6, and 9 from Fig. 1b were extracted and analyzed through de novo clustering. a
A heatmap showing the top 20 differentially expressed genes in the glioma nine clusters, ranked by FDR. Gene expression values were centered, scaled,
and transformed to a scale from −2 to 2. b UMAP projections of glioma cells only, color-coded by cluster number, patient ID, tumor type, and grade. c
Two-dimensional butterfly plot visualization of molecular subtype signature scores per Neftel et al. Each quadrant corresponds to one subtype
(mesenchymal-like (Mes-like), neural-progenitor-like (NPC-like), astrocyte-like (AC-like) and oligodendrocyte-progenitor-like (OPC-like)), and the
position of each cell reflects its relative signature scores. Colors represent different clusters. d A heatmap representation of GSEA Hallmark Pathway gene
sets showing the highest and lowest two enriched pathways in each cluster, ranked by normalized enrichment scores (NES). Adjusted p-value cutoff=0.05.
Genes were pre-ranked using the Wilcoxon rank-sum test and auROC. Color bar represents NES. e Two-dimensional butterfly plot visualization of the top
Hallmark Pathways (EPITHELIAL_MESENCHYMAL_TRANSITION, MYC_TARGETS_V1, HYPOXIA, and INTERFERON_GAMMA_RESPONSE) in different
clusters, representing signature scores as relative meta-module scores. Each quadrant corresponds to one Hallmark pathway; the exact position of each
cell reflects its relative signature scores in all four pathways. Colors represent different clusters shown in (a). Details on signature score calculation and
plot generation are in the Supplementary Methods. f Correlogram showing Pearson correlation coefficients (r) between the top differentially enriched
pathways (from d) and glioma molecular subtypes (Neftel et al.). Asterisks represent statistically significant comparisons (p-value < 0.05). Scale bars
represent Pearson correlation (r) (red= positive correlation, green= negative correlation).
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“Hallmarks” gene set from MsigDB) and Gene Ontology
Enrichment Analysis with each MC signature gene (Fig. 4d, e,
Supplementary Fig. 5a). Heatmap visualization revealed signifi-
cant enrichment for hypoxia and EMT in MC3, MC4, and MC5
BMDMs (Fig. 4d). MDSCs (MC4) differed from macrophages
(MC3, MC5, and MC9) by having lower Myc-targets-v1, OX-
PHOS, IFNG-response, G2M checkpoint/E2F targets (prolifera-
tion), and adipogenesis hallmarks (Fig. 4d, e). Surprisingly,
classical inflammatory hallmarks [IFN-α-response (MC3, MC6,
MC8, MC9), TNFα-signaling-via-NFκB (MC1, MC3–MC5,

MC8), allograft-rejection (MC1, MC3, MC5, MC6, MC8)] were
enriched in clusters of pro-tumorigenic macrophages or antigen-
presenting clusters (MC3, MC4, MC5, MC6, MC8), and not MC2
and MC7 clusters (Fig. 4d–f), indicating that anti-tumorigenic
macrophages respond to inflammatory signals such as IFN-γ and
TNF-α in the microenvironment; however, other factors
contribute to their polarization towards immune-suppressive,
pro-tumorigenic phenotypes. Enrichment of OX-PHOS hall-
marks in MC3, MC5, MC6, MC8, and MC9 supports current
thinking that immunosuppressive macrophages utilize oxidative

Fig. 3 Heterogeneity of glioma-associated T and NK cells. 18,483T and NK cells from cluster 3 in Fig. 1 were extracted and used for de novo clustering. a
A heatmap showing the top 20 differentially expressed genes ranked by FDR in 8 clusters. Top genes are highlighted on the right. b UMAP projection
showing de novo clustered T and NK cells. Cells are color-coded by identified clusters as in (a). Clusters are labeled with assigned cell types based on
marker gene expression. c Dot plot showing the average expression of marker genes across all cells within each cluster. The size of the dot shows the
percentage of cells expressing a particular gene while color shows the average gene expression levels (navy is low and yellow is high). d Pie charts
representing the percentage of different cells types (by tumor type, patient sex, and tumor grade), color-coded for cell type assignment. e Pie charts
representing the percentage of different cell types by the patient, color-coded for cell type assignment. f A violin plot showing low expression of PDCD1 in
T cells by the patient. Source data for d and e are provided as a Source Data file.
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phosphorylation while inflammatory macrophages preferentially
engage glycolysis35. However, the OX-PHOS hallmark signature
in MDSCs (MC4) is equivalent to h-Mic even though it is well-
established that MDSCs are immunosuppressive, suggesting that
metabolic states of pro-tumorigenic myeloid cell subtypes in vivo
are highly variable.

Microglia and BMDM subtype gene signatures are prognostic.
To determine the clinical relevance and function of glioma-
associated myeloid cell types, we first examined associations
between each myeloid cluster signature score and patient survival
in several human glioma bulk RNA-seq datasets. In the CGGA
(Chinese Glioma Genome Atlas) dataset with matched RNA-seq
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and survival data from 325 patients (RRID:SCR_018802-
mRNAseq_325 (batch 2)- http://www.cgga.org.cn/download?
file=download/20200506/CGGA.mRNAseq_325.RSEM-
genes.20200506.txt.zip&type=mRNAseq_325&time=20200506),
gene signatures for MC3–MC6 was associated with significantly
worse overall survival (Fig. 4g). In contrast, MC1, MC2, MC7,
and MC9 gene signatures were associated with significantly better
survival (Fig. 4g). Importantly, multivariate analysis36 of MC
signature scores, tumor subtype, gender, recurrence, IDH status,
and MGMT promoter methylation status showed that
MC2–MC5, and MC7 signature scores were independent prog-
nostic indicators (multivariate Cox regression analysis p-values:
MC2= 0.04, MC3= 0.04, MC4= 0.0007, MC5= 0.0003, and
MC7= 0.002; Supplementary Data 10). Notably, microglia clus-
ters (MC2 and MC7) were associated with significantly better
survival, suggesting that they are anti-tumorigenic, while mac-
rophage/MDSC clusters (MC3–MC5) were associated with worse
survival, suggesting that they are pro-tumorigenic, consistent with
their marker expression patterns.

To further examine this surprising observation, we analyzed
the prognostic value of MC gene signatures in GBM samples only.
The MC2 gene signature was associated with significantly better
survival of GBM patients in the CGGA dataset (Fig. 4h), and in
the TCGA dataset (Supplementary Fig. 5b). MC3 and MC5 were
associated with worse overall survival (p= 0.0055 and p= 0.016,
respectively) in the TCGA dataset and the same trends were
observed in the CGGA GBM dataset, although they were not
significant (Fig. 4h). Multivariate analysis of the CGGA GBM
only dataset with MC signature genes, gender, recurrence, IDH
status, and MGMT promoter methylation status showed
significant associations between MC2 and MC7 and improved
overall survival and MC3 with worse overall survival (p-values:
MC2= 0.02, MC3= 0.049, and MC07= 0.03; multivariate Cox
regression analysis; Supplementary Data 10). Together, these
results indicate that the presence of specific myeloid cell subtypes
is a strong independent indicator of glioma aggressiveness and
patient survival.

Validation of glioma-associated myeloid cell subtypes in an
independent cohort. To validate the reproducibility and gen-
eralizability of our categorization and signature genes, we ana-
lyzed an independent cohort of nine GBM patients from the
Neftel et al. IDH1 wildtype GBM single-cell dataset26. This study
defined four GBM cell subtypes at the single-cell level but did not
analyze the immune cell types present in their dataset. We per-
formed de novo clustering and identified different cell types in

this dataset (Supplementary Fig. 6a). Extracting and de novo
clustering 5739 myeloid cells (Supplementary Fig. 6b–d) revealed
sample-specific clustering (Supplementary Fig. 6b, e), even after
using Harmony37 to remove batch effects. However, the hier-
archical clustering of these cells with our MC signature genes
revealed strong similarity between the identified myeloid cell
subtypes (Supplementary Fig. 6f). Cells in inflammatory microglia
clusters, MC1, MC2, and MC7, were segregated together and
were distinguishable from cells in immunosuppressive macro-
phage clusters (MC3, MC4, and MC6), demonstrating the
robustness and generalizability of our MC gene signatures.

Spatial heterogeneity of immune infiltrates in human gliomas.
To examine whether immune infiltrates are spatially hetero-
geneous, similar to glioma cells19, we compared the numbers and
phenotypes of glioma and stromal cells from ten glioma patients
from whom we collected and analyzed three to four different
fragments (Fig. 5a, Supplementary Data 1 and 11). As anticipated,
different fragments from the same patient contained different
proportions of cancer and normal cell types, and spatial hetero-
geneity within a patient was observed in LGGs as well (Fig. 5a).
Glioma cell subtypes (Supplementary Fig. 7a, b) and myeloid
subtypes (Fig. 5c, Supplementary Fig. 7d) varied significantly
from fragment to fragment. We tested whether specific clinical
features associated with each sample, such as invading front or
necrotic region or enhancing region correlate with any myeloid
cell subtypes15,24. In our dataset, only three samples were anno-
tated to originate from necrotic regions (Fig. 5b, red bars), and
they did not necessarily contain more macrophages (micro-
glia+ BMDMs) than other samples. The samples from invading/
infiltrating region (Fig. 5b, green bars) did contain more micro-
glia than macrophages, supporting previous studies15,24. In
summary, single-cell level analysis of intra-and inter-tumoral
heterogeneity, using molecularly defined glioma, T cells, micro-
glia, and BMDM cell types (Fig. 5 and Supplementary Fig. 7a, b),
demonstrates significant cellular heterogeneity of cancer and
immune cells in gliomas.

To determine whether regional differences in cellular composi-
tion (Fig. 5a–c, Supplementary Fig. 7) alter cell:cell interactions
among different cancer and immune cells, we performed
CellPhone DB analysis38 to infer specific receptor:ligand (R–L)
interactions among glioma, myeloid cells, and T cells in each
fragment. As anticipated, putative R–L interactions between
glioma and myeloid cells were spatially heterogeneous within
each patient (Fig. 5d). Some interactions were rare or unique to a
single fragment from each patient (for example, IL1R-IL1B, IL1R

Fig. 4 Nine myeloid cell subtype signatures are predictive of patient survival. Totally, 83,479 cells from clusters 1, 4, and 7 in Fig. 1b corresponding to
myeloid cells were extracted and used for de novo clustering, identifying 9 myeloid clusters (MCs). a A UMAP projection of de novo clustered myeloid
cells. Cells are color-coded by cluster numbers. Clusters are labeled with presumed activation states: i= inflammatory, a= activated, h= homeostatic,
s= suppressive, AP= antigen presenting. b A dot plot showing the average expression of highlighted lineage marker genes across all myeloid clusters. c
Fraction of cells from each cluster (x-axis) color-coded by patients. d A heatmap showing top and bottom two enriched GSEA Hallmark Pathways in each
cluster (adj. p-value cutoff= 0.05). Genes were pre-ranked using the Wilcoxon rank-sum test and auROC. e Gene Ontology (GO) enrichment analysis with
top differentially expressed genes (DEGs) among clusters. Plots show circular dendrograms of DEGs clustered by default Euclidean distance and average
linkage. The inner ring displays logFC (blue is low, red is high). The outer ring represents assigned terms. Top terms were selected based on z scores and p-
values for each cluster. f Two-dimensional butterfly plot visualizations of top Hallmark Pathways in different clusters (TNFA SIGNALING VIA NFKB,
INTERFERON GAMMA RESPONSE, HYPOXIA, and OXIDATIVE PHOSPHORYLATION), representing signature scores as relative meta-module scores.
Colors represent different clusters shown in (a). g, h Kaplan–Meier survival curves generated with each of MC signature genes using the Chinese Glioma
Genome Atlas (CGGA) dataset. g All glioma patients (n= 325) or h GBM patients only (n= 139) were stratified by positive (Enriched) or negative (Not
Enriched) signature scores for each MC. Zero cell score values were used as cutoffs for positive or negative designations. P-values on graphs from
univariate log-rank Mantel–Cox test (exact p-value for (g) (all glioma) MC2= 1.3e−12, MC3= 4.3e−06, MC4= 2.04e−14, MC5= 2e−16, MC6= 8.62e
−07, MC7= 5.51e−15, MC9= 3.79e−05). Also see Supplementary Data 10 for multivariate Cox regression analysis p-values for: all gliomas
(MC2= 0.04, MC3= 0.04, MC4= 0.0007, MC5= 0.0003, and MC7= 0.002) and for GBM only (MC2= 0.02, MC3= 0.049, and MC07= 0.03).
Source data for c, g, and h are provided as Source Data files.
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inhibitor-IL1B, HLA-C/FAM3C in glioma to myeloid signaling;
CXCL8-ACKR1 in myeloid to glioma signaling, Fig. 5d). Others
were robust and shared across most samples such as CD74
receptor binding to MIF, COPA, or APP as cognate ligands and
SPP1-CD44 (myeloid to glioma signaling) and TNFRSF1A-GRN,
PGRMC2-CCL4L2, MDK-SORL1 or LRP1, and GPR37L1-PSAP

(glioma to myeloid signaling). Interestingly, when strong EGFR
signaling, with TGFB1, HBEGF, GRN, or COPA as ligands, was
predicted to be present, it tended to be present in all fragments
from each patient (ndGBM-03, rGBM-01, and rGBM-03). There
was less R–L interaction among different cell types in LGG
than in GBMs. Furthermore, bidirectional signaling between

Relative meta-module score [sign(log2(|SC1-SC2|+1))]
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glioma:myeloid and myeloid:T cell is much more abundant than
signaling between T cells and glioma cells (Fig. 5d, Supplemen-
tary Fig. 7d), providing direct evidence that myeloid cells are
major conduits of cell:cell interaction in the GBM microenviron-
ment. Together, these results indicate tremendous heterogeneity
of not only cancer cell phenotypes but also immune cell numbers
and subtypes in different regions of gliomas. Such cellular
heterogeneity results in significant differences in the local cell:cell
communication among different cell types, likely amplifying local
microenvironmental differences in a feedforward loop (Fig. 5d,
Supplementary Fig. 7d). Whether these interactions are causes or
effects (or both) of spatially heterogeneous glioma cell evolution
needs to be addressed in the future.

S100A4 is an immunotherapy target. Having cataloged various
glioma and immune cell subtypes in human gliomas, we next
sought to identify immune modulatory targets. We surveyed
signature genes in MC3, MC4, and MC5 pro-tumorigenic mye-
loid cells and TC4 (Tregs) and TC5 (exhausted T cells) to dis-
cover highly expressed genes that are shared and may be
manipulated to reprogram both innate and adaptive immune cells
in GBM. S100A4 stood out as a signature gene highly expressed
in TC4 and TC5 and pro-tumorigenic myeloid cells (Fig. 6a, b).
Immunohistochemistry on human GBM tissues showed that
S100A4 was expressed in glioma infiltrating lymphocytes and
macrophages (Supplementary Fig. 8), and double immuno-
fluorescence analysis of human GBM and mouse glioma samples
confirmed that S100A4 was co-expressed with markers of
immune-suppressive macrophages (CD206 and CD163) and
T cells (FOXP3, Fig. 6c). In addition, other large-scale Treg
transcriptome studies have also reported S100A4 expression in
Tregs39,40. Supportive of its role in glioma aggressiveness, ele-
vated S100A4 expression was significantly associated with poor
prognosis in glioma and GBM patients (Fig. 6d). Multivariate
analysis of S100A4 expression and tumor subtype, gender,
recurrence, IDH status, and MGMT status show that S100A4 is
an independent prognostic factor (Multivariate Cox regression
analysis p-values: all gliomas= 0.0089, GBM only= 0.0019).
Therefore, we selected S100A4 as a potential therapeutic target.

To test our hypothesis, we first determined S100a4 expression
in various immune cell types present in gliomas using an S100a4-
GFP knock-in reporter mouse41 (Supplementary Fig. 9a). In these
mice, GFP is expressed from the endogenous S100a4 promoter
instead of S100a4 when the knock-in allele is present. Flow
cytometry analysis of S100a4GFP/+ (phenotypically wildtype)
mouse blood confirmed S100a4/GFP expression in a subset of
T cells and myeloid cells (Supplementary Fig. 9b–d). To
specifically determine the functional consequence of inhibiting
S100a4 in immune cells, we first deleted S100a4 from the host
glioma microenvironment and orthotopically transplanted two
independent syngeneic glioma tumorsphere cell lines (5459 and
2808). These primary tumorsphere lines were derived from

spontaneous S100ß-vErbB;p53 gliomas42, and low passage cells
were transplanted into age- and sex-matched C57BL6/J wildtype
(B6 control) and S100a4−/− host brains (Fig. 6e). Double
immunofluorescence analysis confirmed that CD45+ immune
cells in S100a4−/− gliomas did not express S100A4, although
S100A4 is expressed in a subset of glioma cells (Fig. 6f,
Supplementary Fig. 9e). In addition, immunofluorescence
analysis showed the presence of Tregs (CD3+FOXP3+) and
suppressive macrophages (GFP+CD206+) in S100a4−/− host
gliomas (Fig. 6f), indicating that S100a4 is not required for
lineage determination or cellular differentiation of these leuko-
cytes. An earlier study reported that S100a4−/− macrophages
were compromised in their ability to migrate to sites of
inflammation43,44; however, our flow cytometry analysis showed
that macrophage numbers were equivalent between B6 and
S100a4−/− host gliomas (Supplementary Fig. 9h-i). Nevertheless,
S100a4−/− host mice survived significantly longer than B6 mice
transplanted with the same glioma cells on the same day, in two
independent glioma models (Fig. 6g). This survival benefit was
associated with significantly increased CD45+ immune infiltrates,
including CD4+ and CD8+ T cells, in S100a4−/− host gliomas
(Fig. 6h–j, Supplementary Fig. 9e–i). Furthermore, although
myeloid cell numbers were not significantly altered, T cell:mye-
loid cell ratios were significantly increased in S100a4−/− host
gliomas due to increased T cell infiltration (Fig. 6i, Supplementary
Fig. 9g), indicating effective immune reprogramming.

To functionally determine whether glioma-associated S100a4−/−

immune cells are more anti-tumorigenic, we performed in vitro
functional assays using T cells and myeloid cells (glioma-associated
myeloid cells: GAMS) isolated from B6(S100a4+/+), S100a4+/−,
and S100a4−/− host gliomas (Fig. 7a). We first measured GAM
phagocytosis in vitro using pHrodo™-red labeled nanoparticles. To
specifically test for cell-autonomous S100a4 function, we isolated
GFP+ S100a4+/− or GFP+ S100a4−/− GAMs to only compare
GAM subtypes that would normally express S100a4. S100a4−/−

GAMs showed significantly more phagocytic activity than corre-
sponding S100a4+/− GAMs (p= 0.0145, Fig. 7b). The same results
were observed when wildtype GAMs (CD45+ CD11b+) were
isolated from B6 host gliomas and compared to corresponding
cells (CD45+ CD11b+ GAMs) from S100a4−/− host gliomas
(p= 0.0004, Fig. 7c).

To functionally validate that S100a4 deletion in T cells
promotes CD4 T cell activation, we measured IFN-γ secretion.
FACS-sorted GFP+CD45+CD3+CD4+ TILs from S100a4+/− or
S100a4−/− host gliomas were co-cultured with naïve B6 wild-type
splenocytes and secreted IFN-γ in the conditioned media was
measured by ELISA. S100a4−/− CD3+ CD4+ containing
cultured had significantly higher IFN-γ levels compared to
control cultures containing S100a4+/− T cells (S100A4+/−
CD3+ CD4+) (Fig. 7d, p-value < 0.0001). Finally, we isolated
GFP+S100a4+ CD4+ T cells from S100a4+/- and S100a4−/− host
gliomas and co-cultured them for 4 days with in vitro activated,

Fig. 5 Presence of spatially heterogeneous glioma and immune cell types results in the unique cell:cell interactions in the local microenvironment.
Multi-regional samples from ten glioma patients were analyzed separately by fragment. a Pie charts representing the percentage of cells per assignment by
patient fragment was color-coded for cell type assignment. b bar graph showing the percentage of microglia and BMDMs in different fragments. Patient
fragments are highlighted with borders: red= necrotic, blue= enhancing, orange=margin or non-enhancing and green= invading or infiltrative. c Two-
dimensional butterfly plot visualization of top Hallmark pathways in myeloid cells (TNFA SIGNALING VIA NFKB, INTERFERON GAMMA RESPONSE,
HYPOXIA, and OXIDATIVE PHOSPHORYLATION) in different fragments, representing signature scores as relative meta-module scores. Colors represent
different fragments. d Cell–cell communication analysis using CellphoneDB. Depicted are the dot plots of ligand-receptor pairs for Glioma-Myeloid (left)
and Myeloid-Glioma (right) signaling across all glioma patients. Each dot size shows the −log10 p-value and color indicates the log2 mean of expression
values for the listed LR pairs (y-axis) in the respective interacting cell types (x-axis, top). Dot colors represent log2 mean interaction. Only significant LR
pairs, with cutoffs of p-value≦ 0.05 and log2 mean expression value >2, are shown. The p-values were generated by CellphoneDB which uses a one-sided
permutation-test to compute significant interactions. Source data for a and b are provided as a Source Data file.
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fluorescently-labeled B6 CD3+ splenocytes. Flow cytometry
analysis showed a significant increase in proliferation of labeled
T cells in co-culture with S100a4−/− CD4 T cells than control
CD4 T cells (p= 0.0024, Fig. 7e). Taken together, our functional
analyses of GAMs and TILs from S100a4−/− host gliomas
provide compelling evidence that S100a4 functions in glioma-
associated immune cells in a cell-autonomous manner to
suppress the immune response and promote glioma growth.

Discussion
It has been widely accepted that molecular and cellular hetero-
geneity of glioma cells, both between patients and within the same
patient, poses a major treatment challenge and underpins the
failure of targeted therapy and chemotherapy, resulting in
invariable GBM recurrence19,26,27. However, the extent to which
spatial and cellular heterogeneity of stromal cells, particularly the
myeloid cells that can constitute more than half of the tumor cells
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(Fig. 1b, e, f), contributes to disease progression and aggressive-
ness is less well understood15. Here, we isolated and analyzed over
200,000 single cells from 44 samples from 18 low- and high-grade
glioma patients. Through multi-region sampling and single-cell
RNA-sequencing analysis, we demonstrate extensive hetero-
geneity in the numbers and types of immune cells present in
different regions of the same patient tumor and among different
patients. Importantly, we show that five specific myeloid cell
subtype gene signatures (MC2–MC5, and MC7) are independent
prognostic indicators of glioma patient survival, independent of
known covariates of glioma patient survival, such as IDH muta-
tion and MGMT methylation status. This observation clearly
indicates the clinical relevance of specific myeloid cell subtypes
and underscores the need for more precise and context-sensitive
intervention strategies that specifically target harmful (tumor-
promoting) myeloid cells while sparing helpful (inflammatory/
tumor-suppressive) cells.

By performing putative receptor-ligand binding analysis in
each sample, we provide evidence that the presence of phenoty-
pically distinct myeloid cells in the local microenvironment can
result in significant differences in cell:cell communication. In
addition, we identify specific receptor-ligand pairs that mediate
cell-type-specific communications in human gliomas. For exam-
ple, PTPRZ1/PTN represents one of many spatially hetero-
geneous glioma:myeloid signaling nodes (Fig. 5d), and PTPRZ1/
PTN signaling has been reported to promote glioma stem cell
maintenance and glioma growth45. SPP1(osteopontin)/
CD44 signaling is observed in most GBM samples, and SPP1 is a
well-characterized promoter of glioma aggressiveness. Pietras
et al. showed that Osteopontin-CD44 signaling promotes GBM
stem cell maintenance in the perivascular region46, and Wei et al
reported that glioma cells secrete osteopontin to promote mac-
rophage infiltration and M2-like polarization47, contributing to
immune suppression and glioma growth. On the other hand,
Szulzewsky et al. reported that gliomas implanted in SPP1−/−
mice grow more aggressively and result in shorter survival48,
suggesting a complex and context-dependent function of SPP1.
We detected potential SPP1-CD44 signaling among T cells/
glioma and T cell/myeloid as well as myeloid/glioma cells (Fig. 5d
and Supplementary Fig. 7d), and it will be important to elucidate
the functional consequences of inhibiting the SPP1-CD44 (and
other SPP1 involving signaling) axis in each cell type to fully
understand its various functions in different cell types. Finally, we
provide evidence that reciprocal signaling between myeloid:
glioma and myeloid:T cells is much more robust, both quanti-
tatively and qualitatively than glioma:T cell signaling (Fig, 5d,
Supplementary Fig. 7d), indicating myeloid cells as major

conduits for cell:cell signaling in glioma microenvironment.
While this manuscript was in revision, Hara et al., reported that
macrophage-derived OSM induces mesenchymal transition in
glioma cells49.

There is a growing consensus that targeting immunosuppres-
sive macrophages may be critical to improving immunotherapy
efficacy13,14. For example, Goswami et al., proposed targeting
CD73+ macrophages in combination with anti-PD1 and anti-
CTLA425 may be effective in treating GBM. Unfortunately, we
did not detect significant CD73/NT5E expression in any myeloid
cells in our dataset nor those of Neftel et al. Independently, we
identified five (when confounding factors such as IDH mutation
and MGMT methylation status are accounted for) macrophage
subtypes that are prognostic of glioma patient survival. Both
activated (MC7) or homeostatic (MC2) microglia were associated
with improved overall survival, while MDSC (MC4) and sup-
pressive BMDM signatures (MC3, MC5) were associated with
worse survival. Interestingly, a microglia subtype (MC6) is asso-
ciated with worse survival (Fig. 4h), although it did not reach
significance when other variables were accounted for. However, it
is clearly not associated with better survival, unlike other
microglia subtypes., indicating that not all microglia subtypes are
inflammatory or anti-tumorigenic. In other words, cell of origin
does not correlate absolutely with the myeloid subtype function.
Similarly, the proliferating macrophage cluster (MC9) was asso-
ciated with better survival (Fig. 4h), but not significantly when
other confounding factors were accounted for. These results are
somewhat inconsistent with an earlier report by Muller et al., who
reported that macrophage ontogeny is the major driver of their
functional phenotypes15. This difference most likely stems from
the large sample size in our study: we analyzed 83,479 myeloid
cells (~15× more), enabling us to resolve macrophage and
microglia subtypes at a higher resolution. The robustness and
generalizability of our gene signatures were validated in an
independent, published, single-cell dataset of nine GBM patients
(Supplementary Fig. 6). Furthermore, three subtype gene sig-
natures (MC2, MC3, and MC7) were confirmed to independently
stratify patient survival even among grade IV GBM patients.

In addition, we identified molecular signatures that distinguish
MDSCs (MC4) from immune-suppressive macrophages (MC3
and MC5) at the single-cell RNA level, providing molecular
insights into these related but distinct cell types. For example,
while immune-suppressive macrophages showed a strong OX-
PHOS signature, MDSCs did not. The current understanding in
the field is that inflammatory macrophages preferentially engage
in glycolysis, while immunosuppressive macrophages utilize OX-
PHOS35. Therefore, targeting OX-PHOS is considered a viable

Fig. 6 S100A4 promotes immune suppression and glioma growth. a, b Violin plots showing S100A4 expression levels in human glioma-associated
myeloid cells (a) with high expression in immune-suppressive MCs (MC3–MC5) and glioma-associated TCs (b) with highest expression in TC04 and
TC05, Treg and exhausted CD4 T cells. Violin plots are color-coded by corresponding myeloid and T cell clusters in Figs. 3 and 4). c Representative double
immunofluorescence images showing co-expression of CD206, CD163, or FOXP3 (red) with S100A4 (green) in human GBMs (top) and mouse glioma
(bottom). n= 6 patients, n= 3 B6 mice. Scale bar: 50 µm. d Kaplan–Meyer survival curve with differential S100A4 expression levels in all glioma patients
(left: n= 325, 163 high and 162 low) and GBM patients only (right: n= 139, 67 high and 72 low) from the CGGA dataset, stratified by median S100A4
expression level. P-values from Log-rank Mantel–Cox test. e Functional validation experimental design: mouse primary glioma tumorspheres isolated from
spontaneous S100ß-vErbB;p53 glioma models (5459 or 2808) were intracranially injected into sex- and age-matched B6 or S100a4−/− host mice. f
Representative doubles IF images showing co-expression of CD45, CD25, or CD206 with S100A4/GFP in mouse tumors from S100a4−/− hosts. n= 3
each. Scale bar: 50 µm. g Kaplan–Meier survival curves showing significant survival extension of S100a4−/− host mice, compared to B6 hosts, intracranially
injected with the same primary glioma tumorsphere cells: 5459 (B6 n= 15, S100a4−/− n= 28) or 2808 (B6 n= 20, S100a4−/− n= 17). P-values from Log-
rank Mantel–Cox test. h Representative dot plots from flow cytometry analysis of tumor-infiltrating T-cells in B6 vs. S100a4−/− host mice. i Flow cytometry
analysis n= 6 (B6) and n= 5 (S100a4−/−) mice. All pairwise analyses were performed using two-tailed t-tests. j Representative Immunofluorescence
images of CD3+ T cells in B6 control and S100a4−/− host gliomas. CD3+ (red) and DAPI (all nuclei in blue) were counted from three fields/sample and
three samples/type. Error bars represent SD. P-values represent two-tailed t-tests. Scale bar: 100 µm. Source data for d, g, i, and j are provided as a Source
Data file.
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strategy to reprogram immune-suppressive myeloid cells; how-
ever, our results suggest that the therapeutic window for OX-
PHOS inhibitors may not exist for GBM since MDSCs may not
be vulnerable to such inhibition. Our study also demonstrated
that microglia and BMDMs exist in multiple cellular states and
the gene signatures that distinguish them molecularly not only
include previously identified environmental factors such as
hypoxia but also inflammatory cytokines, such as IFNG and
TNFa (Fig. 4e). Activation and secretion of IFNG and TNFa are

strongly associated with inflammation but our data suggest that
these same signals may promote monocyte maturation into
immune suppressive macrophages since MC3–MC5 show the
strongest Hallmark signatures of TNFa signaling and IFNG-
response gene sets.

We propose that immune-suppressive macrophage subtype
signatures represent a rich source of therapeutic targets to
enhance the efficacy of existing immunotherapies and to inform
the next generation of immunotherapies to reprogram the

Fig. 7 S100a4 deletion enhances phagocytosis in myeloid cells and increases T cell activation. a A schematic summary of experimental design. S100a4
expressing GAMs (CD45hiCD11bhi) and CD4+ TILs (CD45+CD3+CD4+) were FACS sorted by GFP expression, and used in in vitro functional assays. b
Fluorescence images showing phagocytosis of pHrodo™ labeled (red) nanoparticles in FACS-sorted GFP+CD45hiCD11bhi GAMs from S100a4 heterozygous
or homozygous hosts. An average number of particles/cell were calculated (n= 4 tumors each). P-value from two-tailed student t test. Error bars
represent SEM. Scale bar: 50 µm. c Fluorescence images showing phagocytosis of pHrodo™ labeled (red) nanoparticles in FACS sorted CD45hi CD11bhi

tumor-infiltrating GAMs from B6 or S100a4−/− hosts. An average number of particles/cell were calculated (n= 3 tumors each). P-value from two-tailed
student t test. Error bars represent SEM. Scale bar: 100 µm. d Box and whiskers plot showing IFN-γ levels measured by ELISA in FACS-sorted GFP+
CD45+CD3+CD4+ tumor-infiltrating T cells from S100a4 heterozygous or homozygous hosts. P-value represents two-tailed student’s t test (exact p-
value= 1.8124E−12). Whiskers represent minimum and maximum values, the line inside the box represents the mean and the box extends from the 25th
to 75th percentiles. n= 3 (heterozygous) and n= 5 (homozygous) gliomas, two experimental replicates from each tumor. e T cell proliferation assay using
dye dilution. T cells were isolated from B6 spleens, labeled, and stimulated with CD3/Cd28 dynabeads then cocultured with FACS sorted GFP
+CD45+CD3+CD4+ tumor-infiltrating T cells for 4-days. Dotted lines represent unstimulated T cells. P-value from two-tailed student t test. Whiskers
represent minimum and maximum values, the line inside the box represents the mean and the box extends from the 25th to 75th percentiles. n= 3
(heterozygous) and n= 5 (homozygous) gliomas. Source data for b–e are provided as a Source Data file.
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myeloid compartment. As a proof of principle, we selected and
functionally tested S100A4 as an immunotherapy target, based on
its particularly high expression in immune-suppressive macro-
phages and T cells. S100A4 is a small calcium-binding protein
that can function both extra- and intra-cellularly to affect mul-
tiple biological processes depending on its binding partners50–52.
It is also considered an alarmin or damage-associated molecular
pattern molecule upregulated by damaged or stressed cells53. As a
secreted protein, it can bind to RAGE, TLR4, or EGFR family
members54, and can potentially affect immune signaling. As an
intracellular signaling protein in the cytoplasm and nucleus, it can
regulate diverse processes depending on binding partners and
cellular contexts, such as invasion55,56, stemness42,57,
angiogenesis58,59, and p53 function60. S100a4 is not an essential
gene, since S100a4−/− mice are viable and fertile41–43, supporting
its favorable safety profile as a potential anti-cancer therapeutic.
Although an earlier study reported increased tumor formation in
S100a4−/− mice61, we did not observe spontaneous tumors in our
S100a4−/− colony in over a decade. In the immune system,
S100a4 is not required for T cell inflammatory responses62, but
S100a4−/− macrophages have compromised chemotaxis in vitro
and infiltration to inflamed sites in vivo43,44. S100A4 is also
implicated in several chronic inflammatory diseases including
rheumatoid arthritis, asthma, and allergies50. High S100A4
expression is associated with poor survival in glioma (Fig. 6g) as
well as in breast63,64, bladder65, head and neck, and pancreatic66

cancers, and S100A4 is necessary for breast cancer metastasis67.
More recently, S100A4 has been shown to protect MDSCs from
apoptosis68. We reported previously that S100A4 is necessary for
glioma stem cell self-renewal and proneural–mesenchymal
transition42. Together, previous studies indicate that S100A4
function is highly context-dependent, and in cancer, it is asso-
ciated with tumor aggressiveness.

The results presented here establish a critical role for S100a4
expression in GBM associated T cells and macrophages in pro-
moting immunosuppression and glioma growth. S100a4−/−

CD11b+ GAMs have increased phagocytic activity, which is
critical to generate anti-tumor immunity. In addition, S100a4−/−

CD4+ T cells stimulate T cell proliferation and secrete high levels
of IFNG compared to S100a4+/− CD4+ T cells. As a con-
sequence of reprogrammed myeloid and T cells, S100a4−/−

glioma-bearing mice live significantly longer than B6 wild-type
host mice, validating the potential of S100A4 as an immu-
notherapy target in GBM.

In summary, we anticipate that this large human glioma single-
cell RNA-seq dataset will be a useful resource for the wider
glioma and tumor immunology community. It can be mined to
identify therapeutic targets and better understand the molecular
and functional heterogeneity of glioma and immune cells and
compared to other cancer types. Furthermore, it can be used to
prioritize molecular targets that are commonly activated across
most samples, anticipate on- and off-target effects based on cell-
type-specific expression patterns, and analyze specific cell:cell
interactions and expression patterns to design effective combi-
nation therapies.

Methods
Human tumor specimen collection. Human tumor tissue was obtained under
Institutional Review Board (IRB)-approved protocols (Pro00014547) at Houston
Methodist Hospital, Houston, Texas and MD Anderson Cancer Center (PA 19-
0661) in accordance with national guidelines. All patients signed informed consent
during clinical visits before surgery and sample collection. Patients did not receive
compensation in return for their participation in this study. The clinical char-
acteristics of the patient samples are described in Supplementary Data 1.

Whole exome sequencing analysis. DNA was extracted from frozen tumor tis-
sues using the DNeasy® Blood & Tissue (#69504; Qiagen, Hilden, Germany)

standard protocol. Whole exomes were captured using the Agilent V6 exome kit at
BGI and sequenced on the DNBseq (100bpPE reads) platform. Exome sequencing
reads were mapped to human reference genome GRCh38 using BWA V0.7.1
(RRID:SCR_010910), and duplicates were removed using Picard V1.95
(RRID:SCR_006525). The resulting BAM files were realigned around indels and
recalibrated for base quality using GATK V3.5-0 (RRID:SCR_001876) with known
variant sites from dbSNP-144 and the 1000 Genomes project (RRID:SCR_008801).
Somatic mutations were called as tumor-normal pairs using MuTect2 (GATK
V3.5-0) (RRID:SCR_000559). The SnpEFF package V4.3 (RRID:SCR_005191) was
used to annotate the somatic mutations, and only variants annotated as high or
moderate impact were used for downstream analysis. The Sequenza algorithm V2.1
(RRID:SCR_016662) with default parameters was used to determine the copy
number profiles of bulk exome datasets. ggplot2 V3.3.3 (RRID:SCR_014601) and
ComplexHeatmap V2.7.8.100 (RRID:SCR_017270) packages were used for
visualization.

Single-cell RNA-seq data collection. Tumor tissues were transported on ice in
DMEM/F-12 medium immediately following surgical resection. Tumors were
rinsed in PBS to remove circulating immune cells in the blood (#21-40-CMR;
Corning Inc., Corning, NY) and cut into small pieces and for histological analysis.
Using a scalpel, the remaining tumor was minced into smaller fragments and
digested in an enzyme cocktail (10% collagenase (#17104019; Gibco, Thermo
Fisher Scientific, Waltham, MA): Accutase) and incubated for 10–30 min at 37 °C.
Digestion cocktails were removed and replaced with DMEM/F-12:1:1 medium and
gently titrated to make single-cell suspensions. Single cells were filtered using a
40 µM nylon mesh (#352340; Falcon, Thermo Fisher Scientific) to remove residual
clumps. Dead cells were removed using either fluorescence-activated cell sorting
(FACS) or using a dead cell removal kit (#130-090-101; Miltenyi Biotec, Bergisch
Gladbach, Germany). For FACS, cells were sorted using the FACS Aria II sorter
(BD Biosciences, Franklin Lakes, NJ). Dead cells were stained with DAPI or Fixable
Viability Dye eFluor™ 450(FVD) (#65086318 l; Invitrogen, Carlsbad, CA). Doublets
were excluded based on forward and side scatter and live cells were obtained by
gating on viable cells. Sorted live cells were collected in 4 °C prechilled tubes
containing 100% FBS and immediately spun down for cell counting and loading
onto the 10× Chromium controller, targeting 6000 cells for capture per well.

Single-cell RNA sequencing libraries were generated using the Chromium
Single Cell 3′ Library & Gel Bead Kit V1 or V3 and Chromium Single Cell 3′ Chips
according to the manufacturer’s instructions. In brief, all single-cell samples and
required reagents were loaded on a 10× Chromium controller for droplet
generation, followed by reverse transcription in the droplets, cDNA amplification,
fragmentation, adapter, and index addition following the manufacturer’s
instructions. Barcoded single-cell transcriptome libraries were sequenced with
100 bp paired-end reads on HiSeq 4000 or BGI DNBseq platforms.

Single-cell RNA sequencing analysis. Raw Illumina sequencing reads were
aligned to GRCh38 (human) using Cell Ranger V5 software (RRID:SCR_017344)
with default parameters. Subsequently, genes were quantified as UMI counts using
Cell Ranger and initially visualized using Loupe Browser V5 (RRID:SCR_018555).
Downstream analysis was performed on filtered feature counts generated by Cell
Ranger, and low-quality single cells containing <500 expressed genes or >20%
mitochondrial transcripts or >50% ribosomal transcripts were removed. Addi-
tionally, genes expressed in fewer than three single cells were removed. We iden-
tified potential single-cell doublets using DoubletFinder V2.0.3
(RRID:SCR_018771), with an expectation of a 7.5% doublet rate assuming Poisson
statistics, as per the developer’s code on GitHub. Following the removal of low-
quality and doublet cells, single cells were normalized and clustered using Seurat
V4.0.0 (RRID:SCR_016341) and batch-corrected using Harmony V1.0. Single-cell
gene expression counts were normalized to the library size and log2-transformed.
We applied principal component analyses to reduce the dimensionality of the data
using the top 2000 most variable genes in the dataset. Computed principal com-
ponents were batch corrected for variations between patients and sex using the
Harmony R package V1.0. We used batch-corrected PCs as input for Louvain-
based graphing and chose resolution parameters between 0.1 and 1 depending on
the single-cell datasets. Seurat V4.0.0 (RRID:SCR_016341) was used to identify
cluster-specific marker genes and visualization with dot and feature plots. The
genes specifically expressed in each cluster were examined to identify the cell types.
Separately, we also used the reference-based R package SingleR V1.830 to identify
the sub-cell types in an unbiased marker-free manner for T cells. SingleR compares
expression profiles of single cells against reference transcriptomes of pure cell types
to infer the cell of origin.

Classification of the tumor and normal cells (CopyKat). All cells were classified
as either normal or tumor based on the genome-wide copy number profiles
computed from the gene expression UMI matrix using the Bayesian segmentation
approach, CopyKat69 V0.1.0. Aneuploid single cells with genome-wide copy
number aberrations were predicted to be tumor cells. Diploid cells were predicted
to be normal stromal or immune cells. The CopyKat-based predictions were fur-
ther confirmed by single-cell gene expression profiles, where known GBM tumor
markers including SOX2 and OLIG2 are highly expressed in predicted tumor cells,
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and known immune cell markers including PTPRC, CD3D, and CD68 are highly
expressed in predicted immune cells.

Pathway enrichment analyses. We used different approaches to identify and
visualize enriched pathways in our subsets.

(1) Gene ontology enrichment analysis (GO). To identify enriched molecular
pathways based on differentially expressed genes (DE genes), over-representation
analysis was performed on DE genes from each cluster using g:Profiler V0.2.0
(RRID:SCR_006809). Genesets from Gene Ontology (GO) biological processes,
Reactome, and Kyoto Encyclopedia of Genes and Genomes (KEGG)
(RRID:SCR_012773) were used. GOplot V1.0.2 was used to visualize the results.

(2) Gene set enrichment analysis (GSEA). We used fGSEA V1.14.0
(RRID:SCR_020938) R package to test for enrichment of the Hallmark genesets
downloaded from MsigDB (RRID:SCR_016863, msigdbr R package V7.2.1). For
input, we used either z-score statistics from Seurat DE analysis or pre-ranked gene
lists generated using a fast Wilcoxon rank-sum test (presto R package V1.0.0
“github.com/immunogenomics/presto”).

(3) Select gene set signature scoring. To generate the butterfly plots in Fig. 4f, we
first selected the four most significantly enriched pathways generated from GSEA
analysis across our clusters. Then, we adopted the method developed by Neftel
et al.26 to obtain single-cell scores using the “score” function from JLaffy/scrabble R
package26. For each gene set, a signature score (SC(i)) was calculated for each cell
(i) by first quantifying the averaged relative expression of the genes in said geneset
(Er) followed by normalization by subtracting the averaged relative expression of a
control gene set (Ercontrol): SC(i)= Er(i) –Ercontrol(i). The control gene set was
defined as described in Neftel et al.26. The exact position of each dot on the
butterfly plot was calculated using scrabble::hierarchy() function in R using
[sign(SC1-SC2)*log2(|SC1-SC2 | +1)].

Comparison to in vitro-defined macrophage subtypes. To determine whether
glioma-associated myeloid cells could be classified into in vitro-defined macro-
phage subtypes, we designed meta-modules based on known genes upregulated in
M1, M2a, M2b, M2c, and M2d macrophages31 (Supplementary Fig. 4f). Signature
scores for each meta-module were calculated using the JLaffy/scrabble R package as
above, and the results were visualized using boxplots (ggplot2 R package) (Sup-
plementary Fig. 4e).

Assignment of GBM subtypes. Meta-modules defined by Neftel et al.26 was used
to assign glioma molecular subtypes (MES1-like, MES2-like, NPC1-like, NPC2-
like, AC-like, and OPC-like) to our human. For our analyses, we collapsed the
MES1 and MES2 groups into one group of MES-like cells, and similarly the NPC1
and NPC2 into one group of NPC-like cells. We used the scrabble package to
calculate meta-module scores using the “score” function and develop two-
dimensional plots representing cellular states, where each quadrant corresponds to
one cellular state. The exact position of each dot was calculated using scrab-
ble::hierarchy() function in R. Results were visualized using ggplot2.

Myeloid cluster signature gene validation in an independent cohort of GBMs.
For the validation glioma dataset, we obtained scRNA-seq data from the Neftel
et al. 10× single-cell RNA-seq dataset26 (#GSE131928, GEO—https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131928). Count data were
downloaded from GEO, and Seurat was used to generating cell clusters as described
above. Cell clusters expressing myeloid cell markers were aggregated and their
normalized, log-transformed expression data were used to generate the heatmaps
(Supplementary Fig. 6).

Survival prediction of glioma patients using myeloid cluster signatures. To
assess the correlation between our macrophage subtype signatures and survival in
glioma patients, we used publicly available datasets: the Chinese Glioma Genome
Atlas (CGGA) (RRID:SCR_018802) (mRNAseq_325, Illumina HiSeq) (http://
www.cgga.org.cn/download.jsp) and download the dataset we used here: http://
www.cgga.org.cn/download?file=download/20200506/CGGA.mRNAseq_
325.RSEM-genes.20200506.txt.zip&type=mRNAseq_325&time=20200506)) and
The Cancer Genome Atlas (TCGA) GBM dataset (RRID:SCR_003193) (http://
www.linkedomics.org/data_download/TCGA-GBM/, and to download the dataset
we used, please copy/paste the following URL: http://linkedomics.org/data_
download/TCGA-GBM/Human__TCGA_GBM__UNC__RNAseq__GA_RNA__
01_28_2016__BI__Gene__Firehose_RSEM_log2.cct.gz)70. We analyzed the RNA-
seq (GA, Gene level) dataset with 528 samples to use a large dataset for our analysis.
For each patient, a signature score was calculated per myeloid cluster signature
genes (top 50 DE genes per cluster, DE genes were generated with Seur-
at::FindAllMarkers() function. Top DE genes= 50 for all clusters except MC02
which only had 14 unique DE genes). Signature scores were then generated using
the “score” function from JLaffy/scrabble R package26 (see details above) which
assigns a signature score for each cluster signature per patient. Survival analyses
were done using the survival V3.2-7 (RRID:SCR_021137) and survminer V0.4.9
(RRID:SCR_021094) packages. Since signature scores are centered, patient cohorts
were stratified into two groups based on the sign of the signature score (above
zero= “enriched”, below zero= “not enriched”), and the statistical significance of

the difference in clinical outcome was calculated using the log-rank Mantel-Cox test.
The survival characteristics of the groups were visualized using Kaplan-Meier
curves. Multivariate Cox regression analysis was performed using the survi-
val::coxph() function using the variables specified in the text.

Cell–cell communication analysis using CellphoneDB. We applied an established
method CellPhoneDB38 package V2.1 (RRID:SCR_017054) to study cell-cell
interactions across Glioma, Myeloid and T-cell types. CellPhoneDB uses several
ligand-receptor databases like IUPHAR, UniProt, Ensemble, and PDB as a refer-
ence to evaluate the cellular communication networks between two cell types. We
only considered those ligands and receptors that are expressed in at least 10%
(default cutoff) of the single cells in a specific cluster. CellPhoneDB performs a
pairwise comparison between all the cell types by randomly permuting labels of the
clusters 1000 times (default) and determining the mean average expression levels of
LR in the given interacting cluster pairs. Finally, CellPhoneDB computes a p-value
by calculating the proportion of the means that are equal to or higher than the
actual mean for a specific ligand-receptor pair. For plotting, we only considered LR
pairs having p-value ≦ 0.05 and mean value >2 of the individual LR partner average
expression in the corresponding cell type pairs.

Primary mouse glioma tumorsphere lines. Primary glioma tumorsphere lines
were established from spontaneous GBMs that formed in the S100ß-vERBb;p53
mouse model. Briefly, glioma regions were micro-dissected under a dissecting
microscope and single-cell suspensions were cultured in neural stem cell medium
(DMEM/F12 (HyClone, #Sh30261.01), B27 (#17504-044; Life Technologies), pen/
strep (#30002CI; Corning), 10 ng/ml bFGF (#100-18B; PeproTech, Ricky Hill, NJ),
and 20 ng/ml EGF(#315-09, PeproTech). The two primary tumorsphere lines used
were 5459 (S100ßverbB;p53+/−, male) and 2808 (S100ßverbB;p53−/−, female).

In vivo testing of S100a4 function in stromal cells. Freshly dissociated S100ß-
vErbB;p53 tumorsphere cells were injected into the striatum of 6–8-week-old
female and male C57BL6/J (IMSR Cat# JAX: 000664, RRID:IMSR_JAX:000664) or
S100a4−/− (IMSR Cat# JAX:012904, RRID:IMSR_JAX:012904) syngeneic mice
using a stereotaxic device (bregma: 2.8/−0.5/−3.5). The number of mice used in
each experiment is indicated in Figs. 6 and 7 and Supplementary Fig. 9. Mice were
euthanized using CO2 inhalation when they displayed signs of brain tumors,
experienced more than 20% body weight loss, have a BCS (body condition score) of
2 or less, or have continuous seizures or other complications associated with
hindlimb paralysis. Whole brains were cut into 2 mm coronal sections using a
brain mold, and glioma regions were microdissected under a dissecting microscope
for analysis. Mice were housed in the HMRI vivarium, which is an AAALAC
accredited facility in compliance with the Guide for the Care and Use of Laboratory
Animals (Protocol # AUP-0120-0003). Mice have been housed in individually
ventilated cages, 4–5 mice per cage. The room environment was maintained at
68–72°F (20–22°), with 30% to 70% humidity, on a 12:12 light:dark cycle. All
procedures were approved by the HMRI Animal Care and Usage Committee. B6 or
S100a4−/− animals were randomly selected for this study and were age- and sex-
matched at the time of the injections.

Immunophenotyping by flow cytometry. Freshly dissected mouse glioma tissues
were microdissected into small chunks and then treated with Accutase for
10–15 min at 37 °C. Accutase was removed, and tissues were resuspended in DME/
F12+ B27+ pen/strep medium to generate single-cell suspensions. Cells were
resuspended in RBC lysis buffer to remove red blood cells. Following RBC lysis,
cells were strained through 40 µm Flowmi cell strainers (#H136800040; Bel-Art,
Wayne, NJ). Cells were then stained with multiple flow cytometry validated anti-
body cocktails (see below) and analyzed using either BD Fortessa or LSRII cyt-
ometers. Data were collected using BD FACSDiva Software V9.0
(RRID:SCR_001456) and analyzed/quantified using FlowJo V10.8.0
(RRID:SCR_008520). All antibody dilutions and staining were performed in Bril-
liant Stain Buffer (#563794, BD Biosciences), and cells were incubated with a
blocking solution containing mouse TruStain FcX (#101319; BioLegend, San Deigo,
CA) before antibody staining. Antibodies used: PE-cy7 CD45 (#103114, RRI-
D:AB_312979; BioLegend—1:1000), APC-cy7 CD45 (#103116, RRID:AB_312981;
BioLegend—1:1000), BV650 CD11b (#101259, RRID:AB_2566568; BioLegend—
1:1000), PE CD3e (#100308, RRID:AB_312673; BioLegend—1:1000), BV650 CD4
(#100469, RRID:AB_2783035; BioLegend—1:1000), BV711 CD8a (#100747, RRI-
D:AB_11219594; BioLegend—1:1000), BV711 Ly6C (#128037, RRID:AB_2562630;
BioLegend—1:1000), and APC-cy7 Ly6G (#127624, RRID:AB_10640819; BioLe-
gend—1:1000).

Immunofluorescence analysis. Tissues were fixed in 4% paraformaldehyde (PFA)
overnight, equilibrated through 10, 20, and 30% sucrose gradients, and then
embedded in OCT compound (#23-730-571; Thermo Fisher Scientific). Frozen
samples were sectioned to 10 μm thickness, and slides were blocked in 5% normal
goat serum/0.2% Triton PBS for 30 min and incubated with primary antibodies
overnight at 4 °C. Then, appropriate Alexa Fluor secondary antibodies (Invitrogen)
were incubated for 30–45 min. Nuclei were stained with DAPI (1:2000, Invitrogen).
TrueVIEW autofluorescence quenching kit was applied (#SP-8500-15; Vector
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Laboratories, Peterborough, UK) to remove background fluorescence. Images were
obtained using the Zeiss Axiovert 200M fluorescence microscope and the FV3000
confocal microscope (Olympus, Tokyo, Japan). Primary antibodies used: CD3
(#14-0032-85, RRID:AB_467054; Thermo Fisher Scientific—1:2000), S100A4
(#PA5-16586, RRID:AB_10977371; Thermo Fisher Scientific—1:200), CD45
(#CBL1326, RRID:AB_2174425; MilliporeSigma, Burlington, MA—1:200).
hCD206 (#MCA2235GA, RRID: AB_322613; Bio-Rad, Hercules, CA, USA—
1:100), hS100A4(#SAB2500902, RRID: AB_10604809; MilliporeSigma, Burlington,
MA—1:100), GFP (#AHP975, RRID: AB_566990; Bio-Rad, Hercules, CA, USA—
1:200), FOXP3 (#No. 320001, RRID: AB_439745; Biolegend, San Diego, CA, USA
—1:100), CD3(#MA1-90582, RRID: RRID:AB_1956722; Thermo Fisher scientific,
Waltham, MA,USA- 1:200), CD163(#16646-1-AP, RRID: AB_2756528; Pro-
teintech, Rosemont, IL, USA—1:100), mCD206(#18704-1-AP, RRID:
AB_10597232; Proteintech, Rosemont, IL, USA—1:200) and mCD25(#No.101902,
RRID: AB_312845; Biolegend, San Diego, CA, USA—1:200). Secondary antibodies:
anti-Goat IgG Alexa Flour488 (# A-11055, RRID:AB_2534102; Thermo Fisher
Scientific). Anti-Rabbit IgG Alexa Flour488 (# A-11070, RRID:AB_142134;
Thermo Fisher Scientific). Anti-Rabbit IgG Alexa Flour594 (# A-11072, RRI-
D:AB_142057;Thermo Fisher Scientific). Anti-Rat IgG Alexa Flour594 (# A-11007,
RRID:AB_10561522;Thermo Fisher Scientific).

Immunohistochemistry analysis. Tissues were fixed in 10% formalin and
embedded in paraffin. Paraffin blocks were sectioned to 5 μm thickness, and
deparaffinized and boiled in 10 mM sodium citrate (pH 6) buffer to retrieve
antigens. Slides were blocked in 5% goat serum (G9023, SIGMA) for 30 min and
incubated with S100A4 primary antibody (#13018 RRID:AB_2750896, Cell Sig-
naling Tech—1:200) overnight at 4 °C. Then, slides were washed and incubated
with anti-mouse/rabbit/goat IgG-biotinylated secondary antibody (# BA-1300,
RRID:AB_2336188; Vector Laboratories) for 30–60 min, followed by ABC (Vector
Laboratories, Cat#PK-8200) for 1 h and DAB (Vector Laboratories) chemogen
reaction. Nuclei were counter-stained with Hematoxylin (#95057-844, VMR, US).
Images were captured using the Olympus BX 41 microscope.

T cells proliferation assay. Naïve B6 splenocytes were isolated from freshly dis-
sected spleens and enriched for CD3+ cells using the Pan T Cell Isolation Kit II
(#130-095-130, Miltenyi) and stained with CellTrace™ Far Red Cell (#C34572,
Invitrogen™) according to manufacturer’s protocols. Cells were then stimulated
using CD3/Cd28 dynabeads (#11456D, Thermofisher) and cocultured for 4 days
with FACS sorted GFP+ (endogenous) CD3+, (#100308, RRID:AB_312673; Bio-
Legend—1:1000) and CD4+ (#100469, RRID:AB_2783035; BioLegend—1:1000)
tumor-infiltrating lymphocytes isolated from S100a4−/− and S100a4+/− hosts
injected with x2808 mouse glioma. At day 4 of co-culture cells were analyzed using
either BD Fortessa or LSRII cytometers.

Conditioning media from the above experiment were saved and IFNG levels
were measured using the ELISA MAX™ Deluxe Set Mouse IFN-γ kit (#430804,
Biolegend) according to the manufacturer’s protocol.

Phagocytosis assay. Tumor-infiltrating GAMs were isolated from B6, S100a4−/−

and S100a4+/− hosts injected with ×2808 mouse glioma using FACS sorting of
CD45hi (#103114, RRID:AB_312979; BioLegend—1:1000), CD11bhi(#101259,
RRID:AB_2566568; BioLegend—1:1000) and GFP+ (in case of S100a4−/− vs.
S100a4+/−). GAMs were then cultured overnight and incubated with pHrodo™ Red
Zymosan Bioparticles™ Conjugate for Phagocytosis (P35364, Thermo Fisher Sci-
entific) for two hours on the following day. Following two-hour incubation with
the beads, immunofluorescence images were obtained using the Zeiss Axiovert
200M fluorescence microscope.

Statistical analysis. Statistical comparisons were performed using GraphPad
Prism V9.3.0 (RRID:SCR_002798; GraphPad Software, La Jolla, CA) or R. Values
and error bars represent the mean ± standard error of the mean. The respective
number of replicates (n) is indicated in the figures or in the figure legends. Power
analyses were used to determine appropriate sample sizes for animal experiments
(power 0.8, alpha 0.05). p-Values were determined by an appropriate statistical test
such as Student’s t-test or analysis of variance (ANOVA) with multiple comparison
correction, as indicated in the figure legends.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw single-cell sequencing data generated in this study are publicly available with no
restrictions through the GEO series GSE182109. The raw exome sequencing data
generated in this study have been deposited in SRA under the accession code
PRJNA787981. The Neftel et al. 26 The 10× single-cell RNA-seq publicly available data
used in this study is available through GEO #GSE131928. The publicly available CGGA
(Chinese Glioma Genome Atlas) dataset used in this study (mNRAseq_325) is available
through the following link: http://www.cgga.org.cn/download.jsp and downloadable from
http://www.cgga.org.cn/download?file=download/20200506/CGGA.mRNAseq_

325.RSEM-genes.20200506.txt.zip&type=mRNAseq_325&time=20200506. The publicly
available The Cancer Genome Atlas (TCGA) GBM dataset used in this study is available
through this link: http://linkedomics.org/data_download/TCGA-GBM/ and
downloadable using the following link: http://linkedomics.org/data_download/TCGA-
GBM/Human__TCGA_GBM__UNC__RNAseq__GA_RNA__01_28_2016__BI__
Gene__Firehose_RSEM_log2.cct.gz. Source data are provided with this paper. The
remaining data are available within the Article, Supplementary Information, or Source
Data files. Source data are provided with this paper.

Code availability
All codes to reproduce figures presented in this paper will be publicly available through
GitHub (https://github.com/parveendabas/GBMatlas) and the corresponding DOI is as
follows: https://doi.org/10.5281/zenodo.5765535.
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