TABLE 1.
Mitogen | References | Experimental model | Labelling index (control vs mitogen), % |
Cell cycle regulators |
Signaling pathway | ||||
Ki67 | BrdU | EdU | pHH3 | Activators | Inhibitors | ||||
PDGF | Chen et al., 2011 | In vitro (p) | 0.5 vs. 3(effect only in juvenile) | PDGFR -> Erk activation -> Ezh2 induction | |||||
WS6 | Shen et al., 2013 | In vitro (p) | 0.1 vs. 3 | Inhibition of IKK -> NFkB translocation to the nucleus | |||||
In vitro (d) | 0.5 vs. 3 | ||||||||
Boerner et al., 2015 | In vitro (p) | 0.3 vs. 0.8 | |||||||
Wang et al., 2015c | In vitro (d) | NS | |||||||
WS3 | Dirice et al., 2016 | In vitro (d) | NS | ||||||
Harmine | Wang et al., 2015c | In vitro (d) | 0.1 vs. 1.2 | 0.1 vs. 1 | CDK1, Cyclin A1, Cyclin E2, CDC25A, CDC25C, FOXM1, E2F1, E2F2, E2F7, E2F8 | p15, p16, p57 | Inhibition of DYRK1A -> NFAT translocation to the nucleus | ||
Aamodt et al., 2016 | In vitro (d) | 0 vs. 0.4 | |||||||
Dirice et al., 2016 | In vitro (d) | 0.5 vs. 2.5 | |||||||
Kumar et al., 2018 | In vitro (d) | 0.1 vs. 2.5 | |||||||
Wang P. et al., 2019 | In vitro (d) | 0 vs. 2.5 | 0 vs. 2.5 | 0 vs. 0.4 | CDK1, Cyclin A1, Cyclin E2, CDC25A, FOXM1 | p57 | |||
In vivo | 0.5 vs. 1.2 | ||||||||
Ackeifi et al., 2020a | In vitro (d) | 0.1 vs. 3 | |||||||
Ackeifi et al., 2020b | In vitro (d) | 0 vs. 2.5 | 0.2 vs. 2 | CDK1, Cyclin A1, Cyclin A2, Cyclin E2, CDC25A, c-Myc, FOXM1 | p15, p16, p57 | ||||
In vivo | 0.4 vs. 0.8 | ||||||||
Rosado-Olivieri et al., 2020 | In vitro (sc) | 1 vs. 2.5 | |||||||
INDY | Wang et al., 2015c | In vitro (d) | 0 vs. 1.6 | CDK1, Cyclin A1, Cyclin E2, CDC25A, CDC25C, FOXM1, E2F1, E2F2, E2F7, E2F8 | p15, p16, p57 | ||||
Wang P. et al., 2019 | In vitro (d) | 0.1 vs. 2.5 | |||||||
Ackeifi et al., 2020a | In vitro (d) | 0.1 vs. 3 | |||||||
5-IT | Dirice et al., 2016 | In vitro (d) | 0.1 vs. 5 | CENPA, MCM2, MCM4, MCM5, CDC6, Cyclin B1, CDC20, TOP2A, RFC4 | |||||
In vivo | 0.1 vs. 0.4 | 0.1 vs. 0.4 | 0 vs. 0.2 | ||||||
Ackeifi et al., 2020a | In vitro (d) | 0.1 vs. 2.8 | |||||||
CC-401 | Abdolazimi et al., 2018 | In vitro (d) | 0.2 vs. 0.7 | ||||||
Ackeifi et al., 2020a | In vitro (d) | 0.1 vs. 0.8 | |||||||
Leucettine-41 | Wang P. et al., 2019 | In vitro (d) | 0.1 vs. 2 | ||||||
Ackeifi et al., 2020a | In vitro (d) | 0.1 vs. 4.3 | |||||||
TG003 | Ackeifi et al., 2020a | In vitro (d) | 0.1 vs. 2.3 | ||||||
AZ191 | Ackeifi et al., 2020a | In vitro (d) | 0.1 vs. 0.5 | ||||||
OTS167-derivatives | Allegretti et al., 2020 | In vitro (d) | 8-fold | ||||||
JAK3 inhibitor VI | Abdolazimi et al., 2018 | In vitro (d) | 0.2 vs. 0.6 | ||||||
GNF7156 | Shen et al., 2015 | In vitro (d) | 0 vs. 3 | Inhibition of DYRK1A and GSK-3 beta -> NFAT translocation to the nucleus | |||||
GNF4877 | In vitro (d) In vitro (p) | 0 vs. 6 0.2 vs. 3 | |||||||
In vivo | 1 vs. 3.5 | ||||||||
Ackeifi et al., 2020a | In vitro (d) | 0.1 vs. 4 | |||||||
Tideglusib Chiron99021 | Ackeifi et al., 2020a Ackeifi et al., 2020a Tsonkova et al., 2018 | In vitro (d) In vitro (d) In vitro (e) | NS NS | 0 vs. 20 | Inhibition of GSK-3 beta -> NFAT translocation to the nucleus | ||||
PSN632408 | Ansarullah et al., 2016 | In vivo | 0.7 vs. 2.5 | 1.5 vs. 6.3 | GLP1R -> Ca2+ increase-> calcineurin increase-> NFAT translocation to the nucleus | ||||
GLP-1(7-36)amide | Ackeifi et al., 2020b | In vitro (d) | NS | NS | CDK4, Cyclin B3 | p16, p18, p21 | |||
Exendin-4 | Aamodt et al., 2016 | In vitro (d) | NS | ||||||
Muhammad et al., 2017 | In vitro (p) | 2-fold | |||||||
Dai et al., 2017 | In vivo | juvenile:1.9 vs. 4adult:0.4 vs. 0.5 | NFATC1, NFATC3, NFATC4, Cyclin A1, CDK1, FOXM1, EGR2, EGR3 | ||||||
Ackeifi et al., 2020b | In vivo | 0.4 vs. 0.6 | |||||||
OPG | Kondegowda et al., 2015 | In vitro (d) | 0.4 vs. 1.3 | Inhibition of RANKL/RANK pathway ->GSK-3 beta inhibition, CREB-stimulation | |||||
DMB | In vitro (d) | 0.4 vs. 0.8 | |||||||
In vivo | 0 vs. 0.1 | ||||||||
SerpinB1 Silvestat | El Ouaamari et al., 2016 | In vitro (p) In vitro (p) In vivo | 0.01 vs. 0.05 0.1 vs. 0.05 0 vs. 0.1 | Inhibition of GSK-3 beta, alteration of MAPK, PRKAR2B-> NFAT translocation to the nucleus | |||||
Glucose | Stamateris et al., 2016 | In vitro (d) | Up to 1.2 | Activation of mTOR pathway | |||||
SB431542 | Dhawan et al., 2016 | In vivo | 0.2 vs. 0.5 | 0 vs. 0.3 | 0.05 vs. 0.1 | p16 | Inhibition of TGF-beta pathway | ||
ALKV Inh. II | Abdolazimi et al., 2018 | In vitro (d) | NS | ||||||
D4476 | In vitro (d) | NS | |||||||
SB431542 | Hakonen et al., 2018 | In vitro (p) | NS | ||||||
LY364947 | Wang P. et al., 2019 | In vitro (d) | NS | NS | NS | p15, p16, p21, p57 | |||
GW788388 | In vivo | 0.5 vs. 1 | |||||||
GABA | Purwana et al., 2014 | In vivo | 0.5 vs. 2.3 | GABAA/BR -> Ca2+ increase -> Activation of PI3K/Akt pathway, CREB activation | |||||
Aamodt et al., 2016 | In vitro (d) | NS | |||||||
Prud’homme et al., 2017 | In vitro (p) | 0.5 vs. 3.2 | |||||||
Tian et al., 2017a | In vitro (p) | up to 1.2 | |||||||
Lesogaberan | Tian et al., 2017b | In vitro (p) | 2.7-fold | ||||||
In vivo | 0.5 vs. 0.9 | 0.9 vs. 2.3 | |||||||
LIF | Rosado-Olivieri et al., 2020 | In vitro (sc) | 1 vs. 1.5 | Cyclin A2, Cyclin B1, Cyclin B2, Cyclin E2, CDK2, CDK4 | p16, p18, p19 | Activation of LIF pathway:LIFR-STAT3-CEBPD activation | |||
In vitro (d) | Cyclin B1, Cyclin B2, Cyclin D1, Cyclin E2, CDK2 | ||||||||
In vivo | 0.4 vs. 1.5 | ||||||||
MANF | Hakonen et al., 2018 | In vitro (p) | NS | Inhibition of NF-κB pathway | |||||
MI-2 | Chamberlain et al., 2014 | In vitro (p) | 0 vs. 0.6 | Inhibition of menin -> activation of MAPK | |||||
MI-2-2 | Muhammad et al., 2017 | In vitro (p) | 2.3-fold |
NS, not significant.
For each mitogen, the available information is:
– Mitogen applied (column 1);
– Reference (column 2);
– Model used (column 3): pstands for primary islets; d stands for dispersed beta cells; sc stands for human stem cell-derived beta cells; e stands for EndoC-βH1 cell line; and in vivo implies human beta cells/islets engrafted into mouse;
– Proliferation index (columns 4–7). The values are presented as index from control beta cells vs. the cells treated with mitogens; by default, the values are given in percentage and for the cases with different units, the units are indicated (for example, fold change). Depending on the proliferation markers assessed (Ki67, BrdU, EdU, or pHH3), the values are situated in the column dedicated for the corresponding marker;
– Effect on cell cycle regulators: upregulated activators (column 8) and downregulated inhibitors (column 9) in response to mitogen treatment;
– Signaling pathway through which the mitogen acts (column 10).