Skip to main content
Heliyon logoLink to Heliyon
. 2022 Jan 28;8(2):e08839. doi: 10.1016/j.heliyon.2022.e08839

Exploring the diversity of andean berries from northern Peru based on molecular analyses

Daniel Tineo a, Danilo E Bustamante a,b,, Martha S Calderon a,b, Eyner Huaman a
PMCID: PMC8829587  PMID: 35169641

Abstract

More than 12,000 species have been listed under the category of berries, and most of them belong to the orders Ericales and Rosales. Recent phylogenetic studies using molecular data have revealed disagreements with morphological approaches mainly due to diverse floral arrangements, which has proven to be a problem when recognizing species. Therefore, the use of multilocus sequence data is essential to establish robust species boundaries. Although berries are common in Andean cloud forests, diversity of these taxa has not been extensively evaluated in the current context of DNA-based techniques. In this regard, this study characterized morphologically and constructed multilocus phylogenies using four molecular markers, two chloroplast markers (matK and rbcL) and two nuclear markers (ITS and GBSSI-2). Specimens did not show diagnostic features to delimit species of berries. A total of 125 DNA-barcodes of andean berries were newly generated for the four molecular markers. The multilocus phylogenies constructed from these markers allowed the identification of 24 species grouped into the order Ericales (Cavendishia = 1, Clethra = 2, Disterigma = 2, Gaultheria = 4, Thibaudia = 4, Vaccinium = 3) and Rosales (Rubus = 8), incorporating into the Peruvian flora four new records (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale and Rubus glabratus) and revealing the genus Rubus as the most diverse group of berries in the Amazonas region. The results of this study showed congruence in all the multilocus phylogenies, with internal transcribed spacer (ITS) showing the best resolution to distinguish the species. These species were found in coniferous forests, dry and humid forests, rocky slopes, and grasslands at 2,506–3,019 masl from Amazonas region. The integration of morphological and DNA-based methods is recommended to understand the diversity of berries along the Peruvian Andean cloud forest.

Abstract in Quechua language

Qhawarqan astawan chunka iskayniyuq waranqa especiekuna bayasmanta huch’uy mit’a maypichus hatun rak’i chayaqi ordenkunata Ericaleswan Rosaleswan. Chayraqpi Khuski filogeneticamanta rurachiy allincharqan chanikuna molecularkuna willarqan ayñi rikunawanta morfologicokunamanta, qaylla llapan rantichay t’ika tiktutaywan ñawray, ima kay kaqta qhawacgirqan kay huk champay pachaman riqsiypa especiekunamanta. Hina kaqtintaq, chanikuna qatikipaykunamanta multilocus hat’alliy tiksipmi takyachiypaq saywakuna sinchikuna especiekunamanta. Pana bayaskuna kanku allatinkuna sach’a-sach’api phuyusqa anti runap, ñawran manan karqan achka kamaykuy kunan pacha allwiyaraykupi takyasqakuna ADN. Chayrayku, Noqanchispa taqwi allincharqan huk filogenia multilocus, rarachikupúnmi tawa molecular marcadorkuna, caspa iskay markadorkunawan cloroplastomanta (matK, rbcL) iskay markadorkunawan nuclearkunamanta (ITS, GBSSI-2). Kaykunawan filogeniamanta huniqamuran kikinchay iskay chunka tawayoq especies ima tantaqamuran q'anchis generospi (Cavendishia=1, Clethra=2, Disterigma=2, Gaultheria=4, Thibaudia=4, Vaccinium=3, Rubus=8), kaykunata huñuyqamuranta piruwanu llacha kamay tawa musuq quillqakamachikuta (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale, Rubus glabratus). Nocaykuq lluqsisqan kuwirinti rikuchirurqan llapankuna filogeniaspi multilocusmanta, kaspa espaciador transcrito interno (ITS) pi rikuchina kutuwi mihur rantichay riqsiypaq especiekunata.

Abstract in Awajun language

Dekanauwai juú weantug 12000 sag nagkaikiut, júna nejég tente ainawai nuintushkam kuashtai Ericales nuigtu Rosales weantui. Molecularesjai takasmaug juki filogeneticos augtus yamá dekai antugnaiñasmauwa nuna Morfologicosjai disa umikmaug, juka waignawai kuashag yagkunum, juwai dekaata tamanum kuashat utugchata ama nunuka. Nunui asamtai multilocus takasmauwa nujai dekanui wajukut ainawa pipish tumaig aidaush. Tujashkam kuashtai tentee nejég ainaug ikam naig yujagkim amuamua nunuig, wajupá kuashtakit tusajig ashi dekapasjig ADNjain dischamui. Nuni tamaugmak, ii augtusag duka takasé filogenia multilocus dekamua nujai, takasji ipák usumat marcadores molecularesjai, jimag marcadores cloroplastosjai (matK nuigtu rbcL) nuigtu jimag marcadores nuclearesjai (ITS nuigtu GBSSI-2). Juu filogenias dekaji 24 sag nagkaikiut tuwaka 7 generosnug tuwaka awa nunu (Cavendishia=1, Clethra=2, Disterigma=2, Gaultheria=4, Thibaudia=4, Vaccinium=3, Rubus=8), juui dekanai yamajam ipák usumat ajag perunum awanunu (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale nuigtu Rubus glabratus).

Keywords: Amazonas, Andes, Berries, DNA barcoding, Ericales, Rosales


Amazonas, Andes, berries, DNA barcoding, Ericales, Rosales.

1. Introduction

Botanically, berries refer to small, rounded, shiny, sweet, sour, multiseeded fruits from different ovaries of a single flower (Mazzoni et al., 2017). In common usage, the meaning of 'berry' certainly differs from this scientific definition. For instance, strawberries, raspberries, and blackberries are considered berries, but these are excluded by botanical circumscription since they are aggregate fruits (Xiang et al., 2017). Berries are consumed worldwide mainly because of the high concentrations of various phytochemicals, such as phenolic compounds, anthocyanins, and flavonoids (Mazzoni et al., 2017; López et al., 2021; Hotchkiss et al., 2021).

Regarding diversity, approximately 12,000 species have been listed under the category of berries (Rose et al., 2018), and most of them belong to the orders Ericales and Rosales (Phipps, 2014; Chase et al., 2016). The larger genera includes species of berries in Ericales are Impatiens (∼1000 spp.), Rhododendron (∼1,000 spp.), Diospyros (∼700 spp.), Erica (∼700 spp.), Vaccinium (∼500 spp.), and Primula (∼400 spp.) (Bouchenak-Khelladi et al., 2015; Schwery et al., 2015). These genera include many well-known tropical and temperate groups that are biogeographically widespread as pantropical and cosmopolitan (Chartier et al., 2017), mainly due to long-distance dispersal or vicariance scenarios (Thomas et al., 2015). In Rosales, the highest diversity of berries includes genera within the family Rosaceae (3,000 species), such as Rubus (∼750 spp.), Potentilla (∼400 spp.), Alchemilla (∼400 spp.), and Prunus (∼200 spp.) (Focke, 1911; Kalkman, 1993; Phipps, 2014). The great diversity of this group is due to polyploidy, agamospermy and constant hybridization of closely related species (Song and Hancock, 2011; Pedraza-Peñalosa and Luteyn, 2011; Mimura and Suga, 2020). Berry diversity in Rosaceae has a wide distribution, particularly in the temperate forests of the Northern Hemisphere (Hummer and Janick, 2009).

The Andean orogeny is considered one of the most significant events for radiation of vascular plants and the biogeographic history of neotropical species (including andean berries) in South America (Barthlott et al., 2011; Luebert and Weigend, 2014). This is clearly observed in Andean cloud forest ecosystems where high levels of biodiversity and endemism have been reported among different group of vascular plants (Ledo et al., 2012). Additionally, in the Peruvian Andes, the highest number of endemic plants has been found on slopes between 2,500 and 3,000 masl (Van der Werff and Consiglio, 2004). Currently, 113 species of berries in Rosaceae (Rosales) and 385 in Ericales have been reported from Peru (Ulloa-Ulloa et al., 2004; León, 2006a), and most of these species have been reported on the basis of morphological analyses alone (Coico et al., 2016). Many of these species are considered endemic and distributed in meso-andean and montane forest regions and others in natural areas (León, 2006a). However, this diversity has not been confirmed molecularly since phenomena such as high phenotypic plasticity or crypticism might over or under represent diversity, respectively (Calderon et al., 2021).

Recent phylogenetic studies of berries within Ericales have revealed disagreement with morphological approaches, such as those reporting wide floral diversity among species (Schönenberger et al., 2010; Rose et al., 2018). Accordingly, the proper taxonomic positions of these species and families were mainly resolved using molecular data (Chartier et al., 2017). The initial classification in Rosales (Rosaceae) was based on morphology and the number of chromosomes (Potter et al., 2002, 2007); however, intergeneric hybridization occurring within subfamilies and tribes has proven to be problematic when delimiting species (Hummer and Janick, 2009). To correct this incongruence, molecular analyses (e.g., plastidial markers, plastomes) are an effective tool for examining systematics (Soltis et al., 2011; Rose et al., 2018; Diaz-Garcia et al., 2021). The molecular markers for phylogenetic analyses that have been most commonly used in berries (Rosales and Ericales) are those corresponding to plastidial regions (matK, ndhF, and rbcL), plastidial intergenic spacers (trnL-trnF, trnS-trnG, psbA-trnH), and nuclear regions (nrITS, GBSSI-2) (Kron et al., 2002; Powell and Kron, 2003; Potter et al., 2007; Soltis et al., 2011; Wang et al., 2016). These barcodes have provided information for testing hypotheses on morphology, genetics and evolutionary relationships in phenotypically diverse groups of Ericales and Rosales (Xiang et al., 2017; Okada et al., 2020).

Although berries are common in Andean cloud forests, the diversity of berries has not been extensively evaluated in the current context of DNA-based techniques. Only few reports on the basis of anatomical observations has been presented. Accordingly, the novelty of this study is to characterize molecularly and determine the phylogenetic positions of berries collected from northern Peru, analyzing the evolutionary relationships of these taxa based on two chloroplast markers (matK and rbcL), the internal transcribed spacer (ITS) region, and nuclear granule-bound starch synthase (GBSSI-2). This is the first integrated study using morphology and the generation of DNA-barcodes to explore the diversity of andean berries from Amazonas region.

2. Materials and methods

2.1. Specimen collection

A total of 48 specimens of Andean berries were sampled from eight localities throughout the province of Chachapoyas, Amazonas, in northern Peru (Molinopampa, Granada, Levanto, Chachapoyas, Maino, Leymebamba, La Jalca, and Huancas; Figure 1). A permit for scientific research on wild flora (RDG N° D000394-2020-MIDAGRI-SERFOR-DGGSPFFS, with authorization code N° AUT-IFL-2020-061) was provided by Servicio Nacional Forestal y de Fauna Silvestre (SERFOR). Tissue samples of approximately 50 mm2 were taken from leaf tips for molecular analyses and placed in prelabeled 1.5 mL Safelock Eppendorf tubes. For each site, the date, time, and GPS coordinates were recorded. Photographs were taken to record sampling locations and site features. In addition, inflorescences, leaves, and fruits were collected for morphological examination. Samples were morphologically characterized according to Focke (1910, 1911); Middleton and Wilcock (1990); Sleumer (1967); Middleton (1991); Smith (1933); Kron et al. (2002) and Vander and Dickinson (2009) and were deposited in the herbarium of Universidad Nacional Toribio Rodríguez de Mendoza (KUELAP), Peru (Table 1) (Thiers, 2016). Furthermore, the records and morphologies of berries were revised and contrasted from databases and collections such as the Global Biodiversity Information Facility (https://www.gbif.org/), Tropicos from Missouri Botanical Garden (http://www.tropicos.org), the New York Botanical Garden Steere herbarium (http://sweetgum.nybg.org/science), and JSTOR Global Plants (https://plants.jstor.org).

Figure 1.

Figure 1

Map showing the sampling of Andean berry specimens from Region Amazonas, northern Peru.

Table 1.

List of samples of Andean berries collected in northern Peru including genomic DNA QC using fluorometer.

Species Code Herbarium Voucher Place Date Elevation (m.a.s.l) Latitude (South) Longitude (West) DNA concen. (ng/μL)
Cavendishia punctata IARAN006 KUELAP–267 La Palma 5/07/2017 2934 6°43′26.36″ 77°50′42.30″ 50.20
Cavendishia punctata IARAN018 KUELAP–279 Olmal 13/07/2017 2506 6°10′54.69″ 77°47′07.72″ 56.10
Cavendishia punctata IARAN032 KUELAP–293 Opelele 5/08/2017 2572 6°15′18.68″ 77°48′05.35″ 86.30
Cavendishia punctata IARAN050 KUELAP–311 Santa Rosa 14/08/2017 2794 6°18′06.26″ 77°53′51.48″ 80.70
Cavendishia punctata IARAN046 KUELAP–307 Maino 14/08/2017 2598 6°19′35.92″ 77°52′36.40″ 81.02
Clethra ovalifolia IARAN021 KUELAP–282 Sonche 23/07/2017 2507 6°10′40.69″ 77°47′09.79″ 43.00
Clethra retivenia IARAN034 KUELAP–295 Chachapoyas 5/08/2017 2627 6°15′35.49″ 77°47′59.39″ 25.00
Disterigma ecuadorense IARAN024 KUELAP–285 La Jalca 28/07/2017 2851 6°32′13.45″ 77°47′42.39″ 93.30
Disterigma synanthum IARAN014 KUELAP–275 Espadilla 13/07/2017 2536 6°13′16.64″ 77°40′51.62″ 21.30
Disterigma synanthum IARAN003 KUELAP–264 La Palma 5/07/2017 2887 6°43′28.98″ 77°50′45.47″ 12.00
Gaultheria secunda IARAN017 KUELAP–278 Espadilla 13/07/2017 2542 6°13′16.92″ 77°40′52.56″ 21.00
Gaultheria secunda IARAN005 KUELAP–266 La Palma 5/07/2017 2912 6°43′28.99″ 77°50′43.98″ 8.70
Gaultheria secunda IARAN023 KUELAP–284 Olmal 23/07/2017 2496 6°10′56.73″ 77°47′08.38″ 46.56
Gaultheria secunda IARAN027 KUELAP–288 La Jalca 28/07/2017 2837 6°29′23.55″ 77°48′47.56″ 42.05
Gaultheria secunda IARAN040 KUELAP–301 Opelele 5/08/2017 2827 6°15′30.71″ 77°48′24.23″ 94.72
Gaultheria sp. 1 IARAN041 KUELAP–302 Levanto 14/08/2017 2720 6°18′09.99″ 77°53′51.59″ 56.08
Gaultheria sp. 2 IARAN047 KUELAP–308 Levanto 14/08/2017 2770 6°18′11.66″ 77°53′51.18″ 79.00
Gaultheria sp. 3 IARAN028 KUELAP–289 La Jalca 28/07/2017 2,700 6°29′12.74″ 77°49′19.11″ 17.00
Thibaudia angustifolia IARAN022 KUELAP–283 Olmal 23/07/2017 2509 6°10′44.94″ 77°47′11.12″ 95.01
Thibaudia moricandi IARAN037 KUELAP–298 Opelele 5/08/2017 2625 6°16′04.98″ 77°46′53.43″ 76.30
Thibaudia obovata IARAN011 KUELAP–272 Espadilla 13/07/2017 2502 6°13′11.16″ 77°40′48.18″ 19.03
Thibaudia ovalifolia IARAN038 KUELAP–299 Tañapampa 5/08/2017 2372 6°13′56.99″ 77°51′13.92″ 22.08
Vaccinium floribundum IARAN001 KUELAP–262 La Palma 5/07/2017 2942 6°43′31.76″ 77°50′42.14″ 7.40
Vaccinium floribundum IARAN004 KUELAP–265 La Palma 5/07/2017 2906 6°43′28.99″ 77°50′43.94″ 21.20
Vaccinium floribundum IARAN007 KUELAP–268 La Palma 5/07/2017 3019 6°43′21.11″ 77°50′33.62″ 7.30
Vaccinium floribundum IARAN012 KUELAP–273 Espadilla 13/07/2017 2515 6°13′13.72″ 77°40′49.62″ 23.00
Vaccinium floribundum IARAN016 KUELAP–277 Espadilla 13/07/2017 2544 6°13′17.18″ 77°40′52.96″ 38.09
Vaccinium floribundum IARAN020 KUELAP–281 Sonche 23/07/2017 2494 6°10′47.96″ 77°47′07.36″ 49.86
Vaccinium floribundum IARAN026 KUELAP–287 Leymebamba 28/07/2017 2857 6°43′03.77″ 77°47′44.91″ 12.43
Vaccinium floribundum IARAN029 KUELAP–290 Huancaurco 2/08/2017 2680 6°07′59.65″ 77°52′34.45″ 86.09
Vaccinium floribundum IARAN031 KUELAP–292 Huancaurco 2/08/2017 2699 6°08′10.84″ 77°52′27.79″ 32.00
Vaccinium floribundum IARAN036 KUELAP–297 Opelele 5/08/2017 2626 6°15′24.92″ 77°47′58.95″ 43.32
Vaccinium floribundum IARAN051 KUELAP–312 Santa Rosa 14/08/2017 2597 6°19′38.43″ 77°52′36.31″ 14.00
Vaccinium mathewsii IARAN002 KUELAP–263 La Palma 5/07/2017 2906 6°43′31.46″ 77°50′43.66″ 64.30
Vaccinium mathewsii IARAN025 KUELAP–286 Leymebamba 28/07/2017 2855 6°43′03.79″ 77°47′45.14″ 23.10
Vaccinium mathewsii IARAN039 KUELAP–300 Opelele 5/08/2017 2827 6°15′30.87″ 77°48′24.53″ 65.30
Vaccinium mathewsii IARAN030 KUELAP–291 Huancaurco 2/08/2017 2727 6°07′58.84″ 77°52′39.03″ 32.20
Vaccinium meridionale IARAN009 KUELAP–270 Espadilla 13/07/2017 2399 6°13′04.40″ 77°40′19.82″ 24.90
Vaccinium meridionale IARAN013 KUELAP–274 Espadilla 13/07/2017 2519 6°13′14.60″ 77°40′49.79″ 78.00
Vaccinium meridionale IARAN019 KUELAP–280 Sonche 23/07/2017 2514 6°10′48.38″ 77°47′07.56″ 56.00
Rubus adenothallus IR003 KUELAP–256 Granada 4/04/2019 2822 6°06′07.01″ 77°38′28.79″ 129.20
Rubus andicola IR001 KUELAP–254 Izcuchaca 4/04/2019 2188 6°20′15.31″ 77°31′06.41″ 111.00
Rubus floribundus IR002 KUELAP–255 Izcuchaca 4/04/2019 2156 6°20′15.30″ 77°31′06.40″ 130.00
Rubus glabratus IR008 KUELAP–261 Calla Calla 4/04/2019 2887 6°43′19.29″ 77°50′45.41″ 143.60
Rubus lechleri IR005 KUELAP–258 Granada 4/04/2019 2923 6°07′34.69″ 77°38′59.81″ 110.20
Rubus loxensis IR006 KUELAP–259 Granada 4/04/2019 2949 6°07′34.92″ 77°38′59.97″ 160.00
Rubus sparsiflorus IR007 KUELAP–260 Granada 4/04/2019 3068 6°07′56.21″ 77°38′59.97″ 132.10
Rubus weberbaueri IR004 KUELAP–257 Molinopampa 4/04/2019 3251 6°08′59.48″ 77°40′16.09″ 120.00

2.2. DNA sequencing and alignment preparation

Genomic DNA was extracted from leaf tissue using the NucleoSpin Plant II Kit (Macherey-Nagel, Düren, Germany) following the Tineo et al. (2020). Briefly, samples were homogenized in a freeze-crush apparatus (SK-100, Funakoshi, Japan). 550 μl of lysis buffer was added and incubated at 65 °C overnight and then centrifuged at 11000 rpm for 60s. Then, 480 μl of binding buffer was added and centrifuged at 11000 rpm for 60s. Then, two washing steps of 600 μl of washing buffer was performed and centrifuged at 13000 rpm for 60s. Finally, 50 μl of elution buffer was added and centrifuged at 11000 rpm for 60s. DNA concentration was quantified by a Quantus™ Fluorometer (Promega, Madison, USA) (Table 1), and quality was measured by 1% agarose gel electrophoresis and visualized on a photodocumenter (SmartView Pro UVCI-1000, Major Science, Saratoga, USA) (Figure 2). Two chloroplast markers (matK and rbcL) and two nuclear markers (nrITS and GBSSI-2) were sequenced. Each gene was amplified using polymerase chain reaction (PCR) with MasterMix (Promega, Wisconsin, USA) in the following reaction mixture: 10 ng of DNA and 0.25–0.5 pmol of forward and reverse primers for a total volume of 10 μl. The PCR protocols followed Bustamante et al. (2021) and Tineo et al. (2020), and primer combinations are summarized in Table 2. Amplicons were purified using the NucleoSpin™ Gel and PCR Clean-up Kit protocol (Macherey-Nagel™, Düren, Germany). The sequences of the forward and reverse strands were determined commercially by Macrogen Inc. (Macrogen, Seoul, Korea). The sequences were manually edited with Chromas V.2.6.6 software. The 125 newly generated sequences (DNA-barcodes) from the four markers (matK, rbcL, nrITS and GBSSI-2) were deposited in GenBank. These sequences and others obtained from GenBank (Table 3) were initially aligned with Muscle algorithms (Thompson et al., 1994) and were adjusted manually with MEGA10 software (Kumar et al., 2018) (Figure 3).

Figure 2.

Figure 2

Genomic DNA QC using standard Gel Electrophoresis for Andean berries specimens from Region Amazonas, northern Peru.

Table 2.

Sets of primer combinations for matK, rbcL, nrITS and GBSSI-2 markers used for specimens from Ericales and Rosales (listed 5′→ 3′).

Gene or spacer region Amplified length (bp) Primers sequence (5′–3′) References
GBSSI–2 550 F: 5′–TGGTCTTGGTGATGTTCTTGG–3′ Rousseau–Gueutin et al., 2009
R: 5′– GTGTAGTTGGTTGTCCTTGTAATCC–3′ Rousseau–Gueutin et al., 2009
ITS 650 F: 5′–GGAAGTAAAAGTCGTAACAAGG–3′ White et al., 1990
R: 5′–TCCTCCGCTATATGATATGC–3′ White et al., 1990
rbcL 1600 F: 5′–ATGTCACCACAAACAGAAACTAAAGC–3′ Chase et al. (2016)
R: 5′– CTTTTAGTAAAAGATTGGGCCGAG–3′ Chase et al. (2016)
matK 1500 F: 5′–CTATATCCACTTATCTTTCAGGAGT–3′ Ooi et al. (1995)
R: 5′–AAAGTTCTAGCACAAGAAAGTCGA–3′ Ooi et al. (1995)

Table 3.

List of taxa used in molecular analyses along with voucher numbers followed by GenBank accession numbers. Sequences generated in the present study are in bold.

Species Voucher/N° Taxon ITS matK rbcL
Cavendishia angustifolia Pedraza 1749 KJ788223 KJ788254
Cavendishia arizonensis Luteyn 15286 KP729914
Cavendishia bomareoides Pedraza 1752 KJ788224 KJ788255
Cavendishia bracteata Luteyn 14223 AY331867 AY331894
Cavendishia callista Clarke 5241 KP729912 MF786429
Cavendishia capitulata Powell 10 AY331868 AY331895
Cavendishia complectens Pedraza 1749 KM209386
Cavendishia grandifolia NY/L. 8023 AY331869 AY331896
Cavendishia isernii Salinas 707 KP729959
Cavendishia leucantha Pedraza 1768 KJ788226
Cavendishia lindauiana Pedraza 1766 KJ788227 KJ788258
Cavendishia mariae Luteyn 15198 KP729960 KP729913
Cavendishia martii Luteyn 15443 AF382658 AF382747
Cavendishia micayensis Pedraza 1888 KJ788228 AF382748
Cavendishia nobilis Lewis 3414 KP729961 KP729916
Cavendishia pilosa Pedraza 1743 KJ788229 KJ788260
Cavendishia pubescens Pedraza 1038 KJ788230 KJ788261
Cavendishia punctata KUELAP–267 OL361763 OL706727 OL707640
Cavendishia punctata KUELAP–311 OL361767 OL706731 OL707644
Cavendishia punctata KUELAP–307 OL361766 OL706730 OL707643
Cavendishia punctata KUELAP–293 OL361765 OL706729 OL707642
Cavendishia punctata KUELAP–279 OL361764 OL706728 OL707641
Cavendishia quereme Pedraza 1707 KJ788231 KJ788262
Cavendishia tarapotana Pedraza 1958 KJ788232 KP729915
Cavendishia zamorensis Salina 721 KP729966 KP729917
Cavendishia litensis AY331890
Thibaudia floribunda AF382709
Thibaudia parvifolia

AF382713


Clethra acuminata Leonard et al., 1849 AY190572 JQ594906
Clethra alnifolia CCDB–20334–D03 AY190571 MF350258 MG224565
Clethra alnifolia CCDB–20334–C04 MG220127 AJ429281 MG222185
Clethra arborea Hedenas & Bisang s. AY190569
Clethra arfakana Sleumer & Vink 4380 AY190568
Clethra barbinervis Anderberg & Lundin 11 AY190573 AB697681 AF421089
Clethra canescens 224281 AY190564
Clethra castaneifolia S.V&D. 9109 AY190567
Clethra cubensis Rova et al., 2248 AY190560
Clethra delavayi Aldén et al., 1717 AY190570
Clethra fimbriata Harling 27133 AY190563
Clethra hartwegii H.S.Gaultheria 2135 AY190574
Clethra mexicana C&V 1831 AY190558 JQ591083
Clethra ovalifolia H&A.21905 AY190561
Clethra ovalifolia KUELAP–282 OL361761 OL706732 OL707645
Clethra pachyphylla Emanuelsson 261 AY190565
Clethra peruviana S.V et al., 10006 AY190566
Clethra retivenia KUELAP–295 OL361762 OL706733 OL707646
Clethra revoluta Persson 515 AY190562
Clethra scabra Oliveira 297 AY190559 MG833484
Clethra vicentina W&M 23234 AY190557
Ternstroemia sp. HQ437950
Franklinia alatamaha AF380082 MF349693
Diospyros aculeata


MG201641

Disterigma acuminatum PP1098 FJ001669
Disterigma agathosmoides L15190 KC175470
Disterigma alaternoides L15074 FJ001672 AY331901
Disterigma appendiculatum PP1113 FJ001673
Disterigma balslevii PP998 FJ001674
Disterigma bracteatum PP1016 FJ001675
Disterigma chocoanum PP1121 FJ001696
Disterigma codonanthum L15117 FJ001677
Disterigma cryptocalyx L14993 FJ001678
Disterigma dumontii L15177 FJ001679
Disterigma ecuadorense KUELAP–285 OL361760 OL706736 OL707648
Disterigma empetrifolium CP7 FJ001680
Disterigma hiatum PP1112 FJ001681
Disterigma humboldtii P1075 FJ001684
Disterigma luteynii LPP14797 FJ001687
Disterigma micranthum PP1229 FJ001688
Disterigma noyesiae PP1155 FJ001690
Disterigma ollacehum PP1528 FJ001697
Disterigma ovatum LPP15457 FJ001692 AY331902
Disterigma pallidum PP1506 AF382674
Disterigma parallelinerve JB12532 KC175459
Disterigma pentandrum L15085 FJ001693 KC175465
Disterigma pernettyoides L15441 AF382762
Disterigma pseudokillipiella PP1143 FJ001694 KC175471
Disterigma rimbachii PP1018 FJ001695 AY331903
Disterigma staphelioides PP1062 FJ001698
Disterigma stereophyllum L15206 FJ001699
Disterigma synanthum KUELAP–264 OL706734 OL707647
Disterigma synanthum KUELAP–275 OL361759 OL706735
Disterigma trimerum L15568 FJ001700
Disterigma ulei PP1515 FJ001701
Disterigma verruculatum PP1138 FJ001703
Notopora schomburgkii AF382683 AF382768
Orthaea venamensis AF382687 AF382772
Orthaea apophysata

AF382685


Gaultheria acuminata 1091527 JF801586 JF801333
Gaultheria adenothrix 586107 FJ010595
Gaultheria antipoda 672075 JF801617 JF801372 KT626709
Gaultheria borneensis VacciniumK.2101092, ACAD JF801598 AF366629 JF941568
Gaultheria bracteata 1091528 JF801593 JF801341
Gaultheria buxifolia 1091526 JF801359
Gaultheria cardiosepala LuLu–06–0022–1 JF976341 HM597394 JF941573
Gaultheria corvensis 1091531 JF801614
Gaultheria cumingiana VacciniumK.3101092, ACAD AF358882
Gaultheria cuneata S.D. Z&L. Lu 031543 HM597250
Gaultheria discolor GLGS32542 HM597366 JN098404
Gaultheria dolichopoda L. Lu et al., 060005 HM597318 HM597405
Gaultheria domingensis 679020 JF801594 JF801342
Gaultheria dumicola LuLu–GLGS20245 HM597346 JF941588
Gaultheria eciliata LuLu–LL–07149–1 HM597421
Gaultheria erecta L.13813, NY JF801585 AF366631
Gaultheria eriophylla 763043, RBGE U61317 L12618
Gaultheria foliolosa L.15075, NY JF801610
Gaultheria glomerata L.15327, NY JF801592 AF366633
Gaultheria gracilis 1091532 JF801587 JF801335
Gaultheria hapalotricha 1091533 JF801596
Gaultheria heteromera L. Lu et al., 07316A HM597358
Gaultheria hispidula VacciniumK.s.n., ACAD JF801562 AF366634 MG223840
Gaultheria hookeri S.D. Z&W.B. Yu 009 HM597364
Gaultheria humifusa FF132 FJ665708 JF801346 KX678317
Gaultheria hypochlora LuLu–GLGS16817–1 JF976381 HM597410 JF941640
Gaultheria insana 672082 JF801604 JF801354
Gaultheria lanigera L.15062, NY JF801590
Gaultheria leucocarpa VacciniumK. 318896, ACAD JF976385 JF801306
Gaultheria macrostigma 176244 FJ665711 JF801369
Gaultheria megalodonta 157515 AF358890 AF366639
Gaultheria miqueliana 1636–77, AA AF358891 AF124590
Gaultheria mucronata 586115 FJ010604 FJ010622
Gaultheria myrsinoides L.14814, NY AF358892 AF366640
Gaultheria notabilis L. Lu et al., 07005 HM597370
Gaultheria nubigena 672084 JF801600 JF801350
Gaultheria ovatifolia CCDB–23363–F06 JF801597 MG222845
Gaultheria parvula 672087 FJ665715 JF801371
Gaultheria praticola 861407 JF801383
Gaultheria procumbens Powell s.n., WFU AF366643 MG222887
Gaultheria prostrata S.D.Z&W.B.Yu ZY011 JF801603 JF801348 JN098405
Gaultheria pseudonotabilis GLGS 16565 HM597382
Gaultheria pyroloides 95633 HM597252 JF801349
Gaultheria reticulata L.15077, NY AF358897 AF366645
Gaultheria schultesii 586118 FJ010601
Gaultheria sclerophylla L.5331, NY AF358898 AF366646
Gaultheria secunda KUELAP–278 OL706744 OL707650
Gaultheria secunda KUELAP–284 OL361752 OL706738 OL707651
Gaultheria secunda KUELAP–301 OL361754 OL706741 OL707654
Gaultheria secunda KUELAP–288 OL361753 OL706739 OL707652
Gaultheria secunda KUELAP–266 OL361751 OL706737 OL707649
Gaultheria semi–infera L. Lu et al., 07312 HM597388
Gaultheria serrata 1091539 JF801595 JF801343
Gaultheria shallon DNA 185, WFU JF801581 JF801329 MG221678
Gaultheria sleumeriana 1091540 JF801613
Gaultheria straminea L. Lu et al., 07306 HM597390
Gaultheria strigosa L.15358, NY JF801608 AF366647
Gaultheria suborbicularis 1045346 JF801563
Gaultheria tasmanica 1977–5050, RBGK AF358901 JF801370
Gaultheria thymifolia 586120 HM597396
Gaultheria tomentosa L.15076, NY AF358902 AF366648
Gaultheria trichophylla LuLu–ZY–013–1 HM597416 JF941727
Gaultheria vaccinioides 1091543 JF801331
Gaultheria viridicarpa 1842756 KU564802
Gaultheria sp. 01 KUELAP–302 OL361755 OL706742 OL707655
Gaultheria sp. 02 KUELAP–308 OL706743 OL707656
Gaultheria sp. 03 KUELAP–289 OL706740 OL707653
Leucothoe griffithiana FJ010598 FJ010616
Leucothoe tonkinensis MH558159
Leucothoe davisiae

JF801553
FJ010617

Thibaudia ovalifolia KUELAP–299 OL361758 Yes OL707660
Thibaudia moricandi KUELAP–298 Yes OL707659
Thibaudia obovata KUELAP–272 OL361756 OL707657
Thibaudia costaricensis WFU/EAP016 AY331887 AY331914
Thibaudia densiflora MM001 AF382790
Thibaudia diphylla NY/L15459 AY331888 AY331915
Thibaudia floribunda NY/L15090 AF382709
Thibaudia inflata NY/L15029 AY331916
Thibaudia jahnii 180744 AF382792
Thibaudia litensis NY/L15020 AY331890
Thibaudia macrocalyx NY/L15444 AF382711 AF382793
Thibaudia martiniana NY/L15028 AY331891 AY331918
Thibaudia angustifolia KUELAP–283 OL361757 OL706745 OL707658
Thibaudia pachyantha NY/L15189 AF382712
Thibaudia parvifolia NY/L5212 AF382713
Thibaudia tomentosa NY/L15502 AY331892 AY331919
Vaccinium poasanum AF382736 JQ594910
Disterigma trimerum

FJ001700


Vaccinium alvarezii KIG, HGG, P–659–L KM209414
Vaccinium amamianum TI:Ohi–Toma s.n LC168877
Vaccinium ambivalens C.Koster BW 13699–L KM209415
Vaccinium andersonii RG–9104–L KM209418
Vaccinium arboreum FLAS:M–4609 KM209419 KY626810
Vaccinium arctostaphylos ACAD/VK–23991 AF419774 AF419702
Vaccinium berberidifolium FRF–51757–L KM209424
Vaccinium boninense 1004256 AB623168
Vaccinium bulleyanum 1633929 LC168878
Vaccinium caespitosum ACAD/VK–313887 AF419775 AF419703 KX678256
Vaccinium calycinum ACAD/VacciniumK–630886 AF419776 AF419704
Vaccinium caudatifolium RBGE 1993–4020 AF382715 AF382797
Vaccinium cercidifolium RBGE 1982–0845 AF382716
Vaccinium cereum ACAD/VacciniumK–316992 KM209431 AF419705
Vaccinium ciliatum 445570 AB623188
Vaccinium corymbosum ACAD/VacciniumK–ABS7 AF419778 AF419706 MG223027
Vaccinium crassifolium WFU/K&P–DNA208 AF382718
Vaccinium crenatum NY/L14171 AF382719
Vaccinium cruentum 1633933 KM209436
Vaccinium cylindraceum 180753 AF382720 AF382800_
Vaccinium deliciosum ACAD/VK–529879 AF419790 AF419707 KX678227
Vaccinium dentatum RBGE 1011085 AF382721 AF382801
Vaccinium emarginatum 174252 AB623166
Vaccinium erythrocarpum ACAD/VK–81981 AF419779 AF419710
Vaccinium exul 1633938 KU568131
Vaccinium filiforme RBGE 1980–1411 AF382722
Vaccinium floribundum 180757 AF382804
Vaccinium floribundum KUELAP–312 OL707676
Vaccinium floribundum KUELAP–268 OL706747 OL707663
Vaccinium floribundum KUELAP–273 OL707665
Vaccinium floribundum KUELAP–281 OL360763 OL706752 OL707668
Vaccinium floribundum KUELAP–265 OL360759 OL706746 OL405713
Vaccinium floribundum KUELAP–277 OL360761 OL706750 OL707667
Vaccinium floribundum KUELAP–287 OL707625 OL707670
Vaccinium floribundum KUELAP–262 OL707661
Vaccinium floribundum KUELAP–290 OL360765 OL706753 OL707671
Vaccinium floribundum KUELAP–297 OL360768 OL707628 OL707674
Vaccinium floribundum KUELAP–292 OL360767 OL707627 OL707673
Vaccinium fragile ACAD/VacciniumK–128796 AF382725 AF382805
Vaccinium gaultheriifolium RBGE 1992–0332 AF382726 LC168880
Vaccinium hirsutum ACAD/VacciniumK–83981 AF419780 AF419709
Vaccinium hirtum RBGE 1921–9886 AB623185 AB623169
Vaccinium horizontale 180761 AF382808
Vaccinium latissimum 1633959 KM209449
Vaccinium leucobotrys 1633944 KM209451
Vaccinium macrocarpon 13750 AF382730 U61316 MG221913
Vaccinium madagascariense LB–11063–L KM209442
Vaccinium mathewsii KUELAP–286 OL360764 OL707624 OL707669
Vaccinium mathewsii KUELAP–300 OL360769 OL707629 OL707675
Vaccinium mathewsii KUELAP–263 OL707662
Vaccinium mathewsii KUELAP–291 OL360766 OL707626 OL707672
Vaccinium membranaceum ACAD/VK–133979 AF419782 AF419711 MH926046
Vaccinium meridionale ACAD/VacciniumK–s.n. AF382731 AF124576
Vaccinium meridionale KUELAP–274 OL360760 OL706749 OL707666
Vaccinium meridionale KUELAP–270 OL706748 OL707664
Vaccinium meridionale KUELAP–280 OL360762 OL706751
Vaccinium moupinense S.M, A.F. 079 KM209457
Vaccinium myrtillus S/Anderberg s.n. AF382732 AF382810 MG221208
Vaccinium nummularia 180764 LC168882
Vaccinium oldhamii ACAD/VacciniumK–426886 AF419783 AB623174
Vaccinium ovalifolium ACAD/VK–1419886 AF419784 KX679055
Vaccinium ovatum ERM1383 FJ001692 KX678497
Vaccinium oxycoccos HERB0230 LC168883 KX677905
Vaccinium padifolium ACAD/VK–5141090 AF382734 AF382812
Vaccinium phillyreoides 989263–L KM209465
Vaccinium praestans ACAD/VK–Vacc813 AF419785 AF419714
Vaccinium pratense SCBGP385_2 KP092616
Vaccinium reticulatum ACAD/VacciniumK–324992 AF382737 AF382814
Vaccinium scoparium ACAD/VacciniumK–731883 AF419787 AF419716 MG222739
Vaccinium sieboldii TNS:175ws–20100513 AB623191 AB623175
Vaccinium smallii ACAD/VK–725886 AF382739 AB623170
Vaccinium summifaucis RBGE 1963–0610 AF382740 AF382817
Vaccinium tenellum WFU/K& P–DNA209 AF382741 AF382818
Vaccinium uliginosum ACAD/VK–217995 AF419788 AF419717 KX677950
Vaccinium varingifolium 229200 AY274564
Vaccinium vitis idaea RBGE 1977–3274A AH011361 MN150141 MG222697
Vaccinium wrightii 1004259 AB623192
Vaccinium yakushimense 1004255 AB623183
Vaccinium yatabei ACAD/VK–419886 AF419789 AF419718
Z. pulverulenta (Outgroup) AF358906 AF124571
A. polifolia (Outgroup)

AF358872
LC168873

Species
Voucher/N° Taxon
ITS
GBSSI
rbcL
Rubus acuminatus R2007 KU881197
Rubus adenothallus KUELAP–256 OL348471 OL707633 OL707678
Rubus amabilis R01–14–SICUA FJ472909 KU926726 KU881200
Rubus andicola KUELAP–254 OL348470 OL707636 OL707677
Rubus assamensis R0118 AH006024 KU926729 KU881203
Rubus australis Gardner 1539, MO H006022
Rubus biflorus R2504 KU881063 KU926733 KU881207
Rubus bifrons Alice 98–9, M AF055775
Rubus bollei Bol_col14 KM037227
Rubus caesius Karlen 243, S/75065 AF055776 FN689382
Rubus calycinus R2519 KU881065 KU926735 KU881209
Rubus canadensis A&C 98–10, M/MOBOT.S.27940 AF055777 KY427303
Rubus caudifolius R2021 KU881067 KU926737 KU881211
Rubus chamaemorus Alice, R17, M AF055740
Rubus chingii R2128 KU881068 KU881212
Rubus corchorifolius PDBK 2008–0160 MH593651
Rubus coreanus 321593 MT078683 KU926741 MN732644
Rubus cuneifolius Alice 5, M/A.22485 AF055778 KJ773846
Rubus deliciosus Alice, 98–1, M AF055733
Rubus ellipticus R2512/R0112 KU881060 KU926746 KU881223
Rubus eucalyptus R2354 KU926749 KU881226
Rubus eustephanus R2518 KU881083 KU926750 KU881227
Rubus loxensis KUELAP–259 OL348474 OL707635 OL707679
Rubus flagellaris Alice 61:WKU/BM 2008/273 AY083372 HM850313
Rubus foliosus Fol_col08 KM037335
Rubus floribundus KUELAP–255 OL351854 OL707632
Rubus geoides Dudley et al., 1538a, MO AF055799
Rubus glabratus Rubus5132 QCA HM453950
Rubus glabratus KUELAP–261 OL348476 OL707639 OL707681
Rubus glaucus PI 548906 AY083361
Rubus gracilis Grac_co0l5 KM037377
Rubus gunnianus Wells 96–1, M AF055749
Rubus hirsutus ODdo/R2225 AY818208 KU926758 KU881236
Rubus hypomalacus Hma_col07 KM037395
Rubus hypopitys R2533 KU881094 KU881238
Rubus idaeus Alice, R8, MAINE AF055755 JX848533
Rubus lasiococcus Merello et al., 827, MO AF055750
Rubus lechleri KUELAP–258 OL348473 OL707637 OL707682
Rubus macilentus R2501 KU881118 KU926783 KU881262
Rubus macraei 59494 AF055763
Rubus matsumuranus PDBK 2012–0085 MH593654
R, moorrei Streimann 8207, GH AF055765
Rubus mesogaeus ALTA:120202 KU881122 KU926787 KU881266
Rubus moschus Mos01_col04 KM037437
Rubus niveus R0101 KU881126 KU926791 KU881270
Rubus nubigenus 1257, NCGR AF055769
Rubus odoratus Alice, R14, M AF055734
Rubus parviflorus Richards, 666, M AF055735
Rubus parvifolius R2035 KU881132 KU926797 GU363802
Rubus parvus Alice 97–3, M/CHR:688824 AF055766 KT626843
Rubus pectinellus 680–MO AF055797
Rubus pedemontanus Martensen s.n. AF055783
Rubus pentagonus R0223 KU926801 KU881280
Rubus phoenicolasius Alice, 96–2, M AF055759 KU926803
Rubus pinfaensis R0102 KU926811 KU881291
Rubus platyphyllus Sva_col04 KM037581
Rubus praecox Pra01_col01 KM037481
Rubus pungens R2337 KU881153 KU926818 KU881297
Rubus radula Rad_col06 KM037522
Rubus reflexus S.1033I/S.0492L JN407524 JN407362
Rubus robustus Steinbach 247, GH AF055771
Rubus roseus L&14402, M AF055770
Rubus sanctus Thibaudia Eriksson 714, S AF055785
Rubus saxatilis Thibaudia Eriksson 719, S AF055746
Rubus schizostylus TKM201536 KT634247
Rubus schleicheri Schl_col05 KM037537
Rubus scissoides 1546356 KM037543
Rubus setosus Alice 113, MAINE AF055787
Rubus silvaticus Sil_col08 KM037557
Rubus simplex R2321 KU926832 KU881312
Rubus sparsiflorus KUELAP–260 OL348475 OL707638 OL707680
Rubus sulcatus Martensen 1325.12 AF055789
Rubus sumatranus R2111 KU881182 KU926845 KU881326
Rubus tephrodes Yao, 9231, MO AF055767
Rubus thibetanus Q186 MH711174
Rubus trifidus C, 3.001/A, 98–2, M AF055737
Rubus trilobus Ruiz, 889, MO AF055738
Rubus trivialis Alice 55, M/Abbott 26055 AF055790 KJ773847
Rubus ursinus 197, NCGR/Alice 98–8, M AF055794
Rubus vigorosus Martensen 2518.32 AF055793
Rubus weberbaueri KUELAP–257 OL348472 OL707634 OL707683
Fullgaria paradoxa U90805 AM116869 U06802
Waldsteinia fragarioides U90822
Geum urbanum AM116871 U90802

Figure 3.

Figure 3

Experimental procedures for sampling, identification, DNA extraction, amplification, purification and data analysis for Andean berries specimens from Region Amazonas, northern Peru.

2.3. Phylogenetic analysis of concatenated sequence data

The phylogenies were based on concatenated data of the four molecular markers (Table 2). An exploratory phylogeny consisting of Ericales and Rosales (340 sequences) was performed to identify the main lineages where Andean berries were embedded. Additionally, separate phylogenies for each lineage were evaluated. Selection of the best-fitting nucleotide substitution model was conducted using PartitionFinder (Lanfear et al., 2012) for exploratory analysis (using the four partitions matK, rbcL, nrITS and GBSSI-2) and for separate phylogenies (using three partitions each) (Table 4). The best partition strategy and model of sequence evolution were selected based on the Bayesian information criterion (BIC) for each phylogeny (Table 4). Maximum likelihood (ML) analyses were conducted with the RAxML HPC-AVX program (Stamatakis, 2014), implemented in the raxmlGUI 1.3.1 interface (Silvestro and Michalak, 2012) using Table 4 models with 1000 bootstrap replications. Bayesian inference (BI) was performed with MrBayes v. 3.2.6 software (Ronquist et al., 2012) using Metropolis-coupled MCMC and the Table 4 models. Two runs each with four chains (three hot and one cold) were conducted for 10,000,000 generations, sampling trees every 1,000 generations.

Table 4.

Evolutionary models for phylogenetic analyses of specimens from Ericales and Rosales.

Group Bayesian inferences Maximum likelihood
Exploratory phylogeny Figure S1 GTR + I+G GTRGAMMAI
Separate phylogenies Figure 2 GTR K81
Figure 3 TRNEF+G TRNEF+G
Figure 4 GTR K81UF+I+G
Figure 5 GTR+I+G GTR+I+G
Figure 6 GTR+I+G GTR+I+G
Figure 7 GTR K81UF+G
Figure 8 GTR+I+G GTR+I+G

3. Results

A total of 125 DNA-barcodes of andean berries were newly generated for the four molecular markers that allowed the construction of multilocus phylogenies. In the exploratory phylogeny, the analyzed data matrix included a total of 3,324 base pairs (bp) (1,487 bp for matK, 666 bp for rbcL, 716 bp for ITS, and 455 bp for GBSSI) from 340 individuals (Table 3). This multilocus phylogeny obtained from the ML and BI analyses molecularly confirmed 24 species from 48 specimens embedded in the order Ericales and Rosales. This exploratory phylogenetic tree showed six monophyly lineages belonging to Ericales [Cavendishia Lindl., Clethra L., Disterigma (Klotzsch) Nied, Gaultheria L., Thibaudia Ruiz & Pav., and Vaccinium L.] and one belonging to Rosales (Rubus L.) (Figure S1).

3.1. Cavendishia

The phylogeny of Cavendishia included concatenated data (1,265 bp for matK, 551 bp for rbcL, and 631 bp for ITS) from 25 individuals. The specimens KUELAP-211, KUELAP-267, KUELAP-279, KUELAP-293, and KUELAP-307 were recognized as Ca. punctata (Ruiz & Pav. ex J.St.-Hil.) Sleumer. This species is characterized by pink peduncles, dark-red pedicels, pinkish-red calyx, and pale green flowers (Figure 9A, Table 5). This species was placed in sistership with Ca. bracteata (Ruiz & Pav. ex A.St.-Hil.) Hoerold. The genetic divergences between these species were over 0.9% for matK and 0.4% for ITS (Figures 4, S2, S3). The intraspecific divergences of Ca. punctata were 0.7% for matK, 0.3% for rbcL, and 0.2% for ITS.

Figure 9.

Figure 9

Phylogenetic tree of the Vaccinium lineage based on maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS. or 0.90 (BPP. are indicated by hyphens (-)). The scale bar indicates the number of nucleotide substitutions per site.

Table 5.

Morphological comparisons among species of the genus Cavendishia.

Species Habitat Altitude (masl) Height (m) Immature fruit Mature fruit Flowers Corolla References
Cavendishia bracteata Shrub 1400–3500 1–3 Green Black Lilac Pink Luteyn (1983)
WCVP (2021)
Cavendishia isernii Shrub terrestrial 660–1200 1.8–3 Reddish–green Greenish–white Lilac Luteyn (1983)
Cavendishia punctata Shrub 2000–3000 2–3.5 Reddish–green Purple Pedicel and garnet calyx Greenish Luteyn (1983), this study
Cavendishia sirensis Shrub hemi–epiphyte 600–1700 1.5–3 Green Purple White, red calyx Tubular Luteyn (1983)
Cavendishia tarapotana Shrub 1200–1500 2.5–5 Lilac Fuchsia red Rose–yellow, white–yellow Luteyn (1983)

Figure 4.

Figure 4

Phylogenetic tree of the Cavendishia lineage based on maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.

3.2. Clethra

The multilocus phylogeny of Clethra (1,323 bp for matK, 532 bp for rbcL, and 716 bp for ITS) included 21 individuals. Two species were identified among the specimens, Cl. ovalifolia Turcz (KUELAP-282) and Cl. retivenia Sleumer (KUELAP-295) (Figure 5). Cl. ovalifolia was characterized by oval leaves with stipules in the edges (Figure 9B), while Cl. retivenia was diagnosed with pubescent leaves and ferruginous back side leaves (Figure 9C, Table 6). Cl. retivenia resolved sistership to the clade composed of Cl. fimbriata Kunth, Cl. ovalifolia and Cl. revoluta (Ruiz & Pav.) Spreng., and genetic divergences were over 0.5% for ITS (Figure S4).

Figure 5.

Figure 5

Phylogenetic tree of the Clethra lineage based on maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.

Table 6.

Morphological comparisons among species of the genus Clethra.

Species Habitat Altitude (masl) Height (m) Leaf shape Immature fruit Mature fruit Flowers Corolla References
Clethra fimbriata subshrub 2800–3600 2–3 Coriaceous Brown Brown White White León, 2006a, León, 2006b, Sleumer (1967)
Clethra ovalifolia Shrub 2000–3100 1–3 Brown Cream White Sleumer (1967)
Clethra retivenia Shrub 1500–3200 3 Coriaceous White White León, 2006a, León, 2006b, this study
Clethra revoluta Tree 2350 10–16 Coriaceous White White Sleumer (1967)
Clethra scabra Tree 1700–2000 4–8 Green Brown– Reddish Pink Pink Sleumer (1967)

3.3. Disterigma

The phylogeny of Disterigma included concatenated data (1274 bp for matK and 686 bp for ITS) from 32 individuals. Based on the multilocus tree obtained from the ML and BI analyses (Figure 6), the specimens were identified as D. synanthum Pedraza (KUELAP-264, KUELAP-275) and D. ecuadorense Luteyn (KUELAP-285). The former species was characterized by pale green floral bracts and a white corolla (Figure 9D). This species was sister to D. alaternoides (Kunth) Nied (BS/BI = 85/1.0), differing by 0.2% for the ITS. Additionally, D. ecuadorense was characterized by a green calyx, pink corolla, and white berry (Figure 9E, Table 7). This species was sister to D. ulei Sleumer, differing by 2.3% for ITS (Figures S5, S6).

Figure 6.

Figure 6

Phylogenetic tree of the Disterigma lineage based on maximum likelihood inference of combined matK and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP. are indicated by hyphens (-)). The scale bar indicates the number of nucleotide substitutions per site.

Table 7.

Morphological comparisons among species of the genus Disterigma.

Species Habitat Altitude (masl) Height (m) Calyx Immature fruit Mature fruit Flowers Corolla References
Disterigma synanthum Shrub–epiphyte 2500–3000 0.5–1 Green pale Green pale Brown White–pink white, style white Pedraza–Peñalosa (2008), this study
Disterigma alaternoides Shrub terrestrial 1500–2960 1.5–2 Green Whitish–green Brown White–pink White tubular León, 2006a, León, 2006b, Pedraza–Peñalosa (2008)
Disterigma ecuadorense Shrub terrestrial 2500–3000 1 Green White White Whitish–pink Smith (1933), León, 2006a, León, 2006b, this study
Disterigma ulei Epiphytic grass, Shrub terrestrial 2000–2800 0.5–1 Light green Light green Ocbonicos lilac Greenish Pedraza–Peñalosa (2008), Smith (1933)

3.4. Gaultheria

The multilocus phylogeny of Gaultheria (1487 bp for matK, 550 bp for rbcL and 659 bp for ITS) included 67 individuals (Figure 7). The materials comprise four species within Gaultheria. One of this species was identified as G. secunda J. Rémy (KUELAP-266, KUELAP-278, KUELAP-284, KUELAP-288, KUELAP-301) based on the red calyx and pale-white corolla (Figure 9F, Table 8). This species was resolved in sistership to the clade composed of G. foliolosa Benth and G. mucronata (L. fil.) J.Rémy. The intraspecific divergences of G. secunda were 0.2% for matK, 0.2% for rbcL, and 2.4% for ITS (Figures S7, S8, S9). The other three species remained unidentified. Gaultheria sp. 1 (KUELAP-289) (Figure 9G) resolved sister to G. myrsinoides Kunth. Additionally, Gaultheria sp. 2 (KUELAP-308) (Figure 9H) and Gaultheria sp. 3 (KUELAP-302) (Figure 9I) were sister species, and both were sister to G. glomerata (Cav.) Sleumer.

Figure 7.

Figure 7

Phylogenetic tree of the Gaultheria lineage based on maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS. or 0.90 (BPP. are indicated by hyphens (-)). The scale bar indicates the number of nucleotide substitutions per site.

Table 8.

Morphological comparisons among species of the genus Gaultheria.

Species Habitat Altitude (masl) Height (m) Calyx Immature fruit Mature fruit Flowers Corolla References
Gaultheria foliolosa Shrub terrestrial 2000–3000 0.5–3 Cream - Blue–black White Cream Middleton (1990, 1991)
Gaultheria glomerata Shrub terrestrial 1000–3000 0.5–3 Red–rose Greenish Black Lilac, red Middleton (1990, 1991)
Gaultheria myrsinoides Shrub terrestrial 2000–2800 1–2 Green Green Purple White White Middleton (1990, 1991)
Gaultheria mucronata Shrub terrestrial 2000–3120 1–2 Green Green Lilac Pink Cream at base rose distally Middleton (1990, 1991)
Gaultheria secunda Shrub, half–terrestrial 2500–3500 1–2 Rose–red Green Red–rose Rose–pink Pale pinkish–white Middleton (1990, 1991), WCVP (2021), this study
Gaultheria sp 1 Shrub 2000–2720 1–2 Rose–red Green Red–rose Rose–pink Pale pinkish–white This study
Gaultheria sp 2 Shrub 2000–2700 1–2 Rose–red Green Red–rose Rose–pink Pale pinkish–white This study
Gaultheria sp 3 Shrub 2000–2700 1–2 Rose–red Green Red–rose Rose–pink Pale pinkish–white This study

3.5. Thibaudia

The phylogeny of Thibaudia included concatenated data (1,262 bp for matK, 551 bp for rbcL and 650 bp for ITS) from 18 individuals. The materials comprised four species in Thibaudia (Figure 8). T. ovalifolia A.C.Sm. (KUELAP-299) and T. moricandi Dunal (KUELAP-298) were recognized as sister species, and both differed by 0.1% for matK and 0.1% for rbcL. T. ovalifolia was characterized by glabrous flowers and rugose calyxes (Figure 9L), whereas T. moricandi was characterized by a pubescent corolla (Figure 9K, Table 9). These two species were sister to T. obovata A.C.Sm. (KUELAP-272), and both differed from the latter by over 0.1% for rbcL and 0.1% for ITS (Figures S10, S11). T. obovata was characterized by obovate-oblong leaves, pilose calyx and pedicels, and tomentose corolla (Figure 9M). Moreover, the clade composed of these three species and T. nutans Klotzsch ex Mansf. was closely related to T. angustifolia Hook (KUELAP-283). T. angustifolia was diagnosed by the presence of a bright red corolla and purple berries (Figure 9J).

Figure 8.

Figure 8

Phylogenetic tree of the Thibaudia lineage based on the maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP. are indicated by hyphens (-)). The scale bar indicates the number of nucleotide substitutions per site.

Table 9.

Morphological comparisons among species of the genus Thibaudia.

Species Habitat Altitude (masl) Height (m) Calyx Flowers Corolla References
Thibaudia angustifolia Shrub 2000–2800 0.5–2 Red–rose Bright red Bright red León, 2006a, León, 2006b, WCVP (2021), this study
Thibaudia diphylla Shrub 1000–2400 2–4 Pale–pink White pink Rich pink León, 2006a, León, 2006b, WCVP (2021)
Thibaudia moricandii Shrub 1500–2600 0.5–2 Red Red Pubescent, throat, lobes white León, 2006a, León, 2006b, this study
Thibaudia nutans Herbaceous–bush 1000–1900 0–5 – 3 Green Cauliflorous Dark–red León, 2006a, León, 2006b
Thibaudia ovalifolia Shrub 2100–2700 0.5–2 Rugose glabrous flowers León, 2006a, León, 2006b, WCVP (2021), this study
Thibaudia obovata Shrub 1600–2200 1–3 Pilose pedicels Tomentose León, 2006a, León, 2006b, WCVP (2021), this study
Thibaudia tomentosa Shrub terrestrial 0.5–1.5 Globose bell–shaped Bright red, curved Orange León, 2006a, León, 2006b

3.6. Vaccinium

The multilocus phylogeny of Vaccinium (1,253 bp for matK, 551 bp for rbcL and 673 bp for ITS) included 79 individuals. In this collection, three species were recognized in this genus, namely, V. meridionale Sw, V. mathewsii Sleumer, and V. floribundum Kunth. The former species (KUELAP-270, KUELAP-274, KUELAP-280) was characterized by dark berries and a bitter taste (Figure 9N). V. meridionale was sister to V. arboreum Marshall and genetically differed by 0.3% in rbcL and by 3.5% in the ITS. V. mathewsii (KUELAP-263, KUELAP-286, KUELAP-291, KUELAP-300) was morphologically characterized by a pinkish-white corolla and blue–black fruit (Figure 9O, Table 10). V. mathewsii was closely related to V. crenatum (G. Don) Sleumer, and genetic divergence of these taxa was 5.7% for ITS. V. floribundum (KUELAP-262, KUELAP-265, KUELAP-267, KUELAP-268, KUELAP-273, KUELAP-277, KUELAP-281, KUELAP-287, KUELAP-290, KUELAP-292, KUELAP-312) was diagnosed by having leathery leaves with pinkish-white flowers and dark berries (Figure 9P) and showed high intraspecific divergences (1.2% for matK, 0.3% for rbcL, and 3.7% for ITS), while the general appearance remained identical among all specimens of this study, suggesting cryptic diversity. V. floribundum was sister to V. ovatum Pursh, differing by 0.7% for rbcL (Figures S12, S13, S14).

Table 10.

Morphological comparisons among species of the genus Vaccinium.

Species Habitat Altitude (masl) Height (m) Immature fruit Mature fruit Flowers Corolla References
Vaccinium arboreum Shrub - 2–5 Green Black White White Bracko and Zurucchi (1993), León et al. (2017)
Vaccinium crenatum Shrub terrestrial 1000–2800 Green Reddish, blue–black White–pink Rose–red Vander Kloet and Dickinson (2009), León et al. (2017)
Vaccinium floribundum Shrub 2000–3000 0.5–1 Green blue–black White, red tips white Bracko and Zurucchi (1993), León et al. (2017), this study
Vaccinium mathewsii Shrub 2000–3000 1–2 Green blue–black pinkish–white Pinkish–white Bracko and Zurucchi (1993), León et al. (2017), this study
Vaccinium meridionale Shrub 1800–2800 0.5–2 Green–reddish dark White–pink White Vander Kloet and Dickinson (2009), this study
Vaccinium ovatum Shrub - - Green red White–pink Pink Bracko and Zurucchi (1993), León et al. (2017)

3.7. Rubus

The phylogeny of Rubus (666 bp for rbcL, 455 bp for GBSSI, and 639 bp for ITS) included 81 individuals. In this collection, eight species were recognized in Rubus and grouped into two subgenera (Orobatus ans Rubus, Figure 10). The subgenus Orobatus consisted of R. andicola Focke, R. glabratus Kunth, R. lecheri Focke, R. sparsiflorus J.F. Macbr, and R. weberbaueri Focke, whereas the subgenus Rubus consisted of R. adenothallus Focke, R. floribundus J.F.Macbr. and R. loxensis Benth. These two subgenera were distinguished by glands without flexible bristles (Orobatus) and inflorescences in panicle or subracemose forms (Rubus). In the subgenera Orobatus (Figure 11); R. andicola (KUELAP-254) was characterized by elongated branches, spines with short, curved and compressed trichomes, with leaves pubescent on the underside (Figure 11C); R. glabratus (KUELAP-261) by having pink-rose petals and reddish-orange immature fruits (Figure 11A); R. lechleri (KUELAP-258) by its bristly pubescence on the back sides of leaves and purple petals (Figure 11E); R. sparsiflorus (KUELAP-260) by the presence of flowers in dense clusters, crepe-like petals and a pink corolla (Figure 11B); and R. weberbaueri (KUELAP-257) by having veins and spines on the back sides of the leaves, magenta flowers, and black fruits (Figure 11D, Table 11). Genetically, R. weberbaueri and R. lechleri were sister species, differing by 1.0% for rbcL and 0.2% for ITS. These two species were closely related to R. roseus, and the three species differed by over 0.2% for ITS. R. andicola was sister to the clade composed of these tree species, differing over 0.9% for rbcL and 0.2% for ITS. R. sparsiflorus was closely related to the clade composed of these four species and diverged over 0.9% for rbcL and 0.3% for ITS. R. glabratus was closely related to the clade composed of six species of the sugenus Orobatus and differed over 0.9% for rbcL and 0.8% for ITS. Conversely, in the subgenus Rubus, R. floribundus (KUELAP-255) was recognized as a sister species to R. robustus, and both differed by 0.9% for the ITS. R. floribundus had dense inflorescences with pyramidal-shaped paniculata extraaxillaris that tapered toward the lower branches (Figure 11F). These species were sister to the clade composed of R. adenothallus (KUELAP-256) and R. loxensis (KUELAP-259). R. loxensis had creeping-climbing stems and slightly ovate petals and sepals (Figure 11G), whereas R. adenothallus was characterized by small greenish-white flowers and elongated red–black baya (Figure 11H). R. adenothallus and R. loxensis differed by 0.3% for rbcL (Figures S15, S16, S17).

Figure 10.

Figure 10

Phylogenetic tree of the Rubus lineage based on maximum likelihood inference of combined rbcL, GBSSI, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.

Figure 11.

Figure 11

Diversity of Andean berries belonging to Ericales. A. Cavendishia punctata. B. Clethra ovalifolia. C.Clethra retivenia. D.Disterigma synanthum. E.Disterigma ecuadorense. F.Gaultheria secunda.G.Gaultheria sp. 01. H.Gaultheria sp. 02. I.Gaultheria sp. 03. J.Thibaudia angustifolia.K.Thibaudia moricandi.L.Thibaudia ovalifolia. M.Thibaudia obovata. N. Vaccinium meridionale. O. Vaccinium mathewsii. P.Vaccinium floribundum.

Table 11.

Morphological comparisons among species of the genus Rubus.

Species Habit Altitude (masl) Height (m) Calyx Immature fruit Mature fruit Flowers Corolla References
Rubus andicola Shrub 800–2500 2–3 Green Green whit trichomes Red White–pink Pink Focke (1910, 1911), Mendoza and León (2006), this study
Rubus adenothallus Shrub terrestrial 2000–3500 2–5 Green Light green Red–black, red greenish–white Greenish–white Focke (1910, 1911), Mendoza and León (2006), this study
Rubus floribundus Shrub 1500–2000 1–3 Green Green Becoming black White Pink Focke (1910, 1911), Mendoza and León (2006), this study
Rubus glabratus Trailing–shrublet 2000–3400 0.5–1 Green Reddish–orange - Pink, red Pink–rose Focke (1910, 1911), Mendoza and León (2006), this study
Rubus lechleri Shrub 2000–3600 2–4 Green Green Red White–purple Purple Focke (1910, 1911), Mendoza and León (2006), this study
Rubus loxensis Shrub 2000–3000 2–3.5 Green–reddish Green, red Red Greenish, lilac Slightly ovate Focke (1910, 1911), Mendoza and León (2006), this study
Rubus nubigenus Supporting– shrub 2000–3500 2–3 Green Green–reddish Dark fruits White–greenish, pink White Focke (1910, 1911), Mendoza and León (2006)
Rubus robustus Shrub 1000–3000 1–2 - Black White–pink White–pink Focke (1910, 1911), Mendoza and León (2006)
Rubus roseus climbing shrub 1600–3000 1–3 Green, purplish tint Red White–pink Reddish–violet Focke (1910, 1911), Mendoza and León (2006)
Rubus sparsiflorus Shrub 2000–3500 1–4 Green, red–brown Red–purple, black Black Crepe–linke pink, style red Focke (1910, 1911), Mendoza and León (2006), this study
Rubus weberbaueri Shrub terrestrial 2400–3600 1.5–2.5 Lead–green Black Pink–reddish Magenta Focke (1910, 1911), Mendoza and León (2006), this study

4. Discussion

Most berries from mountainous habitats tend to be more diverse than those from lowland habitats (Powell and Kron, 2003) due to the interactions of UV radiation with environmental (climate) and geographic (relief) factors, which evoke species-specific responses leading to adaptation and diversification (Sedej et al., 2020). Using molecular markers, this study identified 24 species of andean berries (Cavendishia = 1, Clethra = 2, Disterigma = 2, Gaultheria = 4, Thibaudia = 4, Vaccinium = 3, Rubus = 8) from the Amazonas region. The majority of these species were found in coniferous forests, dry and humid forests, rocky slopes, and grasslands at 2,506–3,019 masl (Figure 12).

Figure 12.

Figure 12

Diversity of andean berries belonging to Rosales. A. Rubus glabratus.B. Rubus sparsiflorus.C. Rubus andicola. D. Rubus weberbaueri. E. Rubus lechleri.F. Rubus floribundus. G.Rubus loxensis.H. Rubus adenothallus.

The genus Cavendishia has approximately 130 species distributed throughout the Andes of South America, and most of these species are endemic to Colombia (Pedraza-Peñalosa et al., 2015; WCVP, 2021). Only nine species of Cavendishia have been reported from Peru (León, 2006a; Pedraza-Peñalosa et al., 2015; WCVP, 2021), and two of these were from the Amazonas region. In addition to Ca. isernii Sleumer and Ca. sirensis Luteyn (León, 2006a; Salinas, 2015), this study confirms the presence of Ca. punctata (KUELAP-267, KUELAP-279, KUELAP-293, KUELAP-307, KUELAP-311) in cold and humid habitats in the Amazonas region. Ca. punctata was already recorded from central (Junín and Pasco) and southern Peru (Cusco) at 1,800–2,360 masl, forming sympatric populations with C. bracteata (Pedraza–Peñalosa and Luteyn, 2011). This study also confirms the wider distribution of Ca. punctata along the Peruvian Andes (Table 5).

The genus Clethra consists of 85 species distributed in Africa, America, and Asia (Sleumer, 1967; Fior et al., 2003; WCVP, 2021). Six of the 12 species reported from Peru were registered in the Amazonas region (Cl. castaneifolia Meisn., Cl. ovalifolia, Cl. pedicellaris Turcz., Cl. peruviana Szyszyl, Cl. retivenia and Cl. revoluta Ruiz & Pav) (WCVP, 2021; León, 2006b). This study confirmed the presence of Cl. ovalifolia (KUELAP-282) and Cl. retivenia (KUELAP-295) in Amazonas using molecular data (matK, rbcL and ITS). These species were previously recorded from Cajamarca (northern Peru) and Ucayali (southern Peru) (León, 2006b), and this study found that they occurred in similar habitats (i.e., temperate to humid tropical environments, 2,507–2,800 masl) coexisting with V. floribundum and V. meridionale (Table 6).

Disterigma includes 37 species distributed along cold mountain ecosystems of Central and South America (Pedraza-Peñalosa, 2008, 2009). Of these, 11 species were reported from Peru (Pedraza-Peñalosa, 2008, 2009; WCVP, 2021), and only three species were reported in the Amazonas region (i.e., D. baguense Pedraza; D. ulei Sleumer and D. weberbaueri Hoerold) (Pedraza-Peñalosa, 2009; WCVP, 2021). This study found two new reports of Disterigma for the Peruvian flora, namely, D. ecuadorense (KUELAP-285) and D. synanthum (KUELAP-264, KUELAP-275) (Figure 6). Although D. ecuadorense was considered endemic to Ecuador and D. synanthum to Colombia (Pedraza-Peñalosa, 2008), the analyses of this study confirmed the wider distribution of these species. D. ecuadorense and D. synanthum were found in cold to humid tropical environments at 2,500–3,000 masl and coexisting with V. floribundum (Table 7).

The genus Gaultheria is composed of 130 species from America and Asia (Middleton, 1991; Powell and Kron, 2001; WCVP, 2021). Sixteen species of Gaultheria have been reported from the tropical Andes of Peru (Middleton, 1991; Powell and Kron, 2001). In the Amazonas region, only three species of Gaultheria have been recorded (i.e., G. erecta Vent., G. rigida Kunth, G. secunda J. Rémy) (León, 2006a). Using molecular markers, the presence of G. secunda (KUELAP-278, KUELAP-284, KUELAP-301, KUELAP-288, KUELAP-266) was confirmed from Amazonas. Compared with the average intraspecific divergence observed in other species of the genus (as 0.3% for ITS in G. leucarpa and 0.3% for matK in G. appressa) (Fritsch et al., 2011; Lu et al., 2010), this taxon showed high intraspecific genetic divergence (2.4% for ITS), suggesting the presence of a species complex. Phenotypic plasticity of leaf anatomy (i.e., ovate to elliptic, leaf margins with sharp to rounded apex) among specimens of G. secunda was also observed. These phenomena have been previously reported in Gaultheria under scenarios of a high rate of reticulate evolution and hybrid speciation (Lu et al., 2010; Fritsch et al., 2011; Ocaña-Pallarés et al., 2019). G. secunda was found in wet grasslands and coniferous forest at 2,500–3,500 masl, coexisting with D. synanthum, T. obovata, V. floribundum, and V. mathewsii. This species has also been reported in Cusco, Pasco, Puno, Junin, and Ayacucho (central Peru). Additionally, another three species of Gaultheria (KUELAP-289, KUELAP-302, KUELAP-308) were found and this was not able to assign a species name because only one specimen was found and the diagnostic features of each species were not in good condition (Table 8). These unidentified species need further analyses with additional sampling and molecular markers to confirm their taxonomic status.

The genus Thibaudia consists of 73 species distributed in cloud forests from North to South America (Kron et al., 2002; Powell and Kron, 2003; WCVP, 2021). Approximately 29 species are distributed along areas of grass and shrubs (locally referred to as “pajonales”) and montane forests of the Peruvian Andes (2,500–4,000 masl) (León, 2006a, León, 2006b; WCVP, 2021). Although six of these species have been previously reported from the Amazonas region (Powell and Kron, 2003; León, 2006a, León, 2006b; WCVP, 2021), this study confirmed T. angustifolia (KUELAP-283), T. moricandi (KUELAP-298), T. obovata (KUELAP-272), and T. ovalifolia (KUELAP-299). The latter species was considered endemic to Junin (Central Peru) (León, 2006a). Ecologically, these species inhabit montane forests (2,000–2,800 masl), coexisting with C. punctata, G. secunda, V. floribundun, V. meridionale, and V. mathewsii (Table 9).

The genus Vaccinium consists of ∼400 species distributed worldwide, except Australia (Asturizaga et al., 2006; Vander and Dickinson, 2009). Fifteen species have been reported from the tropical Andes and humid forests of Peru (Pedraza-Peñalosa and Luteyn, 2011; Coico et al., 2016; León et al., 2017; Mostacero et al., 2017; WCVP, 2021). Nine of these species have been recorded in the Amazonas region along steep rocky slopes and montane forests (León, 2006a; Coico et al., 2016). This study confirms the presence of V. floribundum and V. mathewsii and adds one new record of Vaccinium (i.e., V. meridionale) to the Peruvian flora. Although V. meridionale was originally reported as an endemic species from Colombia (Pedraza-Peñalosa and Luteyn, 2011), this study found it in montane forests from northern Peru (2,000–2,800 masl), suggesting that this species has a wider distribution along the Andes. Ecologically, V. meridionale shares the same habitat and coexists with C. punctata, D. synanthum, G. secunda, V. florifundun, and V. mathewsii. Previous intraspecific divergence reported on Vaccinium ranged from 0-0.1% for ITS in V. reticulatum (Kron et al., 2002), while molecular analyses of this study revealed higher distance values within V. floribundum (3.7% for ITS). This could suggest high cryptic genetic diversity, although no morphological differences were found among specimens (Table 10). Sequencing additional markers or plastid genomes might reveal hidden taxa or overlooked interspecific introgression, which has been commonly reported in Vaccinium (Tsutsumi, 2011).

The genus Rubus encompasses ∼700 species distributed worldwide (Focke, 1914; Thompson, 1995; Lu and Boufford, 2003; WCVP, 2021), and only 20 species have been reported from the montane and humid rainforests of Peru (Mendoza and León, 2006; WCVP, 2021). Previously, six species have been recorded from the Amazonas region (Mendoza and León, 2006). This study confirmed R. adenothallus and R. weberbaueri and reported the addition of six species of Rubus from the Amazonas region. Although R. andicola, R. floribundus, R. glabratus, R. lechleri, R. loxensis, and R. spasiflorus were reported from distant regions such as Ayacucho (Central Peruvian Andes), Cusco (South Peruvian Andes) and San Martin (East Peruvian Andes), they inhabited Amazonas. Additionally, R. glabratus was originally described from Ecuador (Mendoza and León, 2006), and this study confirmed this species as having a wider distribution along the Andes. R. adenothallus, R. lechleri, R. loxensis, and R. spasiflorus share the same habitat in humid forests above 3,300 masl. R. andicola, R. floribundus, and R. weberbaueri occur in the mountain undergrowth (sotobosque) at 1,800–2,500 masl. R. glabratus, R. glaucus, and R. robustus are found from montane rainforests to moorlands. The findings of this study reveal the genus Rubus as the most diverse group of berries in the Amazonas region (Table 11).

In the last decade, several of these species have been threatened by the high rate of deforestation, a serious concern that will eventually result in loss of biodiversity and uncontrolled genetic erosion of species with economic and ecological importance (Montesinos-Tubée, 2020; Walker et al., 2021). This study highlights not only the importance of sequencing several molecular markers in applying and validating the names of Andean berries, but also the need to integrate morphological and DNA-based methods to understand the diversity along the Peruvian Andean cloud forest (Bustamante et al. 2021, 2021, 2021; Tineo et al., 2020). The characterization of berries biodiversity is an important element in any future strategy to develop ambitious commitments and tackle research, monitoring and protection programs across the Amazonas region (Sánchez et al., 2021).

5. Conclusions

This study reported 24 species of andean berries distributed in coniferous forests, dry and humid forests, rocky slopes, and grasslands at 2,506–3,019 masl from the Amazonas region. These species are grouped into seven genera and included four new reports on the Peruvian flora. A total of 125 DNA-barcodes of andean berries were generated for four molecular markers (i.e., GBSSI-2, ITS, matK, rbcL). The results of this study suggest that the genetic marker ITS showed better resolution to distinguish species of the genera Clethra, Disterigma, Thibaudia, and Rubus, whereas the combination of the plastidial marker matK and the ITS properly resolved the relationships among species of the genera Cavendishia, Gaultheria, and Vaccinium. Accordingly, an initial screening regarding the diversity of andean berries should include amplification of these markers. This study also confirmed that morphological observations and mainly multilocus phylogeny are needed to reveal diversity of andean berries.

Declarations

Author contribution statement

Daniel Tineo, Danilo E. Bustamante & Martha S. Calderon: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Eyner Huaman: Contributed reagents, materials, analysis tools or data.

Funding statement

This work was supported by SNIP (312252 - FISIOVEG).

Data availability statement

Data associated with this study has been deposited at https://www.ncbi.nlm.nih.gov/genbank/.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

We deeply thank Dr. Manuel Oliva, Jhonsy Silva, and Jani Mendoza for their technical and logistical assistance.

Appendix A. Supplementary data

The following is the supplementary data related to this article:

Figure S1

Phylogenetic tree of Ericales and Rosales based on maximum likelihood inference of combined matK, rbcL, nrITS, and GBSSI-2 data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above the branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.

mmc1.pdf (516.8KB, pdf)
Figure S2

Heatmap showing percentage of genetic identity among species of the genus Cavendishia for ITS marker.

mmc2.pdf (174KB, pdf)
Figure S3

Heatmap showing percentage of genetic identity among species of the genus Cavendishia for matK marker.

mmc3.pdf (174.1KB, pdf)
Figure S4

Heatmap showing percentage of genetic identity among species of the genus Clethra for ITS marker.

mmc4.pdf (201.3KB, pdf)
Figure S5

Heatmap showing percentage of genetic identity among species of the genus Disterigma for ITS marker.

mmc5.pdf (205.5KB, pdf)
Figure S6

Heatmap showing percentage of genetic identity among species of the genus Disterigma for matK marker.

mmc6.pdf (129.6KB, pdf)
Figure S7

Heatmap showing percentage of genetic identity among species of the genus Gaultheria for ITS marker.

mmc7.pdf (321.2KB, pdf)
Figure S8

Heatmap showing percentage of genetic identity among species of the genus Gaultheria for matK marker.

mmc8.pdf (336.4KB, pdf)
Figure S9

Heatmap showing percentage of genetic identity among species of the genus Gaultheria for rbcL marker.

mmc9.pdf (205.5KB, pdf)
Figure S10

Heatmap showing percentage of genetic identity among species of the genus Thibaudia for ITS marker.

mmc10.pdf (129.3KB, pdf)
Figure S11

Heatmap showing percentage of genetic identity among species of the genus Thibaudia for matK marker.

mmc11.pdf (150.3KB, pdf)
Figure S12

Heatmap showing percentage of genetic identity among species of the genus Vaccinium for ITS marker.

mmc12.pdf (278.6KB, pdf)
Figure S13

Heatmap showing percentage of genetic identity among species of the genus Vaccinium for matK marker.

mmc13.pdf (214.5KB, pdf)
Figure S14

Heatmap showing percentage of genetic identity among species of the genus Vaccinium for rbcL marker.

mmc14.pdf (383KB, pdf)
Figure S15

Heatmap showing percentage of genetic identity among species of the genus Rubus for GBSSI-2 marker.

mmc15.pdf (253.7KB, pdf)
Figure S16

Heatmap showing percentage of genetic identity among species of the genus Rubus for ITS marker.

mmc16.pdf (659.8KB, pdf)
Figure S17

Heatmap showing percentage of genetic identity among species of the genus Rubus for rbcL marker.

mmc17.pdf (292.2KB, pdf)

References

  1. Asturizaga A., Ollgaard B., Balslev H. Universidad Mayor de San Andrés; La Paz, Bolivia: 2006. Frutos Comestibles. Botánica Económica de los Andes Centrales. [Google Scholar]
  2. Bouchenak-Khelladi Y.N., Onstein R.E., Xing Y., Schwery O., Linder H.P. On the complexity of triggering evolutionary radiations. New Phytol. 2015;207:313–326. doi: 10.1111/nph.13331. [DOI] [PubMed] [Google Scholar]
  3. Barthlott C., Burton R., Kirshbaum D., Hanley K., Richard E., Chaboureau J.P., Trentmann J., Kern B., Bauer H.S., Schwitalla T., Keil C., Seity Y., Gadian A., Blyth A., Mobbs S., Flamant C., Handwerker J. Initiation of deep convection at marginal instability in an ensemble of mesoscale models: a case-study from COPS. Q. J. R. Meteorol. Soc. 2011;137(S1):118–136. [Google Scholar]
  4. Brako L., Zarucchi J. Catalogue of the flowering plants and gymnosperms in Peru. Mo. Bot. Garden. 1993;45 [Google Scholar]
  5. Bustamante D.E., Calderon M.S., Leiva S., Mendoza J.E., Arce M., Oliva M. Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia. 2021:1–17. doi: 10.1080/00275514.2021.1917243. [DOI] [PubMed] [Google Scholar]
  6. Calderon M.S., Bustamante D.E., Gabrielson P.W., Martone P.T., Hind K.R., Schipper S.R., Mansilla A. Type specimen sequencing, multilocus analyses, and species delimitation methods recognize the cosmopolitan Corallina berteroi and establish the northern Japanese C. yendoi sp. nov. (Corallinaceae, Rhodophyta) J. Phycol. 2021;57(5):1659–1672. doi: 10.1111/jpy.13202. [DOI] [PubMed] [Google Scholar]
  7. Chartier M., Löfstrand S., von Balthazar M., Gerber S., Jabbour F., Sauquet H., Schönenberger J. How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales. Proc. R. Soc. B: Biol. Sci. 2017;284(1852):20170066. doi: 10.1098/rspb.2017.0066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chase M.W., Christenhusz M.J.M., Fay M.F., Byng J.W., Judd W.S., Soltis D.E., Mabberley D.J.,, Sennikov A.N., Stevens P.F. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016;181(1):1–20. [Google Scholar]
  9. Coico F.M., Castillo J.L.C., León J.M., Medina E.L., Carnero A.G. Registro del género Vaccimum en el norte del Perú. INDES Rev. Inv. Des. Sust. 2016;2:53–61. [Google Scholar]
  10. Diaz-Garcia L., Garcia-Ortega L.F., González-Rodríguez M., Delaye L., Iorizzo M., Zalapa J. Chromosome-level genome assembly of the American cranberry (Vaccinium macrocarpon Ait.) and its wild relative Vaccinium microcarpum. Front. Plant Sci. 2021;12:137. doi: 10.3389/fpls.2021.633310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Focke W.O. Species Ruborum. Monographiae generis Rubi prodromus. Bibl. Bot. 1914;19(Heft 83):1–274. [Google Scholar]
  12. Fior S., Ola Karis P., Anderberg A.A. Phylogeny, taxonomy, and systematic position of Clethra (Clethraceae, Ericales. with notes on biogeography: evidence from plastid and nuclear DNA sequences. Int. J. Plant Sci. 2003;164(6):997–1006. [Google Scholar]
  13. Focke W.O. Species Ruborum monographiae generis Rubi prodromus. Bibl. Bot. 1910;17:1–120. [Google Scholar]
  14. Focke W.O. Species Ruborum monographiae generis Rubi prodromus. Bibl. Bot. 1911;17:121–223. [Google Scholar]
  15. Fritsch P.W., Lu L., Bush C.M., Cruz B.C., Kron K.A., Li D.Z. Phylogenetic analysis of the wintergreen group (Ericaceae. based on six genic regions. Syst. Bot. 2011;36(4):990–1003. [Google Scholar]
  16. Hotchkiss A.T., Jr., Chau H.K., Strahan G.D., Nuñez A., Simon S., White A.K., Dieng S., Heuberger E.R., Yadav M.P., Hirsch J. Structure and composition of blueberry fiber pectin and xyloglucan that bind anthocyanins during fruit puree processing. Food Hydrocolloids. 2021;116:106572. [Google Scholar]
  17. Hummer K.E., Janick J. In: Genetics and Genomics of Rosaceae. Folta K.M., Gardiner S.E., editors. Springer; New York, USA: 2009. Rosaceae: taxonomy, economic importance, genomics; pp. 1–17. [Google Scholar]
  18. Kalkman C. Rosaceae. Flora Malesiana–series 1. Spermatophyta. 1993;11:227–351. [Google Scholar]
  19. Kron K.A., Judd W.S., Stevens P.F., Crayn D.M., Anderberg A.A., Gadek P.A., Quinn C.J., Luteyn J.L. Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot. Rev. 2002;68(3):335–423. [Google Scholar]
  20. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35(6):1547. doi: 10.1093/molbev/msy096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lanfear R., Calcott B., Ho S.Y., Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012;29(6):1695–1701. doi: 10.1093/molbev/mss020. [DOI] [PubMed] [Google Scholar]
  22. Ledo A., Condés S., Alberdi I. Forest biodiversity assessment in Peruvian Andean Montane cloud forest. J. Mt. Sci. 2012;9:372–384. [Google Scholar]
  23. León B. Ericaceae endémicas del Perú. Rev. Peru. Biol. 2006;13:285–293. [Google Scholar]
  24. León B. Clethraceae endémicas del Perú. Rev. Peru. Biol. 2006;13:260. [Google Scholar]
  25. León J.M., González T.R., Rivero A.E.G. Fitogeografía y morfología de los Vaccinium (Ericaceae. “arándanos nativos” del Perú. INDES Rev. Invest. Des. Sust. 2017;3(1):43–52. [Google Scholar]
  26. López J., Vera C., Bustos R., Florez-Mendez J. Native berries of Chile: a comprehensive review on nutritional aspects, functional properties, and potential health benefits. J. Food Meas. Charact. 2021;15(2):1139–1160. [Google Scholar]
  27. Lu L.D., Boufford D.E. In: Flora of China 9. Wu Z.Y., editor. Science Press, Beijing & Missouri Botanical Garden Press; St. Louis: 2003. Rubus Linnaeus. pp. 19. [Google Scholar]
  28. Lu L., Fritsch P.W., Cruz B.C., Wang H., Li D.–Z. Reticulate evolution, cryptic species, and character convergence in the core East Asian clade of Gaultheria (Ericaceae) Mol. Phylogenet. Evol. 2010;57(1):364–379. doi: 10.1016/j.ympev.2010.06.002. [DOI] [PubMed] [Google Scholar]
  29. Luebert F., Weigend M. Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2014;2:27. [Google Scholar]
  30. Luteyn J.L. Ericaceae: part I. Cavendishia. Flora Neotropica. 1983;35:1–289. [Google Scholar]
  31. Mazzoni L., Scalzo J., Di Vittori L., Mezzetti B., Battino M. 2017. Berries. Fruit and Vegetable Phytochemicals: Chemistry and Human Health; pp. 833–908. [Google Scholar]
  32. Mendoza W., León B. Rosaceae endémicas del Perú. Rev. Peru. Biol. 2006;13(2):583–585. [Google Scholar]
  33. Middleton D.J., Wilcock C.C. A critical examination of the status of Pernettya Gaud. as a genus distinct from Gaultheria L. Edinb. J. Bot. 1990;47(3):291–301. [Google Scholar]
  34. Middleton D.J. Infrageneric classification of the genus Gaultheria L. Ericaceae. Bot. J. Linn. Soc. 1991;106(10):229–258. [Google Scholar]
  35. Mimura M., Suga M. Ambiguous species boundaries: hybridization and morphological variation in two closely related Rubus species along altitudinal gradients. Ecol. Evol. 2020;10(14):7476–7486. doi: 10.1002/ece3.6473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Montesinos-Tubée D.B. Diversidad florística en el complejo arqueológico La Bóveda, en el sur del departamento Amazonas, Perú. Ciencia Amazónica (Iquitos) 2020;8(1):31–52. [Google Scholar]
  37. Mostacero J.L., González T.R., Rivero A.E.G. Fitogeografía y morfología de los Vaccinium (Ericaceae. “arándanos nativos” del Perú. INDES Rev. Invest. Des. Sust. 2017;3(1):43–52. [Google Scholar]
  38. Ocaña–Pallarès E., Najle S.R., Scazzocchio C., Ruiz–Trillo I. Reticulate evolution in eukaryotes: origin and evolution of the nitrate assimilation pathway. PLoS Genet. 2019;15(2) doi: 10.1371/journal.pgen.1007986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Okada A., Kikuchi S., Hoshino Y., Kunitake H., Mimura M. Phylogeny and trait variation of Japanese Rubus subgenus Ideaobatus. Sci. Hortic. 2020;264:109150. [Google Scholar]
  40. Ooi K., Endo Y., Yokoyama J., Murakami N. Useful primer designs to amplify DNA fragments of the plastid gene matK from angiosperm plants. Jap. J. Bot. 1995;70:328–331. [Google Scholar]
  41. Pedraza–Peñalosa P. Three new species of Disterigma (Ericaceae: Vaccinieae. From western Colombia, with comments on morphological terminology. Brittonia. 2008;60:1–10. [Google Scholar]
  42. Pedraza–Peñalosa P. Systematics of the neotropical blueberry genus Disterigma (Ericaceae) Syst. Bot. 2009;34(2):406–413. [Google Scholar]
  43. Pedraza–Peñalosa P., Luteyn J.L. Andean Vaccinium (Ericaceae: Vaccinieae.: seven new species from South America. Brittonia. 2011;63:257–275. [Google Scholar]
  44. Pedraza–Peñalosa P., Salinas N.R., Virnig A.L.S., Wheeler W.C. Preliminary phylogenetic analysis of the Andean clade and the placement of new Colombian blueberries (Ericaceae, Vaccinieae) PhytoKeys. 2015;49:13–31. doi: 10.3897/phytokeys.49.8622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Phipps J.B. Oxford University Press; New York and Oxford: 2014. Flora of North America North of Mexico, Volume 9, Magnoliophyta: Picramniaceae to Rosaceae. [Google Scholar]
  46. Potter D., Gao F., Bortiri P.E., Oh S.H., Baggett S. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Plant Systemat. Evol. 2002;231:77–89. [Google Scholar]
  47. Potter D., Eriksson T., Evans R.C., Oh S., Smedmark J.E.E., Morgan D.R., Kerr M., Robertson K.R., Arsenault M.T., Dickinson A., Campbell C.S. Phylogeny and classification of Rosaceae. Plant Systemat. Evol. 2007;266:5–43. [Google Scholar]
  48. Powell E.A., Kron K.A. An analysis of the phylogenetic relationships in the wintergreen group (Diplycosia, Gaultheria, Pernettya, Tepuia; Ericaceae) Syst. Bot. 2001;26:808–817. [Google Scholar]
  49. Powell E.A., Kron K.A. Molecular systematics of the northern andean blueberries (Vaccinieae, Vaccinioideae, Ericaceae) Int. J. Plant Sci. 2003;164(6):987–995. [Google Scholar]
  50. Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61(3):539–542. doi: 10.1093/sysbio/sys029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Rose J.P., Kleist T.J., Löfstrand S.D., Drew B.T., Schoenenberger J., Sytsma K.J. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Mol. Phylogenet. Evol. 2018;122:59–79. doi: 10.1016/j.ympev.2018.01.014. [DOI] [PubMed] [Google Scholar]
  52. Rousseau-Gueutin M., Gaston A., Aïnouche A., Aïnouche M.L., Olbricht K. Tracking the evolutionary history of polyploidy in Fragaria, L. (strawberry): new insights from phylogenetic analyses of low copy nuclear genes. Mol. Phylogenet. Evol. 2009;51:515–530. doi: 10.1016/j.ympev.2008.12.024. [DOI] [PubMed] [Google Scholar]
  53. Salinas N.R. City University of; New York: 2015. Systematics and Biogeography of Orthaea Kloztsch (Ericaceae: Vaccinieae) [Google Scholar]
  54. Sánchez A.C., Bandopadhyay S., Briceño N.B.R., Banerjee P., Guzmán C.T., Oliva M. Peruvian Amazon disappearing: Transformation of protected areas during the last two decades (2001–2019) and potential future deforestation modelling using cloud computing and MaxEnt approach. J. Nat. Conserv. 2021;64:126081. [Google Scholar]
  55. Schönenberger J., von Balthazar M., Sytsma K.J. Diversity and evolution of floral structure among early diverging lineages in the Ericales. Philos. Trans. R. Soc. 2010;365:437–448. doi: 10.1098/rstb.2009.0247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Silvestro D., Michalak I. RaxmlGUI: a graphical front–end for RAxML. Org. Divers. Evol. 2012;12(4):335–337. [Google Scholar]
  57. Sedej T.T., Erznožnik T., Rovtar J. Effect of UV radiation and altitude characteristics on the functional traits and leaf optical properties in Saxifraga hostii at the alpine and montane sites in the Slovenian Alps. Photochem. Photobiol. Sci. 2020;19(2):180–192. doi: 10.1039/c9pp00032a. [DOI] [PubMed] [Google Scholar]
  58. Schwery O., Onstein R.E., Bouchenak-Khelladi Y., Xing Y., Carter R.J., Linder H.P. As old as the mountains: the radiations of the Ericaceae. New Phytol. 2015;207:355–367. doi: 10.1111/nph.13234. [DOI] [PubMed] [Google Scholar]
  59. Sleumer H. Monographia Clethracearum. Bot. J. Syst. 1967;87:36–175. [Google Scholar]
  60. Smith A.C. The genera Sphyrospermum and Disterigma. Brittonia. 1933;1(4):203–233. [Google Scholar]
  61. Soltis D.E., Smith S., Cellinese N., Wurdack K.J., Tank D., Brockington S.F., Refulio–Rodriguez N.F., Moore M.J., Carlsward B., Bell C.D., Latvis M., Crawley S., Black C., Diouf D., Xi Z., Gitzendanner M.A., Sytsma K.J., Qiu Y.–L., Hilu K.W., Manchester S.R., Davis C.C., Sanderson M.J., Olmstead R., Judd W.S., Donoghue M., Soltis P.S. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 2011;98:704–730. doi: 10.3732/ajb.1000404. [DOI] [PubMed] [Google Scholar]
  62. Song G.Q., Hancock J.F. Wild Crop Relatives: Genomic and Breeding Resources. Springer; Berlin, Heidelberg: 2011. Vaccinium; pp. 197–221. [Google Scholar]
  63. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post–analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Thomas D.C., Chatroum L.W., Stull G.W., Johnson D.M., Harris D.J., Thongpairoj U.-S., Saunders R.M.K. The historical origins of palaeotropical intercontinental disjunctions in the pantropical flowering plant family Annonaceae. Perspect. Plant Ecol. Evol. Systemat. 2015;17:1–16. [Google Scholar]
  65. Thompson M.M. Chromosome numbers of Rubus species at the national clonal germplasm repository. Hortscience. 1995;30(7):1447–1452. [Google Scholar]
  66. Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Thiers B. New York Botanical Garden’s Virtual Herbarium; 2016. Index Herbariorum. A Global Directory of Public Herbaria and Associated Staff.http://sweetgum.nybg.org/science/ih Available from: (accessed 2021) [Google Scholar]
  68. Tineo D., Bustamante D.E., Calderon M.S., Mendoza J.E., Huaman E., Oliva M. An integrative approach reveals five new species of highland papayas (Caricaceae, Vasconcellea. from northern Peru. PLoS One. 2020;15 doi: 10.1371/journal.pone.0242469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Tsutsumi C. The phylogenetic positions of four endangered Vaccinium species in Japan. Bull. Natl. Mus. Nat. Sci., Ser. B, Bot. 2011;37:79–86. [Google Scholar]
  70. Ulloa–Ulloa C., Zarucchi J., León B. Diez años de adiciones a la flora del Perú: 1993–2003. Arnaldoa. 2004:7–242. [Google Scholar]
  71. van der Werff H., Consiglio T. Distribution and conservation significance of endemic species of flowering plants in Peru. Biodivers. Conserv. 2004;13:1699–1713. [Google Scholar]
  72. Vander Kloet S.P., Dickinson T.A. A subgeneric classification of the genus Vaccinium and the metamorphosis of V. section Bracteata Nakai: more terrestrial and less epiphytic in habit, more continental and less insular in distribution. J. Plant Res. 2009;122(3):253–268. doi: 10.1007/s10265-008-0211-7. [DOI] [PubMed] [Google Scholar]
  73. Wang Y., Chen Q., Chen T., Tang H., Liu L., Wang X. Phylogenetic insights into Chinese Rubus (Rosaceae. From multiple chloroplast and nuclear DNAs. Front. Plant Sci. 2016;7:968. doi: 10.3389/fpls.2016.00968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Walker A.P., Kauwe M.G.D., Bastos A., Belmecheri S., Georgiou K., Keeling R., McMahon S.M., Medlyn B.E., Moore D.J.P., Norby R.J., Zaehle S., AndersonTeixeira K.J., Battipaglia G., Brienen R.J.W., Cabugao K.G., Cailleret M., Campbell E., Canadell J., Ciais P., Craig M.E., Ellsworth D., Farquhar G., Fatichi S., Fisher J.B., Frank D., Graven H., Gu L., Haverd V., Heilman K., Heimann M., Hungate B.A., Iversen C.M., Joos F., Jiang M., Keenan T.F., Knauer J., Korner C., Leshyk V.O., Leuzinger S., Liu Y., MacBean N., Malhi Y., McVicar T., Penuelas J., Pongratz J., Powell A.S., Riutta T., Sabot M.E.B., Schleucher J., Sitch S., Smith W.K., Sulman B., Taylor B., Terrer C., Torn M.S., Treseder K., Trugman A.T., Trumbore S.E., van Mantgem P.J., Voelker S.L., Whelan M.E., Zuidema P.A. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 2021;229(5):2413–2445. doi: 10.1111/nph.16866. [DOI] [PubMed] [Google Scholar]
  75. White T.J., Bruns T., Lee S., Taylor J. In: PCR Protocols: A Guide to Methods and Applications. Innis M.A., editor. Academic Press; New York, NY: 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics; pp. 315–322. [Google Scholar]
  76. WCVP . Facilitated by the Royal Botanic Gardens; Kew: 2021. World Checklist of Vascular Plants, Version 2.0.http://wcvp.science.kew.org Published on the internet: (Retrieved 28 April 2021) [Google Scholar]
  77. Xiang Y., Huang C.H., Hu Y., Wen J., Li S., Yi T., Chen X., Ma H. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol. Biol. Evol. 2017;34(2):262–281. doi: 10.1093/molbev/msw242. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Figure S1

Phylogenetic tree of Ericales and Rosales based on maximum likelihood inference of combined matK, rbcL, nrITS, and GBSSI-2 data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above the branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.

mmc1.pdf (516.8KB, pdf)
Figure S2

Heatmap showing percentage of genetic identity among species of the genus Cavendishia for ITS marker.

mmc2.pdf (174KB, pdf)
Figure S3

Heatmap showing percentage of genetic identity among species of the genus Cavendishia for matK marker.

mmc3.pdf (174.1KB, pdf)
Figure S4

Heatmap showing percentage of genetic identity among species of the genus Clethra for ITS marker.

mmc4.pdf (201.3KB, pdf)
Figure S5

Heatmap showing percentage of genetic identity among species of the genus Disterigma for ITS marker.

mmc5.pdf (205.5KB, pdf)
Figure S6

Heatmap showing percentage of genetic identity among species of the genus Disterigma for matK marker.

mmc6.pdf (129.6KB, pdf)
Figure S7

Heatmap showing percentage of genetic identity among species of the genus Gaultheria for ITS marker.

mmc7.pdf (321.2KB, pdf)
Figure S8

Heatmap showing percentage of genetic identity among species of the genus Gaultheria for matK marker.

mmc8.pdf (336.4KB, pdf)
Figure S9

Heatmap showing percentage of genetic identity among species of the genus Gaultheria for rbcL marker.

mmc9.pdf (205.5KB, pdf)
Figure S10

Heatmap showing percentage of genetic identity among species of the genus Thibaudia for ITS marker.

mmc10.pdf (129.3KB, pdf)
Figure S11

Heatmap showing percentage of genetic identity among species of the genus Thibaudia for matK marker.

mmc11.pdf (150.3KB, pdf)
Figure S12

Heatmap showing percentage of genetic identity among species of the genus Vaccinium for ITS marker.

mmc12.pdf (278.6KB, pdf)
Figure S13

Heatmap showing percentage of genetic identity among species of the genus Vaccinium for matK marker.

mmc13.pdf (214.5KB, pdf)
Figure S14

Heatmap showing percentage of genetic identity among species of the genus Vaccinium for rbcL marker.

mmc14.pdf (383KB, pdf)
Figure S15

Heatmap showing percentage of genetic identity among species of the genus Rubus for GBSSI-2 marker.

mmc15.pdf (253.7KB, pdf)
Figure S16

Heatmap showing percentage of genetic identity among species of the genus Rubus for ITS marker.

mmc16.pdf (659.8KB, pdf)
Figure S17

Heatmap showing percentage of genetic identity among species of the genus Rubus for rbcL marker.

mmc17.pdf (292.2KB, pdf)

Data Availability Statement

Data associated with this study has been deposited at https://www.ncbi.nlm.nih.gov/genbank/.


Articles from Heliyon are provided here courtesy of Elsevier

RESOURCES