Abstract
More than 12,000 species have been listed under the category of berries, and most of them belong to the orders Ericales and Rosales. Recent phylogenetic studies using molecular data have revealed disagreements with morphological approaches mainly due to diverse floral arrangements, which has proven to be a problem when recognizing species. Therefore, the use of multilocus sequence data is essential to establish robust species boundaries. Although berries are common in Andean cloud forests, diversity of these taxa has not been extensively evaluated in the current context of DNA-based techniques. In this regard, this study characterized morphologically and constructed multilocus phylogenies using four molecular markers, two chloroplast markers (matK and rbcL) and two nuclear markers (ITS and GBSSI-2). Specimens did not show diagnostic features to delimit species of berries. A total of 125 DNA-barcodes of andean berries were newly generated for the four molecular markers. The multilocus phylogenies constructed from these markers allowed the identification of 24 species grouped into the order Ericales (Cavendishia = 1, Clethra = 2, Disterigma = 2, Gaultheria = 4, Thibaudia = 4, Vaccinium = 3) and Rosales (Rubus = 8), incorporating into the Peruvian flora four new records (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale and Rubus glabratus) and revealing the genus Rubus as the most diverse group of berries in the Amazonas region. The results of this study showed congruence in all the multilocus phylogenies, with internal transcribed spacer (ITS) showing the best resolution to distinguish the species. These species were found in coniferous forests, dry and humid forests, rocky slopes, and grasslands at 2,506–3,019 masl from Amazonas region. The integration of morphological and DNA-based methods is recommended to understand the diversity of berries along the Peruvian Andean cloud forest.
Abstract in Quechua language
Qhawarqan astawan chunka iskayniyuq waranqa especiekuna bayasmanta huch’uy mit’a maypichus hatun rak’i chayaqi ordenkunata Ericaleswan Rosaleswan. Chayraqpi Khuski filogeneticamanta rurachiy allincharqan chanikuna molecularkuna willarqan ayñi rikunawanta morfologicokunamanta, qaylla llapan rantichay t’ika tiktutaywan ñawray, ima kay kaqta qhawacgirqan kay huk champay pachaman riqsiypa especiekunamanta. Hina kaqtintaq, chanikuna qatikipaykunamanta multilocus hat’alliy tiksipmi takyachiypaq saywakuna sinchikuna especiekunamanta. Pana bayaskuna kanku allatinkuna sach’a-sach’api phuyusqa anti runap, ñawran manan karqan achka kamaykuy kunan pacha allwiyaraykupi takyasqakuna ADN. Chayrayku, Noqanchispa taqwi allincharqan huk filogenia multilocus, rarachikupúnmi tawa molecular marcadorkuna, caspa iskay markadorkunawan cloroplastomanta (matK, rbcL) iskay markadorkunawan nuclearkunamanta (ITS, GBSSI-2). Kaykunawan filogeniamanta huniqamuran kikinchay iskay chunka tawayoq especies ima tantaqamuran q'anchis generospi (Cavendishia=1, Clethra=2, Disterigma=2, Gaultheria=4, Thibaudia=4, Vaccinium=3, Rubus=8), kaykunata huñuyqamuranta piruwanu llacha kamay tawa musuq quillqakamachikuta (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale, Rubus glabratus). Nocaykuq lluqsisqan kuwirinti rikuchirurqan llapankuna filogeniaspi multilocusmanta, kaspa espaciador transcrito interno (ITS) pi rikuchina kutuwi mihur rantichay riqsiypaq especiekunata.
Abstract in Awajun language
Dekanauwai juú weantug 12000 sag nagkaikiut, júna nejég tente ainawai nuintushkam kuashtai Ericales nuigtu Rosales weantui. Molecularesjai takasmaug juki filogeneticos augtus yamá dekai antugnaiñasmauwa nuna Morfologicosjai disa umikmaug, juka waignawai kuashag yagkunum, juwai dekaata tamanum kuashat utugchata ama nunuka. Nunui asamtai multilocus takasmauwa nujai dekanui wajukut ainawa pipish tumaig aidaush. Tujashkam kuashtai tentee nejég ainaug ikam naig yujagkim amuamua nunuig, wajupá kuashtakit tusajig ashi dekapasjig ADNjain dischamui. Nuni tamaugmak, ii augtusag duka takasé filogenia multilocus dekamua nujai, takasji ipák usumat marcadores molecularesjai, jimag marcadores cloroplastosjai (matK nuigtu rbcL) nuigtu jimag marcadores nuclearesjai (ITS nuigtu GBSSI-2). Juu filogenias dekaji 24 sag nagkaikiut tuwaka 7 generosnug tuwaka awa nunu (Cavendishia=1, Clethra=2, Disterigma=2, Gaultheria=4, Thibaudia=4, Vaccinium=3, Rubus=8), juui dekanai yamajam ipák usumat ajag perunum awanunu (Disterigma ecuadorense, Disterigma synanthum, Vaccinium meridionale nuigtu Rubus glabratus).
Keywords: Amazonas, Andes, Berries, DNA barcoding, Ericales, Rosales
Amazonas, Andes, berries, DNA barcoding, Ericales, Rosales.
1. Introduction
Botanically, berries refer to small, rounded, shiny, sweet, sour, multiseeded fruits from different ovaries of a single flower (Mazzoni et al., 2017). In common usage, the meaning of 'berry' certainly differs from this scientific definition. For instance, strawberries, raspberries, and blackberries are considered berries, but these are excluded by botanical circumscription since they are aggregate fruits (Xiang et al., 2017). Berries are consumed worldwide mainly because of the high concentrations of various phytochemicals, such as phenolic compounds, anthocyanins, and flavonoids (Mazzoni et al., 2017; López et al., 2021; Hotchkiss et al., 2021).
Regarding diversity, approximately 12,000 species have been listed under the category of berries (Rose et al., 2018), and most of them belong to the orders Ericales and Rosales (Phipps, 2014; Chase et al., 2016). The larger genera includes species of berries in Ericales are Impatiens (∼1000 spp.), Rhododendron (∼1,000 spp.), Diospyros (∼700 spp.), Erica (∼700 spp.), Vaccinium (∼500 spp.), and Primula (∼400 spp.) (Bouchenak-Khelladi et al., 2015; Schwery et al., 2015). These genera include many well-known tropical and temperate groups that are biogeographically widespread as pantropical and cosmopolitan (Chartier et al., 2017), mainly due to long-distance dispersal or vicariance scenarios (Thomas et al., 2015). In Rosales, the highest diversity of berries includes genera within the family Rosaceae (3,000 species), such as Rubus (∼750 spp.), Potentilla (∼400 spp.), Alchemilla (∼400 spp.), and Prunus (∼200 spp.) (Focke, 1911; Kalkman, 1993; Phipps, 2014). The great diversity of this group is due to polyploidy, agamospermy and constant hybridization of closely related species (Song and Hancock, 2011; Pedraza-Peñalosa and Luteyn, 2011; Mimura and Suga, 2020). Berry diversity in Rosaceae has a wide distribution, particularly in the temperate forests of the Northern Hemisphere (Hummer and Janick, 2009).
The Andean orogeny is considered one of the most significant events for radiation of vascular plants and the biogeographic history of neotropical species (including andean berries) in South America (Barthlott et al., 2011; Luebert and Weigend, 2014). This is clearly observed in Andean cloud forest ecosystems where high levels of biodiversity and endemism have been reported among different group of vascular plants (Ledo et al., 2012). Additionally, in the Peruvian Andes, the highest number of endemic plants has been found on slopes between 2,500 and 3,000 masl (Van der Werff and Consiglio, 2004). Currently, 113 species of berries in Rosaceae (Rosales) and 385 in Ericales have been reported from Peru (Ulloa-Ulloa et al., 2004; León, 2006a), and most of these species have been reported on the basis of morphological analyses alone (Coico et al., 2016). Many of these species are considered endemic and distributed in meso-andean and montane forest regions and others in natural areas (León, 2006a). However, this diversity has not been confirmed molecularly since phenomena such as high phenotypic plasticity or crypticism might over or under represent diversity, respectively (Calderon et al., 2021).
Recent phylogenetic studies of berries within Ericales have revealed disagreement with morphological approaches, such as those reporting wide floral diversity among species (Schönenberger et al., 2010; Rose et al., 2018). Accordingly, the proper taxonomic positions of these species and families were mainly resolved using molecular data (Chartier et al., 2017). The initial classification in Rosales (Rosaceae) was based on morphology and the number of chromosomes (Potter et al., 2002, 2007); however, intergeneric hybridization occurring within subfamilies and tribes has proven to be problematic when delimiting species (Hummer and Janick, 2009). To correct this incongruence, molecular analyses (e.g., plastidial markers, plastomes) are an effective tool for examining systematics (Soltis et al., 2011; Rose et al., 2018; Diaz-Garcia et al., 2021). The molecular markers for phylogenetic analyses that have been most commonly used in berries (Rosales and Ericales) are those corresponding to plastidial regions (matK, ndhF, and rbcL), plastidial intergenic spacers (trnL-trnF, trnS-trnG, psbA-trnH), and nuclear regions (nrITS, GBSSI-2) (Kron et al., 2002; Powell and Kron, 2003; Potter et al., 2007; Soltis et al., 2011; Wang et al., 2016). These barcodes have provided information for testing hypotheses on morphology, genetics and evolutionary relationships in phenotypically diverse groups of Ericales and Rosales (Xiang et al., 2017; Okada et al., 2020).
Although berries are common in Andean cloud forests, the diversity of berries has not been extensively evaluated in the current context of DNA-based techniques. Only few reports on the basis of anatomical observations has been presented. Accordingly, the novelty of this study is to characterize molecularly and determine the phylogenetic positions of berries collected from northern Peru, analyzing the evolutionary relationships of these taxa based on two chloroplast markers (matK and rbcL), the internal transcribed spacer (ITS) region, and nuclear granule-bound starch synthase (GBSSI-2). This is the first integrated study using morphology and the generation of DNA-barcodes to explore the diversity of andean berries from Amazonas region.
2. Materials and methods
2.1. Specimen collection
A total of 48 specimens of Andean berries were sampled from eight localities throughout the province of Chachapoyas, Amazonas, in northern Peru (Molinopampa, Granada, Levanto, Chachapoyas, Maino, Leymebamba, La Jalca, and Huancas; Figure 1). A permit for scientific research on wild flora (RDG N° D000394-2020-MIDAGRI-SERFOR-DGGSPFFS, with authorization code N° AUT-IFL-2020-061) was provided by Servicio Nacional Forestal y de Fauna Silvestre (SERFOR). Tissue samples of approximately 50 mm2 were taken from leaf tips for molecular analyses and placed in prelabeled 1.5 mL Safelock Eppendorf tubes. For each site, the date, time, and GPS coordinates were recorded. Photographs were taken to record sampling locations and site features. In addition, inflorescences, leaves, and fruits were collected for morphological examination. Samples were morphologically characterized according to Focke (1910, 1911); Middleton and Wilcock (1990); Sleumer (1967); Middleton (1991); Smith (1933); Kron et al. (2002) and Vander and Dickinson (2009) and were deposited in the herbarium of Universidad Nacional Toribio Rodríguez de Mendoza (KUELAP), Peru (Table 1) (Thiers, 2016). Furthermore, the records and morphologies of berries were revised and contrasted from databases and collections such as the Global Biodiversity Information Facility (https://www.gbif.org/), Tropicos from Missouri Botanical Garden (http://www.tropicos.org), the New York Botanical Garden Steere herbarium (http://sweetgum.nybg.org/science), and JSTOR Global Plants (https://plants.jstor.org).
Figure 1.
Map showing the sampling of Andean berry specimens from Region Amazonas, northern Peru.
Table 1.
List of samples of Andean berries collected in northern Peru including genomic DNA QC using fluorometer.
Species | Code | Herbarium Voucher | Place | Date | Elevation (m.a.s.l) | Latitude (South) | Longitude (West) | DNA concen. (ng/μL) |
---|---|---|---|---|---|---|---|---|
Cavendishia punctata | IARAN006 | KUELAP–267 | La Palma | 5/07/2017 | 2934 | 6°43′26.36″ | 77°50′42.30″ | 50.20 |
Cavendishia punctata | IARAN018 | KUELAP–279 | Olmal | 13/07/2017 | 2506 | 6°10′54.69″ | 77°47′07.72″ | 56.10 |
Cavendishia punctata | IARAN032 | KUELAP–293 | Opelele | 5/08/2017 | 2572 | 6°15′18.68″ | 77°48′05.35″ | 86.30 |
Cavendishia punctata | IARAN050 | KUELAP–311 | Santa Rosa | 14/08/2017 | 2794 | 6°18′06.26″ | 77°53′51.48″ | 80.70 |
Cavendishia punctata | IARAN046 | KUELAP–307 | Maino | 14/08/2017 | 2598 | 6°19′35.92″ | 77°52′36.40″ | 81.02 |
Clethra ovalifolia | IARAN021 | KUELAP–282 | Sonche | 23/07/2017 | 2507 | 6°10′40.69″ | 77°47′09.79″ | 43.00 |
Clethra retivenia | IARAN034 | KUELAP–295 | Chachapoyas | 5/08/2017 | 2627 | 6°15′35.49″ | 77°47′59.39″ | 25.00 |
Disterigma ecuadorense | IARAN024 | KUELAP–285 | La Jalca | 28/07/2017 | 2851 | 6°32′13.45″ | 77°47′42.39″ | 93.30 |
Disterigma synanthum | IARAN014 | KUELAP–275 | Espadilla | 13/07/2017 | 2536 | 6°13′16.64″ | 77°40′51.62″ | 21.30 |
Disterigma synanthum | IARAN003 | KUELAP–264 | La Palma | 5/07/2017 | 2887 | 6°43′28.98″ | 77°50′45.47″ | 12.00 |
Gaultheria secunda | IARAN017 | KUELAP–278 | Espadilla | 13/07/2017 | 2542 | 6°13′16.92″ | 77°40′52.56″ | 21.00 |
Gaultheria secunda | IARAN005 | KUELAP–266 | La Palma | 5/07/2017 | 2912 | 6°43′28.99″ | 77°50′43.98″ | 8.70 |
Gaultheria secunda | IARAN023 | KUELAP–284 | Olmal | 23/07/2017 | 2496 | 6°10′56.73″ | 77°47′08.38″ | 46.56 |
Gaultheria secunda | IARAN027 | KUELAP–288 | La Jalca | 28/07/2017 | 2837 | 6°29′23.55″ | 77°48′47.56″ | 42.05 |
Gaultheria secunda | IARAN040 | KUELAP–301 | Opelele | 5/08/2017 | 2827 | 6°15′30.71″ | 77°48′24.23″ | 94.72 |
Gaultheria sp. 1 | IARAN041 | KUELAP–302 | Levanto | 14/08/2017 | 2720 | 6°18′09.99″ | 77°53′51.59″ | 56.08 |
Gaultheria sp. 2 | IARAN047 | KUELAP–308 | Levanto | 14/08/2017 | 2770 | 6°18′11.66″ | 77°53′51.18″ | 79.00 |
Gaultheria sp. 3 | IARAN028 | KUELAP–289 | La Jalca | 28/07/2017 | 2,700 | 6°29′12.74″ | 77°49′19.11″ | 17.00 |
Thibaudia angustifolia | IARAN022 | KUELAP–283 | Olmal | 23/07/2017 | 2509 | 6°10′44.94″ | 77°47′11.12″ | 95.01 |
Thibaudia moricandi | IARAN037 | KUELAP–298 | Opelele | 5/08/2017 | 2625 | 6°16′04.98″ | 77°46′53.43″ | 76.30 |
Thibaudia obovata | IARAN011 | KUELAP–272 | Espadilla | 13/07/2017 | 2502 | 6°13′11.16″ | 77°40′48.18″ | 19.03 |
Thibaudia ovalifolia | IARAN038 | KUELAP–299 | Tañapampa | 5/08/2017 | 2372 | 6°13′56.99″ | 77°51′13.92″ | 22.08 |
Vaccinium floribundum | IARAN001 | KUELAP–262 | La Palma | 5/07/2017 | 2942 | 6°43′31.76″ | 77°50′42.14″ | 7.40 |
Vaccinium floribundum | IARAN004 | KUELAP–265 | La Palma | 5/07/2017 | 2906 | 6°43′28.99″ | 77°50′43.94″ | 21.20 |
Vaccinium floribundum | IARAN007 | KUELAP–268 | La Palma | 5/07/2017 | 3019 | 6°43′21.11″ | 77°50′33.62″ | 7.30 |
Vaccinium floribundum | IARAN012 | KUELAP–273 | Espadilla | 13/07/2017 | 2515 | 6°13′13.72″ | 77°40′49.62″ | 23.00 |
Vaccinium floribundum | IARAN016 | KUELAP–277 | Espadilla | 13/07/2017 | 2544 | 6°13′17.18″ | 77°40′52.96″ | 38.09 |
Vaccinium floribundum | IARAN020 | KUELAP–281 | Sonche | 23/07/2017 | 2494 | 6°10′47.96″ | 77°47′07.36″ | 49.86 |
Vaccinium floribundum | IARAN026 | KUELAP–287 | Leymebamba | 28/07/2017 | 2857 | 6°43′03.77″ | 77°47′44.91″ | 12.43 |
Vaccinium floribundum | IARAN029 | KUELAP–290 | Huancaurco | 2/08/2017 | 2680 | 6°07′59.65″ | 77°52′34.45″ | 86.09 |
Vaccinium floribundum | IARAN031 | KUELAP–292 | Huancaurco | 2/08/2017 | 2699 | 6°08′10.84″ | 77°52′27.79″ | 32.00 |
Vaccinium floribundum | IARAN036 | KUELAP–297 | Opelele | 5/08/2017 | 2626 | 6°15′24.92″ | 77°47′58.95″ | 43.32 |
Vaccinium floribundum | IARAN051 | KUELAP–312 | Santa Rosa | 14/08/2017 | 2597 | 6°19′38.43″ | 77°52′36.31″ | 14.00 |
Vaccinium mathewsii | IARAN002 | KUELAP–263 | La Palma | 5/07/2017 | 2906 | 6°43′31.46″ | 77°50′43.66″ | 64.30 |
Vaccinium mathewsii | IARAN025 | KUELAP–286 | Leymebamba | 28/07/2017 | 2855 | 6°43′03.79″ | 77°47′45.14″ | 23.10 |
Vaccinium mathewsii | IARAN039 | KUELAP–300 | Opelele | 5/08/2017 | 2827 | 6°15′30.87″ | 77°48′24.53″ | 65.30 |
Vaccinium mathewsii | IARAN030 | KUELAP–291 | Huancaurco | 2/08/2017 | 2727 | 6°07′58.84″ | 77°52′39.03″ | 32.20 |
Vaccinium meridionale | IARAN009 | KUELAP–270 | Espadilla | 13/07/2017 | 2399 | 6°13′04.40″ | 77°40′19.82″ | 24.90 |
Vaccinium meridionale | IARAN013 | KUELAP–274 | Espadilla | 13/07/2017 | 2519 | 6°13′14.60″ | 77°40′49.79″ | 78.00 |
Vaccinium meridionale | IARAN019 | KUELAP–280 | Sonche | 23/07/2017 | 2514 | 6°10′48.38″ | 77°47′07.56″ | 56.00 |
Rubus adenothallus | IR003 | KUELAP–256 | Granada | 4/04/2019 | 2822 | 6°06′07.01″ | 77°38′28.79″ | 129.20 |
Rubus andicola | IR001 | KUELAP–254 | Izcuchaca | 4/04/2019 | 2188 | 6°20′15.31″ | 77°31′06.41″ | 111.00 |
Rubus floribundus | IR002 | KUELAP–255 | Izcuchaca | 4/04/2019 | 2156 | 6°20′15.30″ | 77°31′06.40″ | 130.00 |
Rubus glabratus | IR008 | KUELAP–261 | Calla Calla | 4/04/2019 | 2887 | 6°43′19.29″ | 77°50′45.41″ | 143.60 |
Rubus lechleri | IR005 | KUELAP–258 | Granada | 4/04/2019 | 2923 | 6°07′34.69″ | 77°38′59.81″ | 110.20 |
Rubus loxensis | IR006 | KUELAP–259 | Granada | 4/04/2019 | 2949 | 6°07′34.92″ | 77°38′59.97″ | 160.00 |
Rubus sparsiflorus | IR007 | KUELAP–260 | Granada | 4/04/2019 | 3068 | 6°07′56.21″ | 77°38′59.97″ | 132.10 |
Rubus weberbaueri | IR004 | KUELAP–257 | Molinopampa | 4/04/2019 | 3251 | 6°08′59.48″ | 77°40′16.09″ | 120.00 |
2.2. DNA sequencing and alignment preparation
Genomic DNA was extracted from leaf tissue using the NucleoSpin Plant II Kit (Macherey-Nagel, Düren, Germany) following the Tineo et al. (2020). Briefly, samples were homogenized in a freeze-crush apparatus (SK-100, Funakoshi, Japan). 550 μl of lysis buffer was added and incubated at 65 °C overnight and then centrifuged at 11000 rpm for 60s. Then, 480 μl of binding buffer was added and centrifuged at 11000 rpm for 60s. Then, two washing steps of 600 μl of washing buffer was performed and centrifuged at 13000 rpm for 60s. Finally, 50 μl of elution buffer was added and centrifuged at 11000 rpm for 60s. DNA concentration was quantified by a Quantus™ Fluorometer (Promega, Madison, USA) (Table 1), and quality was measured by 1% agarose gel electrophoresis and visualized on a photodocumenter (SmartView Pro UVCI-1000, Major Science, Saratoga, USA) (Figure 2). Two chloroplast markers (matK and rbcL) and two nuclear markers (nrITS and GBSSI-2) were sequenced. Each gene was amplified using polymerase chain reaction (PCR) with MasterMix (Promega, Wisconsin, USA) in the following reaction mixture: 10 ng of DNA and 0.25–0.5 pmol of forward and reverse primers for a total volume of 10 μl. The PCR protocols followed Bustamante et al. (2021) and Tineo et al. (2020), and primer combinations are summarized in Table 2. Amplicons were purified using the NucleoSpin™ Gel and PCR Clean-up Kit protocol (Macherey-Nagel™, Düren, Germany). The sequences of the forward and reverse strands were determined commercially by Macrogen Inc. (Macrogen, Seoul, Korea). The sequences were manually edited with Chromas V.2.6.6 software. The 125 newly generated sequences (DNA-barcodes) from the four markers (matK, rbcL, nrITS and GBSSI-2) were deposited in GenBank. These sequences and others obtained from GenBank (Table 3) were initially aligned with Muscle algorithms (Thompson et al., 1994) and were adjusted manually with MEGA10 software (Kumar et al., 2018) (Figure 3).
Figure 2.
Genomic DNA QC using standard Gel Electrophoresis for Andean berries specimens from Region Amazonas, northern Peru.
Table 2.
Sets of primer combinations for matK, rbcL, nrITS and GBSSI-2 markers used for specimens from Ericales and Rosales (listed 5′→ 3′).
Gene or spacer region | Amplified length (bp) | Primers sequence (5′–3′) | References |
---|---|---|---|
GBSSI–2 | 550 | F: 5′–TGGTCTTGGTGATGTTCTTGG–3′ | Rousseau–Gueutin et al., 2009 |
R: 5′– GTGTAGTTGGTTGTCCTTGTAATCC–3′ | Rousseau–Gueutin et al., 2009 | ||
ITS | 650 | F: 5′–GGAAGTAAAAGTCGTAACAAGG–3′ | White et al., 1990 |
R: 5′–TCCTCCGCTATATGATATGC–3′ | White et al., 1990 | ||
rbcL | 1600 | F: 5′–ATGTCACCACAAACAGAAACTAAAGC–3′ | Chase et al. (2016) |
R: 5′– CTTTTAGTAAAAGATTGGGCCGAG–3′ | Chase et al. (2016) | ||
matK | 1500 | F: 5′–CTATATCCACTTATCTTTCAGGAGT–3′ | Ooi et al. (1995) |
R: 5′–AAAGTTCTAGCACAAGAAAGTCGA–3′ | Ooi et al. (1995) |
Table 3.
List of taxa used in molecular analyses along with voucher numbers followed by GenBank accession numbers. Sequences generated in the present study are in bold.
Species | Voucher/N° Taxon | ITS | matK | rbcL |
---|---|---|---|---|
Cavendishia angustifolia | Pedraza 1749 | KJ788223 | KJ788254 | – |
Cavendishia arizonensis | Luteyn 15286 | – | KP729914 | – |
Cavendishia bomareoides | Pedraza 1752 | KJ788224 | KJ788255 | – |
Cavendishia bracteata | Luteyn 14223 | AY331867 | AY331894 | – |
Cavendishia callista | Clarke 5241 | – | KP729912 | MF786429 |
Cavendishia capitulata | Powell 10 | AY331868 | AY331895 | – |
Cavendishia complectens | Pedraza 1749 | KM209386 | – | – |
Cavendishia grandifolia | NY/L. 8023 | AY331869 | AY331896 | – |
Cavendishia isernii | Salinas 707 | KP729959 | – | – |
Cavendishia leucantha | Pedraza 1768 | KJ788226 | – | – |
Cavendishia lindauiana | Pedraza 1766 | KJ788227 | KJ788258 | – |
Cavendishia mariae | Luteyn 15198 | KP729960 | KP729913 | – |
Cavendishia martii | Luteyn 15443 | AF382658 | AF382747 | – |
Cavendishia micayensis | Pedraza 1888 | KJ788228 | AF382748 | – |
Cavendishia nobilis | Lewis 3414 | KP729961 | KP729916 | – |
Cavendishia pilosa | Pedraza 1743 | KJ788229 | KJ788260 | – |
Cavendishia pubescens | Pedraza 1038 | KJ788230 | KJ788261 | – |
Cavendishia punctata | KUELAP–267 | OL361763 | OL706727 | OL707640 |
Cavendishia punctata | KUELAP–311 | OL361767 | OL706731 | OL707644 |
Cavendishia punctata | KUELAP–307 | OL361766 | OL706730 | OL707643 |
Cavendishia punctata | KUELAP–293 | OL361765 | OL706729 | OL707642 |
Cavendishia punctata | KUELAP–279 | OL361764 | OL706728 | OL707641 |
Cavendishia quereme | Pedraza 1707 | KJ788231 | KJ788262 | |
Cavendishia tarapotana | Pedraza 1958 | KJ788232 | KP729915 | – |
Cavendishia zamorensis | Salina 721 | KP729966 | KP729917 | – |
Cavendishia litensis | AY331890 | – | – | |
Thibaudia floribunda | AF382709 | – | – | |
Thibaudia parvifolia |
AF382713 |
– |
– |
|
Clethra acuminata | Leonard et al., 1849 | AY190572 | – | JQ594906 |
Clethra alnifolia | CCDB–20334–D03 | AY190571 | MF350258 | MG224565 |
Clethra alnifolia | CCDB–20334–C04 | MG220127 | AJ429281 | MG222185 |
Clethra arborea | Hedenas & Bisang s. | AY190569 | – | – |
Clethra arfakana | Sleumer & Vink 4380 | AY190568 | – | – |
Clethra barbinervis | Anderberg & Lundin 11 | AY190573 | AB697681 | AF421089 |
Clethra canescens | 224281 | AY190564 | – | – |
Clethra castaneifolia | S.V&D. 9109 | AY190567 | – | – |
Clethra cubensis | Rova et al., 2248 | AY190560 | – | – |
Clethra delavayi | Aldén et al., 1717 | AY190570 | – | – |
Clethra fimbriata | Harling 27133 | AY190563 | – | – |
Clethra hartwegii | H.S.Gaultheria 2135 | AY190574 | – | – |
Clethra mexicana | C&V 1831 | AY190558 | – | JQ591083 |
Clethra ovalifolia | H&A.21905 | AY190561 | – | – |
Clethra ovalifolia | KUELAP–282 | OL361761 | OL706732 | OL707645 |
Clethra pachyphylla | Emanuelsson 261 | AY190565 | – | – |
Clethra peruviana | S.V et al., 10006 | AY190566 | – | – |
Clethra retivenia | KUELAP–295 | OL361762 | OL706733 | OL707646 |
Clethra revoluta | Persson 515 | AY190562 | – | |
Clethra scabra | Oliveira 297 | AY190559 | – | MG833484 |
Clethra vicentina | W&M 23234 | AY190557 | – | – |
Ternstroemia sp. | – | – | HQ437950 | |
Franklinia alatamaha | – | – | AF380082 | MF349693 |
Diospyros aculeata |
– |
– |
MG201641 |
|
Disterigma acuminatum | PP1098 | FJ001669 | – | – |
Disterigma agathosmoides | L15190 | – | KC175470 | – |
Disterigma alaternoides | L15074 | FJ001672 | AY331901 | – |
Disterigma appendiculatum | PP1113 | FJ001673 | – | – |
Disterigma balslevii | PP998 | FJ001674 | – | – |
Disterigma bracteatum | PP1016 | FJ001675 | – | – |
Disterigma chocoanum | PP1121 | FJ001696 | – | – |
Disterigma codonanthum | L15117 | FJ001677 | – | – |
Disterigma cryptocalyx | L14993 | FJ001678 | – | – |
Disterigma dumontii | L15177 | FJ001679 | – | – |
Disterigma ecuadorense | KUELAP–285 | OL361760 | OL706736 | OL707648 |
Disterigma empetrifolium | CP7 | FJ001680 | – | – |
Disterigma hiatum | PP1112 | FJ001681 | – | – |
Disterigma humboldtii | P1075 | FJ001684 | – | – |
Disterigma luteynii | LPP14797 | FJ001687 | – | – |
Disterigma micranthum | PP1229 | FJ001688 | – | – |
Disterigma noyesiae | PP1155 | FJ001690 | – | – |
Disterigma ollacehum | PP1528 | FJ001697 | – | – |
Disterigma ovatum | LPP15457 | FJ001692 | AY331902 | – |
Disterigma pallidum | PP1506 | AF382674 | – | – |
Disterigma parallelinerve | JB12532 | KC175459 | – | – |
Disterigma pentandrum | L15085 | FJ001693 | KC175465 | – |
Disterigma pernettyoides | L15441 | – | AF382762 | – |
Disterigma pseudokillipiella | PP1143 | FJ001694 | KC175471 | – |
Disterigma rimbachii | PP1018 | FJ001695 | AY331903 | – |
Disterigma staphelioides | PP1062 | FJ001698 | – | – |
Disterigma stereophyllum | L15206 | FJ001699 | – | – |
Disterigma synanthum | KUELAP–264 | – | OL706734 | OL707647 |
Disterigma synanthum | KUELAP–275 | OL361759 | OL706735 | |
Disterigma trimerum | L15568 | FJ001700 | – | |
Disterigma ulei | PP1515 | FJ001701 | – | – |
Disterigma verruculatum | PP1138 | FJ001703 | – | – |
Notopora schomburgkii | AF382683 | AF382768 | – | |
Orthaea venamensis | AF382687 | AF382772 | – | |
Orthaea apophysata |
AF382685 |
– |
– |
|
Gaultheria acuminata | 1091527 | JF801586 | JF801333 | – |
Gaultheria adenothrix | 586107 | FJ010595 | – | – |
Gaultheria antipoda | 672075 | JF801617 | JF801372 | KT626709 |
Gaultheria borneensis | VacciniumK.2101092, ACAD | JF801598 | AF366629 | JF941568 |
Gaultheria bracteata | 1091528 | JF801593 | JF801341 | – |
Gaultheria buxifolia | 1091526 | – | JF801359 | – |
Gaultheria cardiosepala | LuLu–06–0022–1 | JF976341 | HM597394 | JF941573 |
Gaultheria corvensis | 1091531 | JF801614 | – | |
Gaultheria cumingiana | VacciniumK.3101092, ACAD | AF358882 | – | – |
Gaultheria cuneata | S.D. Z&L. Lu 031543 | HM597250 | – | – |
Gaultheria discolor | GLGS32542 | – | HM597366 | JN098404 |
Gaultheria dolichopoda | L. Lu et al., 060005 | HM597318 | HM597405 | – |
Gaultheria domingensis | 679020 | JF801594 | JF801342 | – |
Gaultheria dumicola | LuLu–GLGS20245 | – | HM597346 | JF941588 |
Gaultheria eciliata | LuLu–LL–07149–1 | – | HM597421 | – |
Gaultheria erecta | L.13813, NY | JF801585 | AF366631 | – |
Gaultheria eriophylla | 763043, RBGE | – | U61317 | L12618 |
Gaultheria foliolosa | L.15075, NY | JF801610 | – | |
Gaultheria glomerata | L.15327, NY | JF801592 | AF366633 | – |
Gaultheria gracilis | 1091532 | JF801587 | JF801335 | – |
Gaultheria hapalotricha | 1091533 | JF801596 | – | – |
Gaultheria heteromera | L. Lu et al., 07316A | – | HM597358 | – |
Gaultheria hispidula | VacciniumK.s.n., ACAD | JF801562 | AF366634 | MG223840 |
Gaultheria hookeri | S.D. Z&W.B. Yu 009 | – | HM597364 | – |
Gaultheria humifusa | FF132 | FJ665708 | JF801346 | KX678317 |
Gaultheria hypochlora | LuLu–GLGS16817–1 | JF976381 | HM597410 | JF941640 |
Gaultheria insana | 672082 | JF801604 | JF801354 | |
Gaultheria lanigera | L.15062, NY | JF801590 | – | – |
Gaultheria leucocarpa | VacciniumK. 318896, ACAD | JF976385 | JF801306 | – |
Gaultheria macrostigma | 176244 | FJ665711 | JF801369 | – |
Gaultheria megalodonta | 157515 | AF358890 | AF366639 | |
Gaultheria miqueliana | 1636–77, AA | AF358891 | – | AF124590 |
Gaultheria mucronata | 586115 | FJ010604 | FJ010622 | – |
Gaultheria myrsinoides | L.14814, NY | AF358892 | AF366640 | |
Gaultheria notabilis | L. Lu et al., 07005 | – | HM597370 | – |
Gaultheria nubigena | 672084 | JF801600 | JF801350 | – |
Gaultheria ovatifolia | CCDB–23363–F06 | JF801597 | – | MG222845 |
Gaultheria parvula | 672087 | FJ665715 | JF801371 | – |
Gaultheria praticola | 861407 | – | JF801383 | – |
Gaultheria procumbens | Powell s.n., WFU | – | AF366643 | MG222887 |
Gaultheria prostrata | S.D.Z&W.B.Yu ZY011 | JF801603 | JF801348 | JN098405 |
Gaultheria pseudonotabilis | GLGS 16565 | – | HM597382 | – |
Gaultheria pyroloides | 95633 | HM597252 | JF801349 | – |
Gaultheria reticulata | L.15077, NY | AF358897 | AF366645 | – |
Gaultheria schultesii | 586118 | FJ010601 | – | – |
Gaultheria sclerophylla | L.5331, NY | AF358898 | AF366646 | – |
Gaultheria secunda | KUELAP–278 | – | OL706744 | OL707650 |
Gaultheria secunda | KUELAP–284 | OL361752 | OL706738 | OL707651 |
Gaultheria secunda | KUELAP–301 | OL361754 | OL706741 | OL707654 |
Gaultheria secunda | KUELAP–288 | OL361753 | OL706739 | OL707652 |
Gaultheria secunda | KUELAP–266 | OL361751 | OL706737 | OL707649 |
Gaultheria semi–infera | L. Lu et al., 07312 | – | HM597388 | – |
Gaultheria serrata | 1091539 | JF801595 | JF801343 | – |
Gaultheria shallon | DNA 185, WFU | JF801581 | JF801329 | MG221678 |
Gaultheria sleumeriana | 1091540 | JF801613 | – | – |
Gaultheria straminea | L. Lu et al., 07306 | – | HM597390 | – |
Gaultheria strigosa | L.15358, NY | JF801608 | AF366647 | – |
Gaultheria suborbicularis | 1045346 | JF801563 | – | – |
Gaultheria tasmanica | 1977–5050, RBGK | AF358901 | JF801370 | – |
Gaultheria thymifolia | 586120 | – | HM597396 | – |
Gaultheria tomentosa | L.15076, NY | AF358902 | AF366648 | – |
Gaultheria trichophylla | LuLu–ZY–013–1 | – | HM597416 | JF941727 |
Gaultheria vaccinioides | 1091543 | – | JF801331 | – |
Gaultheria viridicarpa | 1842756 | – | – | KU564802 |
Gaultheria sp. 01 | KUELAP–302 | OL361755 | OL706742 | OL707655 |
Gaultheria sp. 02 | KUELAP–308 | – | OL706743 | OL707656 |
Gaultheria sp. 03 | KUELAP–289 | – | OL706740 | OL707653 |
Leucothoe griffithiana | FJ010598 | FJ010616 | – | |
Leucothoe tonkinensis | MH558159 | – | – | |
Leucothoe davisiae |
JF801553 |
FJ010617 |
– |
|
Thibaudia ovalifolia | KUELAP–299 | OL361758 | Yes | OL707660 |
Thibaudia moricandi | KUELAP–298 | – | Yes | OL707659 |
Thibaudia obovata | KUELAP–272 | OL361756 | – | OL707657 |
Thibaudia costaricensis | WFU/EAP016 | AY331887 | AY331914 | – |
Thibaudia densiflora | MM001 | – | AF382790 | – |
Thibaudia diphylla | NY/L15459 | AY331888 | AY331915 | – |
Thibaudia floribunda | NY/L15090 | AF382709 | – | – |
Thibaudia inflata | NY/L15029 | – | AY331916 | |
Thibaudia jahnii | 180744 | – | AF382792 | – |
Thibaudia litensis | NY/L15020 | AY331890 | – | – |
Thibaudia macrocalyx | NY/L15444 | AF382711 | AF382793 | – |
Thibaudia martiniana | NY/L15028 | AY331891 | AY331918 | – |
Thibaudia angustifolia | KUELAP–283 | OL361757 | OL706745 | OL707658 |
Thibaudia pachyantha | NY/L15189 | AF382712 | – | – |
Thibaudia parvifolia | NY/L5212 | AF382713 | – | – |
Thibaudia tomentosa | NY/L15502 | AY331892 | AY331919 | – |
Vaccinium poasanum | – | AF382736 | – | JQ594910 |
Disterigma trimerum |
– |
FJ001700 |
– |
– |
Vaccinium alvarezii | KIG, HGG, P–659–L | KM209414 | – | – |
Vaccinium amamianum | TI:Ohi–Toma s.n | – | LC168877 | – |
Vaccinium ambivalens | C.Koster BW 13699–L | KM209415 | – | – |
Vaccinium andersonii | RG–9104–L | KM209418 | – | – |
Vaccinium arboreum | FLAS:M–4609 | KM209419 | – | KY626810 |
Vaccinium arctostaphylos | ACAD/VK–23991 | AF419774 | AF419702 | – |
Vaccinium berberidifolium | FRF–51757–L | KM209424 | – | – |
Vaccinium boninense | 1004256 | – | AB623168 | – |
Vaccinium bulleyanum | 1633929 | – | LC168878 | – |
Vaccinium caespitosum | ACAD/VK–313887 | AF419775 | AF419703 | KX678256 |
Vaccinium calycinum | ACAD/VacciniumK–630886 | AF419776 | AF419704 | – |
Vaccinium caudatifolium | RBGE 1993–4020 | AF382715 | AF382797 | – |
Vaccinium cercidifolium | RBGE 1982–0845 | AF382716 | – | – |
Vaccinium cereum | ACAD/VacciniumK–316992 | KM209431 | AF419705 | – |
Vaccinium ciliatum | 445570 | AB623188 | – | – |
Vaccinium corymbosum | ACAD/VacciniumK–ABS7 | AF419778 | AF419706 | MG223027 |
Vaccinium crassifolium | WFU/K&P–DNA208 | AF382718 | – | – |
Vaccinium crenatum | NY/L14171 | AF382719 | – | – |
Vaccinium cruentum | 1633933 | KM209436 | – | – |
Vaccinium cylindraceum | 180753 | AF382720 | AF382800_ | – |
Vaccinium deliciosum | ACAD/VK–529879 | AF419790 | AF419707 | KX678227 |
Vaccinium dentatum | RBGE 1011085 | AF382721 | AF382801 | – |
Vaccinium emarginatum | 174252 | – | AB623166 | – |
Vaccinium erythrocarpum | ACAD/VK–81981 | AF419779 | AF419710 | – |
Vaccinium exul | 1633938 | – | – | KU568131 |
Vaccinium filiforme | RBGE 1980–1411 | AF382722 | – | – |
Vaccinium floribundum | 180757 | – | AF382804 | – |
Vaccinium floribundum | KUELAP–312 | OL707676 | ||
Vaccinium floribundum | KUELAP–268 | OL706747 | OL707663 | |
Vaccinium floribundum | KUELAP–273 | – | – | OL707665 |
Vaccinium floribundum | KUELAP–281 | OL360763 | OL706752 | OL707668 |
Vaccinium floribundum | KUELAP–265 | OL360759 | OL706746 | OL405713 |
Vaccinium floribundum | KUELAP–277 | OL360761 | OL706750 | OL707667 |
Vaccinium floribundum | KUELAP–287 | – | OL707625 | OL707670 |
Vaccinium floribundum | KUELAP–262 | – | – | OL707661 |
Vaccinium floribundum | KUELAP–290 | OL360765 | OL706753 | OL707671 |
Vaccinium floribundum | KUELAP–297 | OL360768 | OL707628 | OL707674 |
Vaccinium floribundum | KUELAP–292 | OL360767 | OL707627 | OL707673 |
Vaccinium fragile | ACAD/VacciniumK–128796 | AF382725 | AF382805 | – |
Vaccinium gaultheriifolium | RBGE 1992–0332 | AF382726 | LC168880 | – |
Vaccinium hirsutum | ACAD/VacciniumK–83981 | AF419780 | AF419709 | – |
Vaccinium hirtum | RBGE 1921–9886 | AB623185 | AB623169 | – |
Vaccinium horizontale | 180761 | – | AF382808 | – |
Vaccinium latissimum | 1633959 | KM209449 | – | – |
Vaccinium leucobotrys | 1633944 | KM209451 | – | – |
Vaccinium macrocarpon | 13750 | AF382730 | U61316 | MG221913 |
Vaccinium madagascariense | LB–11063–L | KM209442 | – | |
Vaccinium mathewsii | KUELAP–286 | OL360764 | OL707624 | OL707669 |
Vaccinium mathewsii | KUELAP–300 | OL360769 | OL707629 | OL707675 |
Vaccinium mathewsii | KUELAP–263 | – | – | OL707662 |
Vaccinium mathewsii | KUELAP–291 | OL360766 | OL707626 | OL707672 |
Vaccinium membranaceum | ACAD/VK–133979 | AF419782 | AF419711 | MH926046 |
Vaccinium meridionale | ACAD/VacciniumK–s.n. | AF382731 | – | AF124576 |
Vaccinium meridionale | KUELAP–274 | OL360760 | OL706749 | OL707666 |
Vaccinium meridionale | KUELAP–270 | OL706748 | OL707664 | |
Vaccinium meridionale | KUELAP–280 | OL360762 | OL706751 | |
Vaccinium moupinense | S.M, A.F. 079 | KM209457 | – | – |
Vaccinium myrtillus | S/Anderberg s.n. | AF382732 | AF382810 | MG221208 |
Vaccinium nummularia | 180764 | – | LC168882 | – |
Vaccinium oldhamii | ACAD/VacciniumK–426886 | AF419783 | AB623174 | – |
Vaccinium ovalifolium | ACAD/VK–1419886 | AF419784 | – | KX679055 |
Vaccinium ovatum | ERM1383 | FJ001692 | – | KX678497 |
Vaccinium oxycoccos | HERB0230 | – | LC168883 | KX677905 |
Vaccinium padifolium | ACAD/VK–5141090 | AF382734 | AF382812 | – |
Vaccinium phillyreoides | 989263–L | KM209465 | – | – |
Vaccinium praestans | ACAD/VK–Vacc813 | AF419785 | AF419714 | – |
Vaccinium pratense | SCBGP385_2 | KP092616 | – | – |
Vaccinium reticulatum | ACAD/VacciniumK–324992 | AF382737 | AF382814 | – |
Vaccinium scoparium | ACAD/VacciniumK–731883 | AF419787 | AF419716 | MG222739 |
Vaccinium sieboldii | TNS:175ws–20100513 | AB623191 | AB623175 | – |
Vaccinium smallii | ACAD/VK–725886 | AF382739 | AB623170 | – |
Vaccinium summifaucis | RBGE 1963–0610 | AF382740 | AF382817 | |
Vaccinium tenellum | WFU/K& P–DNA209 | AF382741 | AF382818 | – |
Vaccinium uliginosum | ACAD/VK–217995 | AF419788 | AF419717 | KX677950 |
Vaccinium varingifolium | 229200 | AY274564 | – | – |
Vaccinium vitis idaea | RBGE 1977–3274A | AH011361 | MN150141 | MG222697 |
Vaccinium wrightii | 1004259 | AB623192 | – | – |
Vaccinium yakushimense | 1004255 | AB623183 | – | – |
Vaccinium yatabei | ACAD/VK–419886 | AF419789 | AF419718 | – |
Z. pulverulenta (Outgroup) | AF358906 | AF124571 | – | |
A. polifolia (Outgroup) |
AF358872 |
LC168873 |
– |
|
Species |
Voucher/N° Taxon |
ITS |
GBSSI |
rbcL |
Rubus acuminatus | R2007 | – | – | KU881197 |
Rubus adenothallus | KUELAP–256 | OL348471 | OL707633 | OL707678 |
Rubus amabilis | R01–14–SICUA | FJ472909 | KU926726 | KU881200 |
Rubus andicola | KUELAP–254 | OL348470 | OL707636 | OL707677 |
Rubus assamensis | R0118 | AH006024 | KU926729 | KU881203 |
Rubus australis | Gardner 1539, MO | H006022 | – | – |
Rubus biflorus | R2504 | KU881063 | KU926733 | KU881207 |
Rubus bifrons | Alice 98–9, M | AF055775 | – | – |
Rubus bollei | Bol_col14 | KM037227 | – | – |
Rubus caesius | Karlen 243, S/75065 | AF055776 | – | FN689382 |
Rubus calycinus | R2519 | KU881065 | KU926735 | KU881209 |
Rubus canadensis | A&C 98–10, M/MOBOT.S.27940 | AF055777 | – | KY427303 |
Rubus caudifolius | R2021 | KU881067 | KU926737 | KU881211 |
Rubus chamaemorus | Alice, R17, M | AF055740 | – | – |
Rubus chingii | R2128 | KU881068 | – | KU881212 |
Rubus corchorifolius | PDBK 2008–0160 | – | – | MH593651 |
Rubus coreanus | 321593 | MT078683 | KU926741 | MN732644 |
Rubus cuneifolius | Alice 5, M/A.22485 | AF055778 | – | KJ773846 |
Rubus deliciosus | Alice, 98–1, M | AF055733 | – | – |
Rubus ellipticus | R2512/R0112 | KU881060 | KU926746 | KU881223 |
Rubus eucalyptus | R2354 | – | KU926749 | KU881226 |
Rubus eustephanus | R2518 | KU881083 | KU926750 | KU881227 |
Rubus loxensis | KUELAP–259 | OL348474 | OL707635 | OL707679 |
Rubus flagellaris | Alice 61:WKU/BM 2008/273 | AY083372 | – | HM850313 |
Rubus foliosus | Fol_col08 | KM037335 | – | – |
Rubus floribundus | KUELAP–255 | OL351854 | OL707632 | – |
Rubus geoides | Dudley et al., 1538a, MO | AF055799 | – | – |
Rubus glabratus | Rubus5132 QCA | HM453950 | – | – |
Rubus glabratus | KUELAP–261 | OL348476 | OL707639 | OL707681 |
Rubus glaucus | PI 548906 | AY083361 | – | – |
Rubus gracilis | Grac_co0l5 | KM037377 | – | – |
Rubus gunnianus | Wells 96–1, M | AF055749 | – | – |
Rubus hirsutus | ODdo/R2225 | AY818208 | KU926758 | KU881236 |
Rubus hypomalacus | Hma_col07 | KM037395 | – | – |
Rubus hypopitys | R2533 | KU881094 | – | KU881238 |
Rubus idaeus | Alice, R8, MAINE | AF055755 | – | JX848533 |
Rubus lasiococcus | Merello et al., 827, MO | AF055750 | – | – |
Rubus lechleri | KUELAP–258 | OL348473 | OL707637 | OL707682 |
Rubus macilentus | R2501 | KU881118 | KU926783 | KU881262 |
Rubus macraei | 59494 | AF055763 | – | – |
Rubus matsumuranus | PDBK 2012–0085 | – | – | MH593654 |
R, moorrei | Streimann 8207, GH | AF055765 | – | – |
Rubus mesogaeus | ALTA:120202 | KU881122 | KU926787 | KU881266 |
Rubus moschus | Mos01_col04 | KM037437 | – | – |
Rubus niveus | R0101 | KU881126 | KU926791 | KU881270 |
Rubus nubigenus | 1257, NCGR | AF055769 | – | – |
Rubus odoratus | Alice, R14, M | AF055734 | – | – |
Rubus parviflorus | Richards, 666, M | AF055735 | – | – |
Rubus parvifolius | R2035 | KU881132 | KU926797 | GU363802 |
Rubus parvus | Alice 97–3, M/CHR:688824 | AF055766 | – | KT626843 |
Rubus pectinellus | 680–MO | AF055797 | – | – |
Rubus pedemontanus | Martensen s.n. | AF055783 | – | – |
Rubus pentagonus | R0223 | – | KU926801 | KU881280 |
Rubus phoenicolasius | Alice, 96–2, M | AF055759 | KU926803 | – |
Rubus pinfaensis | R0102 | – | KU926811 | KU881291 |
Rubus platyphyllus | Sva_col04 | KM037581 | – | – |
Rubus praecox | Pra01_col01 | KM037481 | – | – |
Rubus pungens | R2337 | KU881153 | KU926818 | KU881297 |
Rubus radula | Rad_col06 | KM037522 | – | – |
Rubus reflexus | S.1033I/S.0492L | JN407524 | – | JN407362 |
Rubus robustus | Steinbach 247, GH | AF055771 | – | – |
Rubus roseus | L&14402, M | AF055770 | – | – |
Rubus sanctus | Thibaudia Eriksson 714, S | AF055785 | – | – |
Rubus saxatilis | Thibaudia Eriksson 719, S | AF055746 | – | – |
Rubus schizostylus | TKM201536 | KT634247 | – | – |
Rubus schleicheri | Schl_col05 | KM037537 | – | – |
Rubus scissoides | 1546356 | KM037543 | – | – |
Rubus setosus | Alice 113, MAINE | AF055787 | – | – |
Rubus silvaticus | Sil_col08 | KM037557 | – | – |
Rubus simplex | R2321 | – | KU926832 | KU881312 |
Rubus sparsiflorus | KUELAP–260 | OL348475 | OL707638 | OL707680 |
Rubus sulcatus | Martensen 1325.12 | AF055789 | – | – |
Rubus sumatranus | R2111 | KU881182 | KU926845 | KU881326 |
Rubus tephrodes | Yao, 9231, MO | AF055767 | – | – |
Rubus thibetanus | Q186 | MH711174 | – | – |
Rubus trifidus | C, 3.001/A, 98–2, M | AF055737 | – | – |
Rubus trilobus | Ruiz, 889, MO | AF055738 | – | – |
Rubus trivialis | Alice 55, M/Abbott 26055 | AF055790 | – | KJ773847 |
Rubus ursinus | 197, NCGR/Alice 98–8, M | AF055794 | – | – |
Rubus vigorosus | Martensen 2518.32 | AF055793 | – | – |
Rubus weberbaueri | KUELAP–257 | OL348472 | OL707634 | OL707683 |
Fullgaria paradoxa | U90805 | AM116869 | U06802 | |
Waldsteinia fragarioides | – | U90822 | ||
Geum urbanum | AM116871 | U90802 |
Figure 3.
Experimental procedures for sampling, identification, DNA extraction, amplification, purification and data analysis for Andean berries specimens from Region Amazonas, northern Peru.
2.3. Phylogenetic analysis of concatenated sequence data
The phylogenies were based on concatenated data of the four molecular markers (Table 2). An exploratory phylogeny consisting of Ericales and Rosales (340 sequences) was performed to identify the main lineages where Andean berries were embedded. Additionally, separate phylogenies for each lineage were evaluated. Selection of the best-fitting nucleotide substitution model was conducted using PartitionFinder (Lanfear et al., 2012) for exploratory analysis (using the four partitions matK, rbcL, nrITS and GBSSI-2) and for separate phylogenies (using three partitions each) (Table 4). The best partition strategy and model of sequence evolution were selected based on the Bayesian information criterion (BIC) for each phylogeny (Table 4). Maximum likelihood (ML) analyses were conducted with the RAxML HPC-AVX program (Stamatakis, 2014), implemented in the raxmlGUI 1.3.1 interface (Silvestro and Michalak, 2012) using Table 4 models with 1000 bootstrap replications. Bayesian inference (BI) was performed with MrBayes v. 3.2.6 software (Ronquist et al., 2012) using Metropolis-coupled MCMC and the Table 4 models. Two runs each with four chains (three hot and one cold) were conducted for 10,000,000 generations, sampling trees every 1,000 generations.
Table 4.
Evolutionary models for phylogenetic analyses of specimens from Ericales and Rosales.
Group | Bayesian inferences | Maximum likelihood | |
---|---|---|---|
Exploratory phylogeny | Figure S1 | GTR + I+G | GTRGAMMAI |
Separate phylogenies | Figure 2 | GTR | K81 |
Figure 3 | TRNEF+G | TRNEF+G | |
Figure 4 | GTR | K81UF+I+G | |
Figure 5 | GTR+I+G | GTR+I+G | |
Figure 6 | GTR+I+G | GTR+I+G | |
Figure 7 | GTR | K81UF+G | |
Figure 8 | GTR+I+G | GTR+I+G |
3. Results
A total of 125 DNA-barcodes of andean berries were newly generated for the four molecular markers that allowed the construction of multilocus phylogenies. In the exploratory phylogeny, the analyzed data matrix included a total of 3,324 base pairs (bp) (1,487 bp for matK, 666 bp for rbcL, 716 bp for ITS, and 455 bp for GBSSI) from 340 individuals (Table 3). This multilocus phylogeny obtained from the ML and BI analyses molecularly confirmed 24 species from 48 specimens embedded in the order Ericales and Rosales. This exploratory phylogenetic tree showed six monophyly lineages belonging to Ericales [Cavendishia Lindl., Clethra L., Disterigma (Klotzsch) Nied, Gaultheria L., Thibaudia Ruiz & Pav., and Vaccinium L.] and one belonging to Rosales (Rubus L.) (Figure S1).
3.1. Cavendishia
The phylogeny of Cavendishia included concatenated data (1,265 bp for matK, 551 bp for rbcL, and 631 bp for ITS) from 25 individuals. The specimens KUELAP-211, KUELAP-267, KUELAP-279, KUELAP-293, and KUELAP-307 were recognized as Ca. punctata (Ruiz & Pav. ex J.St.-Hil.) Sleumer. This species is characterized by pink peduncles, dark-red pedicels, pinkish-red calyx, and pale green flowers (Figure 9A, Table 5). This species was placed in sistership with Ca. bracteata (Ruiz & Pav. ex A.St.-Hil.) Hoerold. The genetic divergences between these species were over 0.9% for matK and 0.4% for ITS (Figures 4, S2, S3). The intraspecific divergences of Ca. punctata were 0.7% for matK, 0.3% for rbcL, and 0.2% for ITS.
Figure 9.
Phylogenetic tree of the Vaccinium lineage based on maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS. or 0.90 (BPP. are indicated by hyphens (-)). The scale bar indicates the number of nucleotide substitutions per site.
Table 5.
Morphological comparisons among species of the genus Cavendishia.
Species | Habitat | Altitude (masl) | Height (m) | Immature fruit | Mature fruit | Flowers | Corolla | References |
---|---|---|---|---|---|---|---|---|
Cavendishia bracteata | Shrub | 1400–3500 | 1–3 | Green | Black | Lilac | Pink | Luteyn (1983) |
WCVP (2021) | ||||||||
Cavendishia isernii | Shrub terrestrial | 660–1200 | 1.8–3 | Reddish–green | Greenish–white | Lilac | – | Luteyn (1983) |
Cavendishia punctata | Shrub | 2000–3000 | 2–3.5 | Reddish–green | Purple | Pedicel and garnet calyx | Greenish | Luteyn (1983), this study |
Cavendishia sirensis | Shrub hemi–epiphyte | 600–1700 | 1.5–3 | Green | Purple | White, red calyx | Tubular | Luteyn (1983) |
Cavendishia tarapotana | Shrub | 1200–1500 | 2.5–5 | – | Lilac | Fuchsia red | Rose–yellow, white–yellow | Luteyn (1983) |
Figure 4.
Phylogenetic tree of the Cavendishia lineage based on maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.
3.2. Clethra
The multilocus phylogeny of Clethra (1,323 bp for matK, 532 bp for rbcL, and 716 bp for ITS) included 21 individuals. Two species were identified among the specimens, Cl. ovalifolia Turcz (KUELAP-282) and Cl. retivenia Sleumer (KUELAP-295) (Figure 5). Cl. ovalifolia was characterized by oval leaves with stipules in the edges (Figure 9B), while Cl. retivenia was diagnosed with pubescent leaves and ferruginous back side leaves (Figure 9C, Table 6). Cl. retivenia resolved sistership to the clade composed of Cl. fimbriata Kunth, Cl. ovalifolia and Cl. revoluta (Ruiz & Pav.) Spreng., and genetic divergences were over 0.5% for ITS (Figure S4).
Figure 5.
Phylogenetic tree of the Clethra lineage based on maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.
Table 6.
Morphological comparisons among species of the genus Clethra.
Species | Habitat | Altitude (masl) | Height (m) | Leaf shape | Immature fruit | Mature fruit | Flowers | Corolla | References |
---|---|---|---|---|---|---|---|---|---|
Clethra fimbriata | subshrub | 2800–3600 | 2–3 | Coriaceous | Brown | Brown | White | White | León, 2006a, León, 2006b, Sleumer (1967) |
Clethra ovalifolia | Shrub | 2000–3100 | 1–3 | – | – | Brown | Cream | White | Sleumer (1967) |
Clethra retivenia | Shrub | 1500–3200 | 3 | Coriaceous | – | – | White | White | León, 2006a, León, 2006b, this study |
Clethra revoluta | Tree | 2350 | 10–16 | Coriaceous | – | – | White | White | Sleumer (1967) |
Clethra scabra | Tree | 1700–2000 | 4–8 | – | Green | Brown– Reddish | Pink | Pink | Sleumer (1967) |
3.3. Disterigma
The phylogeny of Disterigma included concatenated data (1274 bp for matK and 686 bp for ITS) from 32 individuals. Based on the multilocus tree obtained from the ML and BI analyses (Figure 6), the specimens were identified as D. synanthum Pedraza (KUELAP-264, KUELAP-275) and D. ecuadorense Luteyn (KUELAP-285). The former species was characterized by pale green floral bracts and a white corolla (Figure 9D). This species was sister to D. alaternoides (Kunth) Nied (BS/BI = 85/1.0), differing by 0.2% for the ITS. Additionally, D. ecuadorense was characterized by a green calyx, pink corolla, and white berry (Figure 9E, Table 7). This species was sister to D. ulei Sleumer, differing by 2.3% for ITS (Figures S5, S6).
Figure 6.
Phylogenetic tree of the Disterigma lineage based on maximum likelihood inference of combined matK and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP. are indicated by hyphens (-)). The scale bar indicates the number of nucleotide substitutions per site.
Table 7.
Morphological comparisons among species of the genus Disterigma.
Species | Habitat | Altitude (masl) | Height (m) | Calyx | Immature fruit | Mature fruit | Flowers | Corolla | References |
---|---|---|---|---|---|---|---|---|---|
Disterigma synanthum | Shrub–epiphyte | 2500–3000 | 0.5–1 | Green pale | Green pale | Brown | White–pink | white, style white | Pedraza–Peñalosa (2008), this study |
Disterigma alaternoides | Shrub terrestrial | 1500–2960 | 1.5–2 | Green | Whitish–green | Brown | White–pink | White tubular | León, 2006a, León, 2006b, Pedraza–Peñalosa (2008) |
Disterigma ecuadorense | Shrub terrestrial | 2500–3000 | 1 | Green | – | White | White | Whitish–pink | Smith (1933), León, 2006a, León, 2006b, this study |
Disterigma ulei | Epiphytic grass, Shrub terrestrial | 2000–2800 | 0.5–1 | Light green | Light green | Ocbonicos lilac | Greenish | Pedraza–Peñalosa (2008), Smith (1933) |
3.4. Gaultheria
The multilocus phylogeny of Gaultheria (1487 bp for matK, 550 bp for rbcL and 659 bp for ITS) included 67 individuals (Figure 7). The materials comprise four species within Gaultheria. One of this species was identified as G. secunda J. Rémy (KUELAP-266, KUELAP-278, KUELAP-284, KUELAP-288, KUELAP-301) based on the red calyx and pale-white corolla (Figure 9F, Table 8). This species was resolved in sistership to the clade composed of G. foliolosa Benth and G. mucronata (L. fil.) J.Rémy. The intraspecific divergences of G. secunda were 0.2% for matK, 0.2% for rbcL, and 2.4% for ITS (Figures S7, S8, S9). The other three species remained unidentified. Gaultheria sp. 1 (KUELAP-289) (Figure 9G) resolved sister to G. myrsinoides Kunth. Additionally, Gaultheria sp. 2 (KUELAP-308) (Figure 9H) and Gaultheria sp. 3 (KUELAP-302) (Figure 9I) were sister species, and both were sister to G. glomerata (Cav.) Sleumer.
Figure 7.
Phylogenetic tree of the Gaultheria lineage based on maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS. or 0.90 (BPP. are indicated by hyphens (-)). The scale bar indicates the number of nucleotide substitutions per site.
Table 8.
Morphological comparisons among species of the genus Gaultheria.
Species | Habitat | Altitude (masl) | Height (m) | Calyx | Immature fruit | Mature fruit | Flowers | Corolla | References |
---|---|---|---|---|---|---|---|---|---|
Gaultheria foliolosa | Shrub terrestrial | 2000–3000 | 0.5–3 | Cream | - | Blue–black | White | Cream | Middleton (1990, 1991) |
Gaultheria glomerata | Shrub terrestrial | 1000–3000 | 0.5–3 | Red–rose | Greenish | Black | Lilac, red | – | Middleton (1990, 1991) |
Gaultheria myrsinoides | Shrub terrestrial | 2000–2800 | 1–2 | Green | Green | Purple | White | White | Middleton (1990, 1991) |
Gaultheria mucronata | Shrub terrestrial | 2000–3120 | 1–2 | Green | Green | Lilac | Pink | Cream at base rose distally | Middleton (1990, 1991) |
Gaultheria secunda | Shrub, half–terrestrial | 2500–3500 | 1–2 | Rose–red | Green | Red–rose | Rose–pink | Pale pinkish–white | Middleton (1990, 1991), WCVP (2021), this study |
Gaultheria sp 1 | Shrub | 2000–2720 | 1–2 | Rose–red | Green | Red–rose | Rose–pink | Pale pinkish–white | This study |
Gaultheria sp 2 | Shrub | 2000–2700 | 1–2 | Rose–red | Green | Red–rose | Rose–pink | Pale pinkish–white | This study |
Gaultheria sp 3 | Shrub | 2000–2700 | 1–2 | Rose–red | Green | Red–rose | Rose–pink | Pale pinkish–white | This study |
3.5. Thibaudia
The phylogeny of Thibaudia included concatenated data (1,262 bp for matK, 551 bp for rbcL and 650 bp for ITS) from 18 individuals. The materials comprised four species in Thibaudia (Figure 8). T. ovalifolia A.C.Sm. (KUELAP-299) and T. moricandi Dunal (KUELAP-298) were recognized as sister species, and both differed by 0.1% for matK and 0.1% for rbcL. T. ovalifolia was characterized by glabrous flowers and rugose calyxes (Figure 9L), whereas T. moricandi was characterized by a pubescent corolla (Figure 9K, Table 9). These two species were sister to T. obovata A.C.Sm. (KUELAP-272), and both differed from the latter by over 0.1% for rbcL and 0.1% for ITS (Figures S10, S11). T. obovata was characterized by obovate-oblong leaves, pilose calyx and pedicels, and tomentose corolla (Figure 9M). Moreover, the clade composed of these three species and T. nutans Klotzsch ex Mansf. was closely related to T. angustifolia Hook (KUELAP-283). T. angustifolia was diagnosed by the presence of a bright red corolla and purple berries (Figure 9J).
Figure 8.
Phylogenetic tree of the Thibaudia lineage based on the maximum likelihood inference of combined matK, rbcL, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP. are indicated by hyphens (-)). The scale bar indicates the number of nucleotide substitutions per site.
Table 9.
Morphological comparisons among species of the genus Thibaudia.
Species | Habitat | Altitude (masl) | Height (m) | Calyx | Flowers | Corolla | References |
---|---|---|---|---|---|---|---|
Thibaudia angustifolia | Shrub | 2000–2800 | 0.5–2 | Red–rose | Bright red | Bright red | León, 2006a, León, 2006b, WCVP (2021), this study |
Thibaudia diphylla | Shrub | 1000–2400 | 2–4 | Pale–pink | White pink | Rich pink | León, 2006a, León, 2006b, WCVP (2021) |
Thibaudia moricandii | Shrub | 1500–2600 | 0.5–2 | Red | Red | Pubescent, throat, lobes white | León, 2006a, León, 2006b, this study |
Thibaudia nutans | Herbaceous–bush | 1000–1900 | 0–5 – 3 | Green | Cauliflorous | Dark–red | León, 2006a, León, 2006b |
Thibaudia ovalifolia | Shrub | 2100–2700 | 0.5–2 | Rugose | glabrous flowers | – | León, 2006a, León, 2006b, WCVP (2021), this study |
Thibaudia obovata | Shrub | 1600–2200 | 1–3 | Pilose pedicels | Tomentose | León, 2006a, León, 2006b, WCVP (2021), this study | |
Thibaudia tomentosa | Shrub terrestrial | – | 0.5–1.5 | Globose bell–shaped | Bright red, curved | Orange | León, 2006a, León, 2006b |
3.6. Vaccinium
The multilocus phylogeny of Vaccinium (1,253 bp for matK, 551 bp for rbcL and 673 bp for ITS) included 79 individuals. In this collection, three species were recognized in this genus, namely, V. meridionale Sw, V. mathewsii Sleumer, and V. floribundum Kunth. The former species (KUELAP-270, KUELAP-274, KUELAP-280) was characterized by dark berries and a bitter taste (Figure 9N). V. meridionale was sister to V. arboreum Marshall and genetically differed by 0.3% in rbcL and by 3.5% in the ITS. V. mathewsii (KUELAP-263, KUELAP-286, KUELAP-291, KUELAP-300) was morphologically characterized by a pinkish-white corolla and blue–black fruit (Figure 9O, Table 10). V. mathewsii was closely related to V. crenatum (G. Don) Sleumer, and genetic divergence of these taxa was 5.7% for ITS. V. floribundum (KUELAP-262, KUELAP-265, KUELAP-267, KUELAP-268, KUELAP-273, KUELAP-277, KUELAP-281, KUELAP-287, KUELAP-290, KUELAP-292, KUELAP-312) was diagnosed by having leathery leaves with pinkish-white flowers and dark berries (Figure 9P) and showed high intraspecific divergences (1.2% for matK, 0.3% for rbcL, and 3.7% for ITS), while the general appearance remained identical among all specimens of this study, suggesting cryptic diversity. V. floribundum was sister to V. ovatum Pursh, differing by 0.7% for rbcL (Figures S12, S13, S14).
Table 10.
Morphological comparisons among species of the genus Vaccinium.
Species | Habitat | Altitude (masl) | Height (m) | Immature fruit | Mature fruit | Flowers | Corolla | References |
---|---|---|---|---|---|---|---|---|
Vaccinium arboreum | Shrub | - | 2–5 | Green | Black | White | White | Bracko and Zurucchi (1993), León et al. (2017) |
Vaccinium crenatum | Shrub terrestrial | 1000–2800 | – | Green | Reddish, blue–black | White–pink | Rose–red | Vander Kloet and Dickinson (2009), León et al. (2017) |
Vaccinium floribundum | Shrub | 2000–3000 | 0.5–1 | Green | blue–black | White, red tips | white | Bracko and Zurucchi (1993), León et al. (2017), this study |
Vaccinium mathewsii | Shrub | 2000–3000 | 1–2 | Green | blue–black | pinkish–white | Pinkish–white | Bracko and Zurucchi (1993), León et al. (2017), this study |
Vaccinium meridionale | Shrub | 1800–2800 | 0.5–2 | Green–reddish | dark | White–pink | White | Vander Kloet and Dickinson (2009), this study |
Vaccinium ovatum | Shrub | - | - | Green | red | White–pink | Pink | Bracko and Zurucchi (1993), León et al. (2017) |
3.7. Rubus
The phylogeny of Rubus (666 bp for rbcL, 455 bp for GBSSI, and 639 bp for ITS) included 81 individuals. In this collection, eight species were recognized in Rubus and grouped into two subgenera (Orobatus ans Rubus, Figure 10). The subgenus Orobatus consisted of R. andicola Focke, R. glabratus Kunth, R. lecheri Focke, R. sparsiflorus J.F. Macbr, and R. weberbaueri Focke, whereas the subgenus Rubus consisted of R. adenothallus Focke, R. floribundus J.F.Macbr. and R. loxensis Benth. These two subgenera were distinguished by glands without flexible bristles (Orobatus) and inflorescences in panicle or subracemose forms (Rubus). In the subgenera Orobatus (Figure 11); R. andicola (KUELAP-254) was characterized by elongated branches, spines with short, curved and compressed trichomes, with leaves pubescent on the underside (Figure 11C); R. glabratus (KUELAP-261) by having pink-rose petals and reddish-orange immature fruits (Figure 11A); R. lechleri (KUELAP-258) by its bristly pubescence on the back sides of leaves and purple petals (Figure 11E); R. sparsiflorus (KUELAP-260) by the presence of flowers in dense clusters, crepe-like petals and a pink corolla (Figure 11B); and R. weberbaueri (KUELAP-257) by having veins and spines on the back sides of the leaves, magenta flowers, and black fruits (Figure 11D, Table 11). Genetically, R. weberbaueri and R. lechleri were sister species, differing by 1.0% for rbcL and 0.2% for ITS. These two species were closely related to R. roseus, and the three species differed by over 0.2% for ITS. R. andicola was sister to the clade composed of these tree species, differing over 0.9% for rbcL and 0.2% for ITS. R. sparsiflorus was closely related to the clade composed of these four species and diverged over 0.9% for rbcL and 0.3% for ITS. R. glabratus was closely related to the clade composed of six species of the sugenus Orobatus and differed over 0.9% for rbcL and 0.8% for ITS. Conversely, in the subgenus Rubus, R. floribundus (KUELAP-255) was recognized as a sister species to R. robustus, and both differed by 0.9% for the ITS. R. floribundus had dense inflorescences with pyramidal-shaped paniculata extraaxillaris that tapered toward the lower branches (Figure 11F). These species were sister to the clade composed of R. adenothallus (KUELAP-256) and R. loxensis (KUELAP-259). R. loxensis had creeping-climbing stems and slightly ovate petals and sepals (Figure 11G), whereas R. adenothallus was characterized by small greenish-white flowers and elongated red–black baya (Figure 11H). R. adenothallus and R. loxensis differed by 0.3% for rbcL (Figures S15, S16, S17).
Figure 10.
Phylogenetic tree of the Rubus lineage based on maximum likelihood inference of combined rbcL, GBSSI, and ITS data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.
Figure 11.
Diversity of Andean berries belonging to Ericales. A. Cavendishia punctata. B. Clethra ovalifolia. C.Clethra retivenia. D.Disterigma synanthum. E.Disterigma ecuadorense. F.Gaultheria secunda.G.Gaultheria sp. 01. H.Gaultheria sp. 02. I.Gaultheria sp. 03. J.Thibaudia angustifolia.K.Thibaudia moricandi.L.Thibaudia ovalifolia. M.Thibaudia obovata. N. Vaccinium meridionale. O. Vaccinium mathewsii. P.Vaccinium floribundum.
Table 11.
Morphological comparisons among species of the genus Rubus.
Species | Habit | Altitude (masl) | Height (m) | Calyx | Immature fruit | Mature fruit | Flowers | Corolla | References |
---|---|---|---|---|---|---|---|---|---|
Rubus andicola | Shrub | 800–2500 | 2–3 | Green | Green whit trichomes | Red | White–pink | Pink | Focke (1910, 1911), Mendoza and León (2006), this study |
Rubus adenothallus | Shrub terrestrial | 2000–3500 | 2–5 | Green | Light green | Red–black, red | greenish–white | Greenish–white | Focke (1910, 1911), Mendoza and León (2006), this study |
Rubus floribundus | Shrub | 1500–2000 | 1–3 | Green | Green | Becoming black | White | Pink | Focke (1910, 1911), Mendoza and León (2006), this study |
Rubus glabratus | Trailing–shrublet | 2000–3400 | 0.5–1 | Green | Reddish–orange | - | Pink, red | Pink–rose | Focke (1910, 1911), Mendoza and León (2006), this study |
Rubus lechleri | Shrub | 2000–3600 | 2–4 | Green | Green | Red | White–purple | Purple | Focke (1910, 1911), Mendoza and León (2006), this study |
Rubus loxensis | Shrub | 2000–3000 | 2–3.5 | Green–reddish | Green, red | Red | Greenish, lilac | Slightly ovate | Focke (1910, 1911), Mendoza and León (2006), this study |
Rubus nubigenus | Supporting– shrub | 2000–3500 | 2–3 | Green | Green–reddish | Dark fruits | White–greenish, pink | White | Focke (1910, 1911), Mendoza and León (2006) |
Rubus robustus | Shrub | 1000–3000 | 1–2 | - | – | Black | White–pink | White–pink | Focke (1910, 1911), Mendoza and León (2006) |
Rubus roseus | climbing shrub | 1600–3000 | 1–3 | Green, purplish tint | – | Red | White–pink | Reddish–violet | Focke (1910, 1911), Mendoza and León (2006) |
Rubus sparsiflorus | Shrub | 2000–3500 | 1–4 | Green, red–brown | – | Red–purple, black | Black | Crepe–linke pink, style red | Focke (1910, 1911), Mendoza and León (2006), this study |
Rubus weberbaueri | Shrub terrestrial | 2400–3600 | 1.5–2.5 | Lead–green | – | Black | Pink–reddish | Magenta | Focke (1910, 1911), Mendoza and León (2006), this study |
4. Discussion
Most berries from mountainous habitats tend to be more diverse than those from lowland habitats (Powell and Kron, 2003) due to the interactions of UV radiation with environmental (climate) and geographic (relief) factors, which evoke species-specific responses leading to adaptation and diversification (Sedej et al., 2020). Using molecular markers, this study identified 24 species of andean berries (Cavendishia = 1, Clethra = 2, Disterigma = 2, Gaultheria = 4, Thibaudia = 4, Vaccinium = 3, Rubus = 8) from the Amazonas region. The majority of these species were found in coniferous forests, dry and humid forests, rocky slopes, and grasslands at 2,506–3,019 masl (Figure 12).
Figure 12.
Diversity of andean berries belonging to Rosales. A. Rubus glabratus.B. Rubus sparsiflorus.C. Rubus andicola. D. Rubus weberbaueri. E. Rubus lechleri.F. Rubus floribundus. G.Rubus loxensis.H. Rubus adenothallus.
The genus Cavendishia has approximately 130 species distributed throughout the Andes of South America, and most of these species are endemic to Colombia (Pedraza-Peñalosa et al., 2015; WCVP, 2021). Only nine species of Cavendishia have been reported from Peru (León, 2006a; Pedraza-Peñalosa et al., 2015; WCVP, 2021), and two of these were from the Amazonas region. In addition to Ca. isernii Sleumer and Ca. sirensis Luteyn (León, 2006a; Salinas, 2015), this study confirms the presence of Ca. punctata (KUELAP-267, KUELAP-279, KUELAP-293, KUELAP-307, KUELAP-311) in cold and humid habitats in the Amazonas region. Ca. punctata was already recorded from central (Junín and Pasco) and southern Peru (Cusco) at 1,800–2,360 masl, forming sympatric populations with C. bracteata (Pedraza–Peñalosa and Luteyn, 2011). This study also confirms the wider distribution of Ca. punctata along the Peruvian Andes (Table 5).
The genus Clethra consists of 85 species distributed in Africa, America, and Asia (Sleumer, 1967; Fior et al., 2003; WCVP, 2021). Six of the 12 species reported from Peru were registered in the Amazonas region (Cl. castaneifolia Meisn., Cl. ovalifolia, Cl. pedicellaris Turcz., Cl. peruviana Szyszyl, Cl. retivenia and Cl. revoluta Ruiz & Pav) (WCVP, 2021; León, 2006b). This study confirmed the presence of Cl. ovalifolia (KUELAP-282) and Cl. retivenia (KUELAP-295) in Amazonas using molecular data (matK, rbcL and ITS). These species were previously recorded from Cajamarca (northern Peru) and Ucayali (southern Peru) (León, 2006b), and this study found that they occurred in similar habitats (i.e., temperate to humid tropical environments, 2,507–2,800 masl) coexisting with V. floribundum and V. meridionale (Table 6).
Disterigma includes 37 species distributed along cold mountain ecosystems of Central and South America (Pedraza-Peñalosa, 2008, 2009). Of these, 11 species were reported from Peru (Pedraza-Peñalosa, 2008, 2009; WCVP, 2021), and only three species were reported in the Amazonas region (i.e., D. baguense Pedraza; D. ulei Sleumer and D. weberbaueri Hoerold) (Pedraza-Peñalosa, 2009; WCVP, 2021). This study found two new reports of Disterigma for the Peruvian flora, namely, D. ecuadorense (KUELAP-285) and D. synanthum (KUELAP-264, KUELAP-275) (Figure 6). Although D. ecuadorense was considered endemic to Ecuador and D. synanthum to Colombia (Pedraza-Peñalosa, 2008), the analyses of this study confirmed the wider distribution of these species. D. ecuadorense and D. synanthum were found in cold to humid tropical environments at 2,500–3,000 masl and coexisting with V. floribundum (Table 7).
The genus Gaultheria is composed of 130 species from America and Asia (Middleton, 1991; Powell and Kron, 2001; WCVP, 2021). Sixteen species of Gaultheria have been reported from the tropical Andes of Peru (Middleton, 1991; Powell and Kron, 2001). In the Amazonas region, only three species of Gaultheria have been recorded (i.e., G. erecta Vent., G. rigida Kunth, G. secunda J. Rémy) (León, 2006a). Using molecular markers, the presence of G. secunda (KUELAP-278, KUELAP-284, KUELAP-301, KUELAP-288, KUELAP-266) was confirmed from Amazonas. Compared with the average intraspecific divergence observed in other species of the genus (as 0.3% for ITS in G. leucarpa and 0.3% for matK in G. appressa) (Fritsch et al., 2011; Lu et al., 2010), this taxon showed high intraspecific genetic divergence (2.4% for ITS), suggesting the presence of a species complex. Phenotypic plasticity of leaf anatomy (i.e., ovate to elliptic, leaf margins with sharp to rounded apex) among specimens of G. secunda was also observed. These phenomena have been previously reported in Gaultheria under scenarios of a high rate of reticulate evolution and hybrid speciation (Lu et al., 2010; Fritsch et al., 2011; Ocaña-Pallarés et al., 2019). G. secunda was found in wet grasslands and coniferous forest at 2,500–3,500 masl, coexisting with D. synanthum, T. obovata, V. floribundum, and V. mathewsii. This species has also been reported in Cusco, Pasco, Puno, Junin, and Ayacucho (central Peru). Additionally, another three species of Gaultheria (KUELAP-289, KUELAP-302, KUELAP-308) were found and this was not able to assign a species name because only one specimen was found and the diagnostic features of each species were not in good condition (Table 8). These unidentified species need further analyses with additional sampling and molecular markers to confirm their taxonomic status.
The genus Thibaudia consists of 73 species distributed in cloud forests from North to South America (Kron et al., 2002; Powell and Kron, 2003; WCVP, 2021). Approximately 29 species are distributed along areas of grass and shrubs (locally referred to as “pajonales”) and montane forests of the Peruvian Andes (2,500–4,000 masl) (León, 2006a, León, 2006b; WCVP, 2021). Although six of these species have been previously reported from the Amazonas region (Powell and Kron, 2003; León, 2006a, León, 2006b; WCVP, 2021), this study confirmed T. angustifolia (KUELAP-283), T. moricandi (KUELAP-298), T. obovata (KUELAP-272), and T. ovalifolia (KUELAP-299). The latter species was considered endemic to Junin (Central Peru) (León, 2006a). Ecologically, these species inhabit montane forests (2,000–2,800 masl), coexisting with C. punctata, G. secunda, V. floribundun, V. meridionale, and V. mathewsii (Table 9).
The genus Vaccinium consists of ∼400 species distributed worldwide, except Australia (Asturizaga et al., 2006; Vander and Dickinson, 2009). Fifteen species have been reported from the tropical Andes and humid forests of Peru (Pedraza-Peñalosa and Luteyn, 2011; Coico et al., 2016; León et al., 2017; Mostacero et al., 2017; WCVP, 2021). Nine of these species have been recorded in the Amazonas region along steep rocky slopes and montane forests (León, 2006a; Coico et al., 2016). This study confirms the presence of V. floribundum and V. mathewsii and adds one new record of Vaccinium (i.e., V. meridionale) to the Peruvian flora. Although V. meridionale was originally reported as an endemic species from Colombia (Pedraza-Peñalosa and Luteyn, 2011), this study found it in montane forests from northern Peru (2,000–2,800 masl), suggesting that this species has a wider distribution along the Andes. Ecologically, V. meridionale shares the same habitat and coexists with C. punctata, D. synanthum, G. secunda, V. florifundun, and V. mathewsii. Previous intraspecific divergence reported on Vaccinium ranged from 0-0.1% for ITS in V. reticulatum (Kron et al., 2002), while molecular analyses of this study revealed higher distance values within V. floribundum (3.7% for ITS). This could suggest high cryptic genetic diversity, although no morphological differences were found among specimens (Table 10). Sequencing additional markers or plastid genomes might reveal hidden taxa or overlooked interspecific introgression, which has been commonly reported in Vaccinium (Tsutsumi, 2011).
The genus Rubus encompasses ∼700 species distributed worldwide (Focke, 1914; Thompson, 1995; Lu and Boufford, 2003; WCVP, 2021), and only 20 species have been reported from the montane and humid rainforests of Peru (Mendoza and León, 2006; WCVP, 2021). Previously, six species have been recorded from the Amazonas region (Mendoza and León, 2006). This study confirmed R. adenothallus and R. weberbaueri and reported the addition of six species of Rubus from the Amazonas region. Although R. andicola, R. floribundus, R. glabratus, R. lechleri, R. loxensis, and R. spasiflorus were reported from distant regions such as Ayacucho (Central Peruvian Andes), Cusco (South Peruvian Andes) and San Martin (East Peruvian Andes), they inhabited Amazonas. Additionally, R. glabratus was originally described from Ecuador (Mendoza and León, 2006), and this study confirmed this species as having a wider distribution along the Andes. R. adenothallus, R. lechleri, R. loxensis, and R. spasiflorus share the same habitat in humid forests above 3,300 masl. R. andicola, R. floribundus, and R. weberbaueri occur in the mountain undergrowth (sotobosque) at 1,800–2,500 masl. R. glabratus, R. glaucus, and R. robustus are found from montane rainforests to moorlands. The findings of this study reveal the genus Rubus as the most diverse group of berries in the Amazonas region (Table 11).
In the last decade, several of these species have been threatened by the high rate of deforestation, a serious concern that will eventually result in loss of biodiversity and uncontrolled genetic erosion of species with economic and ecological importance (Montesinos-Tubée, 2020; Walker et al., 2021). This study highlights not only the importance of sequencing several molecular markers in applying and validating the names of Andean berries, but also the need to integrate morphological and DNA-based methods to understand the diversity along the Peruvian Andean cloud forest (Bustamante et al. 2021, 2021, 2021; Tineo et al., 2020). The characterization of berries biodiversity is an important element in any future strategy to develop ambitious commitments and tackle research, monitoring and protection programs across the Amazonas region (Sánchez et al., 2021).
5. Conclusions
This study reported 24 species of andean berries distributed in coniferous forests, dry and humid forests, rocky slopes, and grasslands at 2,506–3,019 masl from the Amazonas region. These species are grouped into seven genera and included four new reports on the Peruvian flora. A total of 125 DNA-barcodes of andean berries were generated for four molecular markers (i.e., GBSSI-2, ITS, matK, rbcL). The results of this study suggest that the genetic marker ITS showed better resolution to distinguish species of the genera Clethra, Disterigma, Thibaudia, and Rubus, whereas the combination of the plastidial marker matK and the ITS properly resolved the relationships among species of the genera Cavendishia, Gaultheria, and Vaccinium. Accordingly, an initial screening regarding the diversity of andean berries should include amplification of these markers. This study also confirmed that morphological observations and mainly multilocus phylogeny are needed to reveal diversity of andean berries.
Declarations
Author contribution statement
Daniel Tineo, Danilo E. Bustamante & Martha S. Calderon: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.
Eyner Huaman: Contributed reagents, materials, analysis tools or data.
Funding statement
This work was supported by SNIP (312252 - FISIOVEG).
Data availability statement
Data associated with this study has been deposited at https://www.ncbi.nlm.nih.gov/genbank/.
Declaration of interests statement
The authors declare no conflict of interest.
Additional information
No additional information is available for this paper.
Acknowledgements
We deeply thank Dr. Manuel Oliva, Jhonsy Silva, and Jani Mendoza for their technical and logistical assistance.
Appendix A. Supplementary data
The following is the supplementary data related to this article:
Phylogenetic tree of Ericales and Rosales based on maximum likelihood inference of combined matK, rbcL, nrITS, and GBSSI-2 data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above the branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.
Heatmap showing percentage of genetic identity among species of the genus Cavendishia for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Cavendishia for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Clethra for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Disterigma for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Disterigma for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Gaultheria for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Gaultheria for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Gaultheria for rbcL marker.
Heatmap showing percentage of genetic identity among species of the genus Thibaudia for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Thibaudia for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Vaccinium for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Vaccinium for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Vaccinium for rbcL marker.
Heatmap showing percentage of genetic identity among species of the genus Rubus for GBSSI-2 marker.
Heatmap showing percentage of genetic identity among species of the genus Rubus for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Rubus for rbcL marker.
References
- Asturizaga A., Ollgaard B., Balslev H. Universidad Mayor de San Andrés; La Paz, Bolivia: 2006. Frutos Comestibles. Botánica Económica de los Andes Centrales. [Google Scholar]
- Bouchenak-Khelladi Y.N., Onstein R.E., Xing Y., Schwery O., Linder H.P. On the complexity of triggering evolutionary radiations. New Phytol. 2015;207:313–326. doi: 10.1111/nph.13331. [DOI] [PubMed] [Google Scholar]
- Barthlott C., Burton R., Kirshbaum D., Hanley K., Richard E., Chaboureau J.P., Trentmann J., Kern B., Bauer H.S., Schwitalla T., Keil C., Seity Y., Gadian A., Blyth A., Mobbs S., Flamant C., Handwerker J. Initiation of deep convection at marginal instability in an ensemble of mesoscale models: a case-study from COPS. Q. J. R. Meteorol. Soc. 2011;137(S1):118–136. [Google Scholar]
- Brako L., Zarucchi J. Catalogue of the flowering plants and gymnosperms in Peru. Mo. Bot. Garden. 1993;45 [Google Scholar]
- Bustamante D.E., Calderon M.S., Leiva S., Mendoza J.E., Arce M., Oliva M. Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia. 2021:1–17. doi: 10.1080/00275514.2021.1917243. [DOI] [PubMed] [Google Scholar]
- Calderon M.S., Bustamante D.E., Gabrielson P.W., Martone P.T., Hind K.R., Schipper S.R., Mansilla A. Type specimen sequencing, multilocus analyses, and species delimitation methods recognize the cosmopolitan Corallina berteroi and establish the northern Japanese C. yendoi sp. nov. (Corallinaceae, Rhodophyta) J. Phycol. 2021;57(5):1659–1672. doi: 10.1111/jpy.13202. [DOI] [PubMed] [Google Scholar]
- Chartier M., Löfstrand S., von Balthazar M., Gerber S., Jabbour F., Sauquet H., Schönenberger J. How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales. Proc. R. Soc. B: Biol. Sci. 2017;284(1852):20170066. doi: 10.1098/rspb.2017.0066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chase M.W., Christenhusz M.J.M., Fay M.F., Byng J.W., Judd W.S., Soltis D.E., Mabberley D.J.,, Sennikov A.N., Stevens P.F. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016;181(1):1–20. [Google Scholar]
- Coico F.M., Castillo J.L.C., León J.M., Medina E.L., Carnero A.G. Registro del género Vaccimum en el norte del Perú. INDES Rev. Inv. Des. Sust. 2016;2:53–61. [Google Scholar]
- Diaz-Garcia L., Garcia-Ortega L.F., González-Rodríguez M., Delaye L., Iorizzo M., Zalapa J. Chromosome-level genome assembly of the American cranberry (Vaccinium macrocarpon Ait.) and its wild relative Vaccinium microcarpum. Front. Plant Sci. 2021;12:137. doi: 10.3389/fpls.2021.633310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Focke W.O. Species Ruborum. Monographiae generis Rubi prodromus. Bibl. Bot. 1914;19(Heft 83):1–274. [Google Scholar]
- Fior S., Ola Karis P., Anderberg A.A. Phylogeny, taxonomy, and systematic position of Clethra (Clethraceae, Ericales. with notes on biogeography: evidence from plastid and nuclear DNA sequences. Int. J. Plant Sci. 2003;164(6):997–1006. [Google Scholar]
- Focke W.O. Species Ruborum monographiae generis Rubi prodromus. Bibl. Bot. 1910;17:1–120. [Google Scholar]
- Focke W.O. Species Ruborum monographiae generis Rubi prodromus. Bibl. Bot. 1911;17:121–223. [Google Scholar]
- Fritsch P.W., Lu L., Bush C.M., Cruz B.C., Kron K.A., Li D.Z. Phylogenetic analysis of the wintergreen group (Ericaceae. based on six genic regions. Syst. Bot. 2011;36(4):990–1003. [Google Scholar]
- Hotchkiss A.T., Jr., Chau H.K., Strahan G.D., Nuñez A., Simon S., White A.K., Dieng S., Heuberger E.R., Yadav M.P., Hirsch J. Structure and composition of blueberry fiber pectin and xyloglucan that bind anthocyanins during fruit puree processing. Food Hydrocolloids. 2021;116:106572. [Google Scholar]
- Hummer K.E., Janick J. In: Genetics and Genomics of Rosaceae. Folta K.M., Gardiner S.E., editors. Springer; New York, USA: 2009. Rosaceae: taxonomy, economic importance, genomics; pp. 1–17. [Google Scholar]
- Kalkman C. Rosaceae. Flora Malesiana–series 1. Spermatophyta. 1993;11:227–351. [Google Scholar]
- Kron K.A., Judd W.S., Stevens P.F., Crayn D.M., Anderberg A.A., Gadek P.A., Quinn C.J., Luteyn J.L. Phylogenetic classification of Ericaceae: molecular and morphological evidence. Bot. Rev. 2002;68(3):335–423. [Google Scholar]
- Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35(6):1547. doi: 10.1093/molbev/msy096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanfear R., Calcott B., Ho S.Y., Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012;29(6):1695–1701. doi: 10.1093/molbev/mss020. [DOI] [PubMed] [Google Scholar]
- Ledo A., Condés S., Alberdi I. Forest biodiversity assessment in Peruvian Andean Montane cloud forest. J. Mt. Sci. 2012;9:372–384. [Google Scholar]
- León B. Ericaceae endémicas del Perú. Rev. Peru. Biol. 2006;13:285–293. [Google Scholar]
- León B. Clethraceae endémicas del Perú. Rev. Peru. Biol. 2006;13:260. [Google Scholar]
- León J.M., González T.R., Rivero A.E.G. Fitogeografía y morfología de los Vaccinium (Ericaceae. “arándanos nativos” del Perú. INDES Rev. Invest. Des. Sust. 2017;3(1):43–52. [Google Scholar]
- López J., Vera C., Bustos R., Florez-Mendez J. Native berries of Chile: a comprehensive review on nutritional aspects, functional properties, and potential health benefits. J. Food Meas. Charact. 2021;15(2):1139–1160. [Google Scholar]
- Lu L.D., Boufford D.E. In: Flora of China 9. Wu Z.Y., editor. Science Press, Beijing & Missouri Botanical Garden Press; St. Louis: 2003. Rubus Linnaeus. pp. 19. [Google Scholar]
- Lu L., Fritsch P.W., Cruz B.C., Wang H., Li D.–Z. Reticulate evolution, cryptic species, and character convergence in the core East Asian clade of Gaultheria (Ericaceae) Mol. Phylogenet. Evol. 2010;57(1):364–379. doi: 10.1016/j.ympev.2010.06.002. [DOI] [PubMed] [Google Scholar]
- Luebert F., Weigend M. Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2014;2:27. [Google Scholar]
- Luteyn J.L. Ericaceae: part I. Cavendishia. Flora Neotropica. 1983;35:1–289. [Google Scholar]
- Mazzoni L., Scalzo J., Di Vittori L., Mezzetti B., Battino M. 2017. Berries. Fruit and Vegetable Phytochemicals: Chemistry and Human Health; pp. 833–908. [Google Scholar]
- Mendoza W., León B. Rosaceae endémicas del Perú. Rev. Peru. Biol. 2006;13(2):583–585. [Google Scholar]
- Middleton D.J., Wilcock C.C. A critical examination of the status of Pernettya Gaud. as a genus distinct from Gaultheria L. Edinb. J. Bot. 1990;47(3):291–301. [Google Scholar]
- Middleton D.J. Infrageneric classification of the genus Gaultheria L. Ericaceae. Bot. J. Linn. Soc. 1991;106(10):229–258. [Google Scholar]
- Mimura M., Suga M. Ambiguous species boundaries: hybridization and morphological variation in two closely related Rubus species along altitudinal gradients. Ecol. Evol. 2020;10(14):7476–7486. doi: 10.1002/ece3.6473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montesinos-Tubée D.B. Diversidad florística en el complejo arqueológico La Bóveda, en el sur del departamento Amazonas, Perú. Ciencia Amazónica (Iquitos) 2020;8(1):31–52. [Google Scholar]
- Mostacero J.L., González T.R., Rivero A.E.G. Fitogeografía y morfología de los Vaccinium (Ericaceae. “arándanos nativos” del Perú. INDES Rev. Invest. Des. Sust. 2017;3(1):43–52. [Google Scholar]
- Ocaña–Pallarès E., Najle S.R., Scazzocchio C., Ruiz–Trillo I. Reticulate evolution in eukaryotes: origin and evolution of the nitrate assimilation pathway. PLoS Genet. 2019;15(2) doi: 10.1371/journal.pgen.1007986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada A., Kikuchi S., Hoshino Y., Kunitake H., Mimura M. Phylogeny and trait variation of Japanese Rubus subgenus Ideaobatus. Sci. Hortic. 2020;264:109150. [Google Scholar]
- Ooi K., Endo Y., Yokoyama J., Murakami N. Useful primer designs to amplify DNA fragments of the plastid gene matK from angiosperm plants. Jap. J. Bot. 1995;70:328–331. [Google Scholar]
- Pedraza–Peñalosa P. Three new species of Disterigma (Ericaceae: Vaccinieae. From western Colombia, with comments on morphological terminology. Brittonia. 2008;60:1–10. [Google Scholar]
- Pedraza–Peñalosa P. Systematics of the neotropical blueberry genus Disterigma (Ericaceae) Syst. Bot. 2009;34(2):406–413. [Google Scholar]
- Pedraza–Peñalosa P., Luteyn J.L. Andean Vaccinium (Ericaceae: Vaccinieae.: seven new species from South America. Brittonia. 2011;63:257–275. [Google Scholar]
- Pedraza–Peñalosa P., Salinas N.R., Virnig A.L.S., Wheeler W.C. Preliminary phylogenetic analysis of the Andean clade and the placement of new Colombian blueberries (Ericaceae, Vaccinieae) PhytoKeys. 2015;49:13–31. doi: 10.3897/phytokeys.49.8622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phipps J.B. Oxford University Press; New York and Oxford: 2014. Flora of North America North of Mexico, Volume 9, Magnoliophyta: Picramniaceae to Rosaceae. [Google Scholar]
- Potter D., Gao F., Bortiri P.E., Oh S.H., Baggett S. Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Plant Systemat. Evol. 2002;231:77–89. [Google Scholar]
- Potter D., Eriksson T., Evans R.C., Oh S., Smedmark J.E.E., Morgan D.R., Kerr M., Robertson K.R., Arsenault M.T., Dickinson A., Campbell C.S. Phylogeny and classification of Rosaceae. Plant Systemat. Evol. 2007;266:5–43. [Google Scholar]
- Powell E.A., Kron K.A. An analysis of the phylogenetic relationships in the wintergreen group (Diplycosia, Gaultheria, Pernettya, Tepuia; Ericaceae) Syst. Bot. 2001;26:808–817. [Google Scholar]
- Powell E.A., Kron K.A. Molecular systematics of the northern andean blueberries (Vaccinieae, Vaccinioideae, Ericaceae) Int. J. Plant Sci. 2003;164(6):987–995. [Google Scholar]
- Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61(3):539–542. doi: 10.1093/sysbio/sys029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose J.P., Kleist T.J., Löfstrand S.D., Drew B.T., Schoenenberger J., Sytsma K.J. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Mol. Phylogenet. Evol. 2018;122:59–79. doi: 10.1016/j.ympev.2018.01.014. [DOI] [PubMed] [Google Scholar]
- Rousseau-Gueutin M., Gaston A., Aïnouche A., Aïnouche M.L., Olbricht K. Tracking the evolutionary history of polyploidy in Fragaria, L. (strawberry): new insights from phylogenetic analyses of low copy nuclear genes. Mol. Phylogenet. Evol. 2009;51:515–530. doi: 10.1016/j.ympev.2008.12.024. [DOI] [PubMed] [Google Scholar]
- Salinas N.R. City University of; New York: 2015. Systematics and Biogeography of Orthaea Kloztsch (Ericaceae: Vaccinieae) [Google Scholar]
- Sánchez A.C., Bandopadhyay S., Briceño N.B.R., Banerjee P., Guzmán C.T., Oliva M. Peruvian Amazon disappearing: Transformation of protected areas during the last two decades (2001–2019) and potential future deforestation modelling using cloud computing and MaxEnt approach. J. Nat. Conserv. 2021;64:126081. [Google Scholar]
- Schönenberger J., von Balthazar M., Sytsma K.J. Diversity and evolution of floral structure among early diverging lineages in the Ericales. Philos. Trans. R. Soc. 2010;365:437–448. doi: 10.1098/rstb.2009.0247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silvestro D., Michalak I. RaxmlGUI: a graphical front–end for RAxML. Org. Divers. Evol. 2012;12(4):335–337. [Google Scholar]
- Sedej T.T., Erznožnik T., Rovtar J. Effect of UV radiation and altitude characteristics on the functional traits and leaf optical properties in Saxifraga hostii at the alpine and montane sites in the Slovenian Alps. Photochem. Photobiol. Sci. 2020;19(2):180–192. doi: 10.1039/c9pp00032a. [DOI] [PubMed] [Google Scholar]
- Schwery O., Onstein R.E., Bouchenak-Khelladi Y., Xing Y., Carter R.J., Linder H.P. As old as the mountains: the radiations of the Ericaceae. New Phytol. 2015;207:355–367. doi: 10.1111/nph.13234. [DOI] [PubMed] [Google Scholar]
- Sleumer H. Monographia Clethracearum. Bot. J. Syst. 1967;87:36–175. [Google Scholar]
- Smith A.C. The genera Sphyrospermum and Disterigma. Brittonia. 1933;1(4):203–233. [Google Scholar]
- Soltis D.E., Smith S., Cellinese N., Wurdack K.J., Tank D., Brockington S.F., Refulio–Rodriguez N.F., Moore M.J., Carlsward B., Bell C.D., Latvis M., Crawley S., Black C., Diouf D., Xi Z., Gitzendanner M.A., Sytsma K.J., Qiu Y.–L., Hilu K.W., Manchester S.R., Davis C.C., Sanderson M.J., Olmstead R., Judd W.S., Donoghue M., Soltis P.S. Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 2011;98:704–730. doi: 10.3732/ajb.1000404. [DOI] [PubMed] [Google Scholar]
- Song G.Q., Hancock J.F. Wild Crop Relatives: Genomic and Breeding Resources. Springer; Berlin, Heidelberg: 2011. Vaccinium; pp. 197–221. [Google Scholar]
- Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post–analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D.C., Chatroum L.W., Stull G.W., Johnson D.M., Harris D.J., Thongpairoj U.-S., Saunders R.M.K. The historical origins of palaeotropical intercontinental disjunctions in the pantropical flowering plant family Annonaceae. Perspect. Plant Ecol. Evol. Systemat. 2015;17:1–16. [Google Scholar]
- Thompson M.M. Chromosome numbers of Rubus species at the national clonal germplasm repository. Hortscience. 1995;30(7):1447–1452. [Google Scholar]
- Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiers B. New York Botanical Garden’s Virtual Herbarium; 2016. Index Herbariorum. A Global Directory of Public Herbaria and Associated Staff.http://sweetgum.nybg.org/science/ih Available from: (accessed 2021) [Google Scholar]
- Tineo D., Bustamante D.E., Calderon M.S., Mendoza J.E., Huaman E., Oliva M. An integrative approach reveals five new species of highland papayas (Caricaceae, Vasconcellea. from northern Peru. PLoS One. 2020;15 doi: 10.1371/journal.pone.0242469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsutsumi C. The phylogenetic positions of four endangered Vaccinium species in Japan. Bull. Natl. Mus. Nat. Sci., Ser. B, Bot. 2011;37:79–86. [Google Scholar]
- Ulloa–Ulloa C., Zarucchi J., León B. Diez años de adiciones a la flora del Perú: 1993–2003. Arnaldoa. 2004:7–242. [Google Scholar]
- van der Werff H., Consiglio T. Distribution and conservation significance of endemic species of flowering plants in Peru. Biodivers. Conserv. 2004;13:1699–1713. [Google Scholar]
- Vander Kloet S.P., Dickinson T.A. A subgeneric classification of the genus Vaccinium and the metamorphosis of V. section Bracteata Nakai: more terrestrial and less epiphytic in habit, more continental and less insular in distribution. J. Plant Res. 2009;122(3):253–268. doi: 10.1007/s10265-008-0211-7. [DOI] [PubMed] [Google Scholar]
- Wang Y., Chen Q., Chen T., Tang H., Liu L., Wang X. Phylogenetic insights into Chinese Rubus (Rosaceae. From multiple chloroplast and nuclear DNAs. Front. Plant Sci. 2016;7:968. doi: 10.3389/fpls.2016.00968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker A.P., Kauwe M.G.D., Bastos A., Belmecheri S., Georgiou K., Keeling R., McMahon S.M., Medlyn B.E., Moore D.J.P., Norby R.J., Zaehle S., AndersonTeixeira K.J., Battipaglia G., Brienen R.J.W., Cabugao K.G., Cailleret M., Campbell E., Canadell J., Ciais P., Craig M.E., Ellsworth D., Farquhar G., Fatichi S., Fisher J.B., Frank D., Graven H., Gu L., Haverd V., Heilman K., Heimann M., Hungate B.A., Iversen C.M., Joos F., Jiang M., Keenan T.F., Knauer J., Korner C., Leshyk V.O., Leuzinger S., Liu Y., MacBean N., Malhi Y., McVicar T., Penuelas J., Pongratz J., Powell A.S., Riutta T., Sabot M.E.B., Schleucher J., Sitch S., Smith W.K., Sulman B., Taylor B., Terrer C., Torn M.S., Treseder K., Trugman A.T., Trumbore S.E., van Mantgem P.J., Voelker S.L., Whelan M.E., Zuidema P.A. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 2021;229(5):2413–2445. doi: 10.1111/nph.16866. [DOI] [PubMed] [Google Scholar]
- White T.J., Bruns T., Lee S., Taylor J. In: PCR Protocols: A Guide to Methods and Applications. Innis M.A., editor. Academic Press; New York, NY: 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics; pp. 315–322. [Google Scholar]
- WCVP . Facilitated by the Royal Botanic Gardens; Kew: 2021. World Checklist of Vascular Plants, Version 2.0.http://wcvp.science.kew.org Published on the internet: (Retrieved 28 April 2021) [Google Scholar]
- Xiang Y., Huang C.H., Hu Y., Wen J., Li S., Yi T., Chen X., Ma H. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Mol. Biol. Evol. 2017;34(2):262–281. doi: 10.1093/molbev/msw242. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Phylogenetic tree of Ericales and Rosales based on maximum likelihood inference of combined matK, rbcL, nrITS, and GBSSI-2 data. Maximum likelihood bootstrap values (BS; ≥ 50%)/Bayesian posterior probabilities (BPP; ≥ 0.9) are indicated above the branches. Values lower than 50% (BS) or 0.90 (BPP) are indicated by hyphens (-). The scale bar indicates the number of nucleotide substitutions per site.
Heatmap showing percentage of genetic identity among species of the genus Cavendishia for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Cavendishia for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Clethra for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Disterigma for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Disterigma for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Gaultheria for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Gaultheria for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Gaultheria for rbcL marker.
Heatmap showing percentage of genetic identity among species of the genus Thibaudia for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Thibaudia for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Vaccinium for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Vaccinium for matK marker.
Heatmap showing percentage of genetic identity among species of the genus Vaccinium for rbcL marker.
Heatmap showing percentage of genetic identity among species of the genus Rubus for GBSSI-2 marker.
Heatmap showing percentage of genetic identity among species of the genus Rubus for ITS marker.
Heatmap showing percentage of genetic identity among species of the genus Rubus for rbcL marker.
Data Availability Statement
Data associated with this study has been deposited at https://www.ncbi.nlm.nih.gov/genbank/.