Skip to main content
. 2022 Jan 5;31(2):300–314. doi: 10.1177/09622802211065158

Table 3.

Bias and Monte Carlo standard errors for each estimator in the simulation study. Bias here is defined as the estimate - true value. 1000 repetitions of 1000 independent draws were taken. All estimators are for the ITT treatment strategy parameter except for “standard IPW.”

E(Yk=2)E(Yk=3) E(Yk=3)E(Yk=4) E(Yk=4)E(Yk=5)
Scenario 1: No direct effect of treatment, no effect of delivery time
True value 0 0 0
IPW 0.001 (0.042) 0.001 (0.041) 0.000 (0.031)
G-computation 0.001 (0.040) 0.002 (0.040) 0.001 (0.029)
TMLE 0.001 (0.042) 0.001 (0.041) 0.000 (0.030)
Standard IPW 0.001 (0.077) 0.006 (0.069) 0.002 (0.050)
Scenario 2: No direct effect of treatment, delivery time has effect
True value 0.028 0.027 0
IPW 0.003 (0.051) 0.003 (0.046) 0.001 (0.029)
G-computation 0.003 (0.051) 0.000 (0.043) 0.000 (0.029)
TMLE 0.001 (0.051) 0.001 (0.045) 0.000 (0.030)
Standard IPW 0.027 (0.079) 0.031 (0.069) 0.000 (0.051)
Scenario 3: Direct effect of early treatment ( A(2) ), delivery time also has effect
True value 0.110 0.026 0
IPW 0.006 (0.054) 0.002 (0.045) 0.002 (0.030)
G-computation 0.002 (0.051) 0.002 (0.043) 0.000 (0.029)
TMLE 0.007 (0.053) 0.002 (0.046) 0.002 (0.030)
Standard IPW 0.061 (0.080) 0.029 (0.069) 0.001 (0.050)
Scenario 4: Direct effect of late treatment ( A(4) ), delivery time also has effect
True value 0.025 0.012 0.032
TS-IPW 0.000 (0.051) 0.001 (0.048) 0.000 (0.035)
TS-G-computation 0.001 (0.050) 0.000 (0.047) 0.001 (0.031)
TS-TMLE 0.002 (0.051) 0.000 (0.048) 0.000 (0.034)
Standard IPW 0.027 (0.090) 0.016 (0.081) 0.021 (0.056)