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Abstract

We consider the spin lattice relaxation in bulk liquid and liquid entrapped in a nanocavity. The 

kinetic equation which describes the spin lattice relaxation is obtained by using the theory of the 

nonequilibrium state operator. A solution of the kinetic equation gives the quadrature expression 

for the relaxation time, T1. The calculated relaxation time agrees well with the experimental data.

The spin-lattice relaxation time is calculated for nanocavities with a characteristic size much less 

than 700 nm, with the assumption that the spin-lattice relaxation mechanism is determined by 

nanocavity fluctuations. The resulting expression shows an explicit dependence of the relaxation 

time T1 on the volume, density of nuclear spins, and parameters of the cavity (shape and 

orientation relatively to the applied field). To compare with the experiment on the detection of 

the anisotropy of the relaxation time, we average the expression that describes the relaxation time 

over the orientation of the nanocavities relative to the applied magnetic field. The good agreement 

with the experimental data for fibril tissues was achieved by adjustment of few fitting parameters 

- the standard deviation, averaged fiber direction, and weight factors - which characterize the 

ordering of fibrils.
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1. Introduction

Spin dynamics provides the ideal arena to deal with various types of multiparticle 

interactions [1,2]. One can obtain a system of linear equations for quantities that could 

be measured in experiments and governed by the influence of the spin-spin and spin-lattice 

interactions. This is a very general description, but allows one to obtain clear physical 

conclusions.

Understanding the spin-spin and spin-lattice relaxations requires solving the Liouville-von 

Neumann equation for a spin system and considering all interactions of the spins with each 
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other and their surroundings. In general, this is a very difficult task as the spin-spin and 

spin-lattice interactions can be time-dependent. One of the powerful ways to analytically 

approximate the time evolution of spin systems is to average the Hamiltonian over time, 

which results in the systems to be described by time-independent Hamiltonians [3,4]. The 

average method has been successfully applied to explain the results of the high-resolution 

NMR experiments with solids [3,4]. The explanation of the observed line narrowing in solid 

state NMR experiments was the major success of the average-Hamiltonian theory [5,6].

Recently an approach based on the averaging of the spin Hamiltonian with account of 

the restricted Brownian motion of molecules in liquid was used to explain the anisotropy 

of the transverse relaxation time of liquids entrapped in nanocavities [7–15]. It has been 

shown that the Hamiltonian which describes the average dipole-dipole (DD) interactions 

can be characterized by a single average coupling constant. The approach that averages the 

Hamiltonian can be applied only to liquids enclosed in cavities with a characteristic size 

much less than 700 nm [7–15]. This simplification of a spatial part of the Hamiltonian has 

led to some analytically solvable models with very non-trivial spin dynamics and secured 

the analytical expressions for the transverse relaxation time and spin-lattice relaxation time 

under spin-locking [7–15]. This approach well describes the angle anisotropy obtained in the 

experiments with collagen fibril tissues, such as tendons, cartilages, nerves [7–15], fibrils of 

which are about 280–300 nm in length and several nm in diameter [16].

In this paper we develop two approaches to determine the spin-lattice relaxation time T1: (i) 

using the obtained by us kinetic equations by applying the method of nonequilibrium state 

operator [17,18] (without averaging the Hamiltonian); (ii) based on using the space averaged 

spin Hamiltonian.

We consider the DD interactions in the presence of spatial diffusion in a restricted space. 

Interaction of a molecule with a cavity wall leads to the disturbance of the spin flip-

flop transitions. Therefore, we must compare the time which characterizes the flip–flop 

transitions tNMR and the moving time scale required by the water molecules for achieving 

the wall, tdif [7–15]. With a reliable small parameter tdif/ tNMR ≪ 1 allows to average the 

DD Hamiltonian over the cavity volume and to obtain the nonzero contribution into the DD 

Hamiltonian even for the cavity volume which is much larger than a molecule size. The 

condition, tdif/ tNMR- ≪ 1, allows us to estimate the upper limit of the characteristic size of 

the nanocavity, l ~ 700 nm [15].

The outline of this paper is as follows: in the second sections, we obtain a kinetic equation 

which can describe the evolution of the local Zeeman energy, analyze the relaxation process, 

and calculate the spin-lattice relaxation time T1 for bulk liquid. In the next section, using 

the space averaged DD Hamiltonian we obtain the expression for the spin-lattice relaxation 

time in the case when the characteristic size of the cavity is much less than 700 nm. In 

the following section the relaxation time was estimated for fibril tissues and compared with 

experimental data. In the last section, our results are discussed and summarized.
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2. Kinetic equation for bulk liquid

The main issue in nonequilibrium statistical mechanics is to derive a kinetic equation, 

starting from the Liouville equation. We consider a system that consists of N nuclear spins, 

I = 1/2, enclosed in a large cavity and located in an external field H 0 directed along the z- 

axis. The dynamics of the system can be described by a solution of the equation for the state 

operator ρ(t)

iℏdρ(t)
dt = [H(t), ρ(t)] (1)

where ℏ is Planck’s constant. The Hamiltonian H of the spin system written in units of 

frequency can be presented as [1]:

H = HZ + Hdd + HL (2)

where HZ is the Zeeman Hamiltonian,

HZ = ω0 ∑
μ = 1

N
Izμ (3)

ω0 = γ H 0  is the Larmor frequency of the nuclei, γ is the gyromagnetic ratio of nuclei, and 

Izμ is the projection of the spin operator I μ of the μ-th nuclear spin (μ=1, 2, …, N) onto the 

z- axis. The dipolar Hamiltonian can be presented as [1]:

Hdd = γ2ℏ ∑
μ > η

N 1
rμη3 I μI η − 3

I μ r μη I η r μη

rμη2 , (4)

where rμη = r μη , r μη is the vector connecting the μ-th and the η-th nuclei (μ, η=1, 2, …, 

N). The Hamiltonian HL describes the lattice.

The dipolar Hamiltonian can be divided on the secular Hd
(s) and non-secular Hd

(ns) parts [1] 

as

Hdd = Hd
(s) + Hd

(ns), (5)

where

Hd
(s) = γ2ℏ ∑

μ > η

N
Hμη

(s)

= γ2ℏ ∑
μ > η

N 1
rμη3 1 − 3cos2θμη IzμIzη − 1

4 I+μI−η + I−μI+η

(6)

and
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Hd
(ns) = γ2ℏ ∑

μ > η

N
Hμη

(ns)

= − 3
4γ2ℏ ∑

μ > η

N 1
rμη3 sin2θμη e−iϕμη IzμI+η + I+μIzη

+eiϕμη IzμI−η + I−μIzη

+sin2θμη e−2iϕμηI+μI+η + e2iϕμηI−μI−η .

(7)

Here rμη, θμη, ϕμη are the spherical coordinates of the vector r μη; I±μ = Ixμ ± iIyμ; Ixμ and 

Iyμ are the projections of the spin operator of the μ-th nuclear spin onto the x- and y-axes, 

respectively.

By introducing a nuclear spin density operator [17,18]:

I ( r ) = ∑
μ = 1

N
δ r − r μ I μ, (8)

where r  is the radius-vector and r μ is the radius-vector of the μ-th nuclear spin.

Using Eq. (8), the density of the nuclear Zeeman Hamiltonian and the nuclear dipolar 

Hamiltonian can be written down in the forms

HZ( r ) = ω0 ∑
μ = 1

N
δ r − r μ Izμ (9)

and

Hd
(k)( r ) = ∫ V d r ′ ∑

μ > η

N
δ r − r μ δ r ′ − r η Hμη

(k), (10)

where the index k = s, ns and the symbol d r ′ is used to represent integration over the 

sample volume V.

Taking all operators (8)–(10) in the Heisenberg representation and using the commutation 

rules between the components of the spin density operator (8), we can obtain the following 

equations in the form of the localized law of conservation of the Zeeman spin energy density 

[17,18]:

∂HZ( r , t)
∂t = Kd

(ns)( r , t), (11)

Note, that spin diffusion does not play a role in relaxation of the liquid and we assume 

that the heat capacity of the lattice is much larger than nuclear spin heat capacity. That is 

experimentally realizable. In Eq. (11) the left side represents the Zeeman energy variation 
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in time. The right side of Eq. (11) Kd
(ns)( r , t) describes the change of the Zeeman energy 

density due to the interaction with the lattice (the spin-lattice relaxation). With account (8) 

this operator can be written as:

Kd
(ns)( r , t) = − 3γ2ℏω0

2 ∫
V

d r ′
r ′ − r 3

× sin2θ( r ′, r (t)) eiϕ r ′, r (t) Iz( r , t)I− r ′, t
−e−iϕ r ′, r (t) Iz( r , t)I+ r ′, t + sin2θ r ′, r (t)
× e2iϕ r ′, r (t) I−( r , t)I− r ′, t
−e−2iϕ r ′, r (t) I+( r , t)I+ r ′, t .

(12)

To obtain the kinetic equation describing the evolution of the local Zeeman energy HZ( r ), 
we will use the method of the nonequilibrium state operator [17,18] and the density matrix. 

In the framework of this method the nonequilibrium state operator can be written as

ρ = Z−1exp −βLHL − ∫
V

d r βZ( r , t)HZ( r , t)

+∫
−∞

0
dt′eεt′ βL

∂HL t′
∂t′ + ∫

V
d r βZ r , t′ + t

∂HZ r , t′
∂t′ ,

(13)

where Z = Trexp{…} is the partition function and the transition to the limit ε → +0 

should be made after the calculation of the integral, βL is the inverse lattice temperature and 

βZ( r , t) is the local inverse spin temperature of the nuclear Zeeman reservoir. In Eq. (13) all 

operators are taken in the Heisenberg representation.

At the linear approximation with respect to the DD interactions we can rewrite the density 

matrix (13) in the following form [17,18]:

ρ = 1 − ∫
0

1
dλ B(t + iλ) − B(t + iλ) eq ρeq (14)

where the thermodynamic average 〈…〉eq corresponds to an average with the quasi-

equilibrium operator ρeq = e−A/Tr(e−A).

A(t) = βLHL + ∫
V

d r βZ( r , t)HZ( r , t), (15)

B(t + iλ) = ∫
−∞

0
dt′eεt′ × ∫

V
d r βZ r , t + t′ − βL e−λA t′ Kd

(ns) r , t′ eλA t′

.
(16)

By using Eqs. (11) and (14)–(16) we obtain the kinetic equation
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∂βZ( r , t)
∂t = − 1

T1( r )
βZ( r , t) − βL (17)

with the boundary conditions

∂
∂ r

βZ( r , t)
r = ζ

= 0, ∂
∂ r

βZ( r , t)
Σ

= 0 (18)

and

βZ( r , t ∞) = βL, (19)

where ς is the diameter of the molecule, Σ is the boundary of the considered volume.

The right side of Eq. (17) gives a rate of change of βZ( r , t) due to thermal exchange 

between the spin system and lattice. The exchange is characterized by the relaxation rate 

T1
−1( r ) which is given by the following expression obtained by averaging of Eq. (12) using 

Eq. (14):

1
T1( r )

= 3
8 γ2ℏ 2 ∫

−∞

0
dteεte− t

τc∫
V

d r ′ 1
r − r ′ 6

sin2 2θ r , r ′ cos ω0t + 4sin4 θ r , r ′ cos 2ω0t .
(20)

Here we assume that in the high-temperature approximation the molecules tumble 

isotropically, then it is usually assumed that the correlation function decays exponentially 

with respect to time, e− t
τc  [1,19]. The correlation time τc of the molecules motion 

characters the properties of liquid.

The integration over time of Eq. (20) gives

1
T1( r )

= 3
8 γ2ℏ 2 ∫

V
d r ′ 1

r − r ′ 6 sin2 2θ r , r ′ τc
1 + ω0

2τc2

+4sin4 θ r , r ′ τc
1 + 4ω0

2τc2
.

(21)

To describe the relaxation, we can use Eq. (17). In this case the normalized relaxation 

function, R(t) =
βZ(t) − βZ(∞)
βZ(0) − βZ(∞)  takes the form [20–23]
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R(t) = 1
V ∫

v

V
d r e− t

T1( r )
N

. (22)

In the limit of N → ∞ we have

R(t) = e−c∫v
V d r 1 − e− t

T1( r ) , (23)

where v is the volume of a molecule, C is the spin density.

After a direct integration in the exponent over r in the range from ς to L(ϑ, φ), we have

R(t) = exp −C∫
0

2π
dφ∫

0

π
sinϑdϑ 1

3 1 − e− A(ϑ)
L6(ϑ, φ)

t L3(ϑ, φ)

− 1 − e− A(ϑ)
ς6 t ς3 − 1

3 πA(ϑ)t erf A(ϑ)t
L3(ϑ, φ)

− erf A(ϑ)t
ς3 ,

(24)

where ϑ, φ are the angle coordinates of the radius-vector r  and the z-axis is directed along 

the applied magnetic field; L(ϑ, φ) gives the boundary of the considered volume;

A(ϑ) = 3
8 γ2ℏ 2 sin22ϑ τc

1 + ω0
2τc2

+ sin4ϑ 4τc
1 + 4ω0

2τc2
. (25)

At A(ϑ)t
ς3 ≪ 1 the normalized relaxation function takes the following form

R(t) = exp − t
T1

, (26)

with the relaxation rate accounting that L ≫ ς:

1
T1

= 4π
15

Cτc
ς3 γ2ℏ 2 1

1 + ω0
2τc2

+ 4
1 + 4ω0

2τc2
. (27)

One can see from Eq. (27) that 1
T1

 is proportional to the density of spins and depends on 

τc in accordance with the well-known expression for 1
T1

 in bulk liquid [1]. For correlation 

times τc much shorter than the inverse Larmor frequency of the spins, ω0τc ≪ 1 it is 

following that the inverse relaxation times is proportional to τc. Estimation with C = 66spin
nm3 , 

ω0 = 63.862 MHz at the applied magnetic field 1.5 T, and τc ≃ 3.6 × 10−11 s, gives T1 ≃ 
3.675 s which coincides with the experimental data [1]. Using Eq. (27), the dependences 

of T1 on the correlation time τc is presented in Fig. 1. Estimation shows that A(ϑ)t
ς3 ≪ 1 is 
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valid till t about 200 s, that is much larger than time when the relaxation can be observed in 

experiment.

Experiments with nanostructured samples [16] have shown that in liquid entrapped in a 

nanocavity, the relaxation time T1 is shorter than in bulk, and lies in the range from 0.25 

s to 0.9 s. What is more, the relaxation time T1 depends on the sample structure and its 

orientation relative to the applied magnetic field.

To explain the peculiarities of spin-lattice relaxation in liquids entrapped in a nanocavity, 

the same relaxation mechanisms can be considered and Eq. (27) for estimation of the spin-

lattice relaxation time is proposed to be applied with only single difference in the correlation 

time τc [16]. Following [16] the correlation time is estimated by analyzing the experimental 

data: at the applied magnetic field of 1.5 T (ω0 = 63.862 MHz) and for experimentally 

measured T1 ≃ 0.368 s estimation gives τc ≃ 0.36 × 10−11s (dependence of T1 on low τc is 

presented in the insert on Fig. 1).

The experiments showed that the relaxation time T1 depends on the volume and form of 

nanocavities as well as their orientation. However, Eq. (27) for the spin-lattice relaxation 

time, obtained using the non-averaged Hamiltonian, do not explicitly contain the dependence 

on these parameters.

To obtain the dependence of the relaxation time on cavity parameters, the next section 

let us consider the approach based on averaging of the Hamiltonian, which is valid for 

nanocavities with a characteristic size much less than 700 nm.

3. Space averaged spin Hamiltonian and spin-lattice relaxation time

In a nanocavity, in contrast to the bulk, space diffusion of molecules of gas or liquid is 

restricted; but the molecules can still move randomly throughout the whole cavity with the 

time tdif. We will consider the case in which this time is shorter than the NMR time scale 

tNMR, tdif ≪ tNMR and the Hamiltonian is not averaged to zero unlike bulk liquid. The 

characteristic size of a water-filled nanocavity, at which the averaged Hamiltonian is not 

zero must be much smaller than 700 nm [7–15].

According to the ergodic hypothesis, the averaging of the space parameters of the 

Hamiltonian (4) over time can be replaced by the averaging over the statistical ensemble 

in space [24]. The detailed description of the averaging has been given elsewhere [25,26]. 

Therefore, the spin evolution in a nanocavity can be described by an averaged DD 

interaction Hamiltonian. The time-averaged of the secular part (6), Hd
(s) can be presented 

in the following form for an axis-symmetrical nanocavity [25,26]:

Hd
−(s)

= γ2ℏF
4V 1 − 3cos2Θ 3Iz

2 − I
2

(28)
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where I 2 = Ix
2 + Iy

2 + Iz
2 is the square of the total nuclear spin operator, Iv =μ = 1

N Ivμ are the 

operators of the projections of the total spin operator onto the ν-axes (ν = x, y, z), F is the 

form-factor associated with the ellipsoidal nanocavity [25]:

F = π

2
3 + 2 1

ε2 − 1 1 − 1
εarctanhε , a ⩽ b

2
3 − 2 1

ε 2 + 1 1 − 1
ε arctan ε , a ⩾ b

(29)

and ε2 = 1 − a2

b2 , − 4π
3 < F < 2π

3 , Θ is the angle between the main axis a of the nanocavity, b = 

c, and the external magnetic field, H 0.

The form factor for a cylindrical cavity with diameter d and length ℓ is [14]:

F = 2π 1
(2d/ ℓ )2 + 1

(30)

The non-secular part of the DD interaction Hamiltonian (7), Hd
(ns) after averaging takes the 

form

Hd
(ns) = γ2ℏ ∑

q = − 2, q ≠ 0

2
G(q)S(q), (31)

where G(q) are the average dipolar coupling constants

G(1) = − 3
8V Fsin(2Θ)e−iψ,

G(2) = − 3
8V Fsin2(Θ)e−2iψ,

G( − q) = G(q) *

(32)

S(q) are operators acting only on the spin variables

S(1) = IzI+ + I+Iz

S(2) = I+I+

S( − q) = S(q) + .

(33)

where I± = ∑μ = 1
N I±μ are the total raising and lowering operators, ψ is the azimuthal angle 

of the main axis of the nanocavity.
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The averaged non-secular part Hd
(ns) of the Hamiltonian containes four effective constatnts 

for each pair of spins. Similary to the effective constant of the secular part these constants 

depend on the volume, form, and orientation of the nanocavity.

Random fluctuations of walls of a nanocavity [27] we will simulate by fluctuations of 

the constants G(q). We assume that time dependence of G(q)(t) are determined by random 

functions of the cavity volume V, form factor F, and orientation Θ. Due to the characteristic 

time of molecular motion is much less than the spin flip-flop times, tdif ≪ tNMR in a 

nanocavity [25,26], the effective constants are the same for all the spin pairs even in 

fluctuating nanocavity. To apply the interaction representation the averaged non-secular part 

of the Hamiltonian is rewritten as:

Hd
(ns)(t) = γ2ℏ ∑

q = − 2, q ≠ 0

2
G(q)(t)S(q)(t), (34)

where the definitions are introduced

S(q)(t) = eiHZtS(q)e−iHZt = S(q)e−iqω0t . (35)

We assume that the nanocavity fluctuations are an isotropic and introduce the correlation 

functions

G(q)(t)G q′ * (t + τ) = δqq′ G(q)(0)G q′ * (0) g(q)(τ), (36)

where g(q)(τ) = g(−q)(τ) are the reduced correlation function (q = ±1, ±2) and

G(1)(0)G( − 1)(0) = G( − 1)(0)G(1)(0) = 3F
8V sin2Θ

2

G(2)(0)G( − 2)(0) = G( − 2)(0)G(2)(0) = 3F
8V sin2Θ

2 (37)

By using Eqs. (34)–(37) and the usual procedure (see e.g. [1]) we obtain the spin-lattice 

relaxation rate

T1
−1 = 3 3

8
3 C

V Fγ2ℏ 2 J (1) ω0 sin22Θ + J (2) 2ω0 sin4Θ , (38)

where J(1)(ω0) and J(2)(2ω0) are the spectral densities g(1)(τ) and g(2)(τ), respectively [1]

J (1) ω0 = ∫
−∞

∞
g(1)(τ)e−iω0τdτ,

J (2) 2ω0 = ∫
−∞

∞
g(2)(τ)e−2iω0τdτ .

(39)
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Usually the correlation function is approximated by an exponential function [1]. However, 

using the exponential reduced correlation function we cannot obtain from Eq. (38) the 

relaxation time corresponding to experimental data [28,29]. We assume that the reduced 

correlation functions g(1)(τ) and g(2)(τ) are the same and represented by

g(q)(τ) = τ
τcc

e− τ
τcc , q = 1, 2, (40)

where τcc is the correlation time of random fluctuation of a nanocavity. The spin-lattice 

relaxation rate then becomes

T1
−1 = 3 3

8
3

× C
V Fγ2ℏ 2τcc

ω0
2τcc2 − 1

ω0
2τcc2 + 1

sin22Θ +
4ω0

2τcc2 − 1
4ω0

2τcc2 + 1
sin4Θ . (41)

Eq. (41) gives the dependence of the spin-lattice relaxation rate on an external magnetic field 

ω0, the correlation time τcc, volume V, density of nuclear spins C, shape F and nanocavity 

orientation relative to a magnetic field, Θ. Estimation of the correlation time, τcc at field 

strength 2.0 T (ω0 = 85. 147 MHz) according to Eq. (41) with C = 66spin
nm3 , F = 2π (for a long 

cylindrical cavity ℓ ≫ d), V ≃ 2500 nm3 and the experimental data T1 ≃ 0.54 s [28,29] gives 

τcc ≃ 1.5 × 10−5s.

Fig. 2 shows the dependences of T1 on the correlation time τcc for the external field of 2 T 

(ω0 = 85. 147 MHz) in an elongated cylindrical nanocavity with form factor F = 2π at angle 

Θ = 55°. We note that according to our estimation in a nanocavity the correlation time is six 

orders of magnitude longer than in bulk liquid and the spin-lattice relaxation time becomes 

dependent on the orientation of the cavity relative to the magnetic field, angle Θ (Fig. 3).

4. Spin-lattice relaxation for fibril tissues

Usually, experiments on measuring the spin-lattice relaxation time T1 for water inside 

nanocavities are performed with samples containing a set of nanocavities differing in 

orientation, shape, and volume. In experiment the observed anisotropy of the time T1 

depends on the degree of ordering of the nanocavities.

To explain the difference of the relaxation rate T1 given by (41) and experimentally observed 

angular dependence of the rate in the bovine tendon (Fig. 2 in [28]) and the Achilles tendon 

(Fig. 1 in [29]), we apply the approach developed in [15]: we consider a fibril tissue as a 

set of imperfectly orientated nanocavities containing water. (There is a natural distribution of 

the fibril volumes and their directions). Here we analyze the angular dependence of this rate 

using the normalized form

R1 =
max

Θ
T1(Θ)

T1(Θ) . (42)

Furman et al. Page 11

J Magn Reson. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Assuming that the angular distributions of all nanocavity types are the same, we obtain

R1 =
max

Θ
T1(Θ)

T1(Θ) (43)

In NMR experiments, the angle θ0 between the sample Z0-axis and the magnetic field is 

determined and the relaxation time as a function of this angle is studied. In the general 

case, the angle does not coincide with a “preferred direction”, an averaged orientation, of 

the collagen fibrils. Let us determine the deviation of the main axis of each collagen fibril 

from the Z0-direction by the polar angle α and azimuthal angle χ. Suggesting the Gaussian 

distribution of nanocavities directions over the both angles, the polar α and the azimuthal χ 
angles with the bivariate normal distribution function

R1 = 1
2πσασχΓ ∫

0

2π
dχ∫

0

π
dαsinαe−

α − α0
2

2σα
−

χ − χ0
2

2σχ R1 θ0, α, χ , (44)

where σα and σχ are the standard deviations, α0 and χ0 are the means of the distributions 

and give distinction of the “preferred direction” of the fibrils from the sample axis,

Γ = 1
2πσασχ

max
θ0

∫
0

2π
dχ∫

0

π
dαsinαe−

α − α0
2

2σα
−

χ − χ0
2

2σχ R1 θ0, α, χ . (45)

The angular dependences of the normalized relaxation rate 〈R1〉 are given by Eq. (44) 

in which there are unknown parameters: standard deviations (σα and σχ) and distribution 

means (α0 and χ0). These parameters can be considered as parameters which characterize 

the fibril structure of a tissue. To take into account the real forms of the fibers and 

their distinction of the orientation, the fibril structure of the tendon was represented as a 

superposition of two types of nanocavity distributions (termed Sp and Rd) with different 

preferred orientations of the fibrils [15].

The good agreement of the experiment [28] and the theoretical results was achieved (Fig. 4) 

when the difference between the preferred fibril orientations is about 90°. The normalized 

inverse relaxation time for the relaxation as a function of the angle between the sample axis 

and the magnetic field can be presented as

R1 θ0 = ξsp R1 sp + ξrd R1 rd (46)

where ξsp and ξrd are the weight factors of the distributions with ξsp + ξrd = 1.

To determine the fitting parameters, 〈R1(θ0)〉 was calculated by using the mean relative error 

method with variation of the parameters in wide ranges and then the best parameter set was 

found from the condition that an averaged relative error
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Ψ = 1
6 ∑ R1 θ0 − R1 θ0 exp

R1 θ0 exp
(47)

is minimal. Here 〈R1(θ0)〉exp is the measured relaxation rate at angle θ0 and summation 

through all experimental data for an analyzed sample. Fig. 4 shows the results for the bovine 

flexor tendon in a magnetic field of 2 T [28], where the maximum of 〈R1(θ0)〉 at θ0 = 0 

and the best matching of the calculations according to Eq. (46) with the relative error Ψ = 

0.007 was achieved at α0sp = π
2 , α0rd = 0, ξsp = 0.1, ξrd = 0.9, σαsp = 0.45, σαrd = 0.47, and 

σχsp = σχsp = 1.8. Fig. 5 shows the results for the Achilles tendon in a magnetic field of 7 

T [29], where the maximum of 〈R1(θ0)〉 at θ0 = 0 and the best matching of the calculations 

according to Eq. (46) with the relative error Ψ = 0.009 was achieved at α0sp = π
2 , α0rd = 0, 

ξsp = 0.1, ξrd = 0.9, σαsp = 0.8, σαrd = .9, and σχsp = σχsp = 1.96.

5. Discussion and conclusions

Using the method of nonequilibrium state operator [17,18], we have obtained the kinetic 

equation which takes into account the spin-lattice relaxation processes in bulk liquid. We 

were able to solve the kinetic equation and to obtain an expression in quadratures for the 

spin-lattice relaxation time T1. The estimation of the relaxation time T1 coincides with 

experimental data [1] at the correlation time τc ≃ 10−11 s. It is shown that this relaxation 

time T1 is independent of the orientation and applied magnetic field as well as of volume 

and form of nanocavities and this approach cannot explain the observed experimental results 

for samples containing nanocavities filled by liquid.

For nanocavities with the characteristic size much less than 700 nm, we have developed 

an alternative method for investigation of spin-lattice relaxation and determination of the 

spin-lattice relaxation time. First, the Hamiltonian is averaged over random molecular 

motions taking into account restriction of their motion, and then using the obtained averaged 

Hamiltonian the spin-lattice relaxation time is calculated. When determining the time, we 

assumed that the spin-lattice relaxation mechanism is effected by nanocavity fluctuations 

with the correlation function |τ|
τcc

e− |τ|
τcc  (see Eq. (40)). The obtained expression shows an 

explicit dependence of the relaxation time T1 on volume V, density of nuclear spins C, and 

parameters of the nanocavity: shape (form factor F) and orientation relatively to the applied 

magnetic field, angle Θ (Fig. 3).

We also note that for both the bulk liquid and for the liquid entrapped in a nanocavity the 

relaxation time T1 does not depend practically on the magnetic field. However, the reasons 

for this result are different: in the bulk liquid the correlation time is very short and ω0τc ≪ 1 

in Eq. (27). In the case of a nanocavity, on the contrary, this factor is large, ω0τcc ≫ 1, (Eq. 

(41)).

In the case of nanocavities, for comparison with the experiment on detection of the 

anisotropy of the relaxation time T1 for fibril tissues, these tissues were represented as 

a set of nanocavities containing water. We averaged the normalized relaxation rate over 
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orientation of the nanocavities relative to the magnetic field. The good agreement with 

the experimental data was obtained by adjustment of few fitting parameters - the standard 

deviation, averaged fiber direction, and weight factors - which all have physical meanings 

which characterize the ordering of fibrils. Thus, the value of the fitting parameters obtained 

at matching of theoretic results to experimental data can be used in future investigations for 

characterizing the fine fibril structure of biological samples, in particular, the differentiation 

of fibril structures between healthy and lesioned samples.
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Fig. 1. 
The dependence of T1 on the correlation time τc at the spin-lattice relaxation process, 

calculated by using Eq. (27). The insert shows zoom at a relatively large correlation time.
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Fig. 2. 
The dependence of T1 on the correlation time τcc in the magnetic field of 2 T (ω0 = 85.147 

MHz) in an elongated cylindrical nanocavity with volume V = 2500 nm3, form factor F = 2π 
at angle Θ = 55°.
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Fig. 3. 

The relaxation rate T1
−1 in liquid entrapped in a nanocavity as the function of the nanocavity 

orientation in the magnetic field of 2 T according Eq. (41). Nanocavities are simulated as 

elongated cylinders with form factor F = 2π, V = 2500 nm3 and τcc = 10−5 s.
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Fig. 4. 
The normalized relaxation rate 〈R1(θ0)〉of the bovine flexor tendon as a function of the 

specimen orientation in the magnetic field of 2 T. Nanocavities are simulated as elongated 

cylinders with form factor F = 2π and V = 2500 nm3. Green circles are experimental data 

[28], red solid curve is theoretical calculation according to Eq. (46).
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Fig. 5. 
The normalized relaxation rate 〈R1(θ0)〉 of the Achilles tendon as a function of the specimen 

orientation in magnetic field of 7 T. Nanocavities are simulated as elongated cylinders with 

form factor F = 2π and V = 2500 nm3. Green circles are experimental data [29], red solid 

curve is theoretical calculation according to Eq. (46).
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