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ABSTRACT: Background: Currently, Parkinson’s disease (PD) diagnosis is
mainly based on medical history and physical examination, and there is no
objective and consistent basis. By the time of diagnosis, the disease would have
progressed to the middle and late stages. Pilot studies have shown that a unique
smell was present in the skin sebum of PD patients. This increases the possibility of
a noninvasive diagnosis of PD using an odor profile. Methods: Fast gas
chromatography (GC) combined with a surface acoustic wave sensor with
embedded machine learning (ML) algorithms was proposed to establish an
artificial intelligent olfactory (AIO) system for the diagnosis of Parkinson’s through
smell. Sebum samples of 43 PD patients and 44 healthy controls (HCs) from
Fourth Affiliated Hospital of Zhejiang University School of Medicine, China, were
smelled by the AIO system. Univariate and multivariate methods were used to
identify the significant volatile organic compound (VOC) features in the
chromatograms. ML algorithms, including support vector machine, random forest
(RF), k nearest neighbor (KNN), AdaBoost (AB), and Naive Bayes (NB), were used to distinguish PD patients from HC based on
the VOC peaks in the chromatograms of sebum samples. Results: VOC peaks with average retention times of 5.7, 6.0, and 10.6 s,
respectively, corresponding to octanal, hexyl acetate, and perillic aldehyde, were significantly different in PD and HC. The accuracy
of the classification based on the significant features was 70.8%. Based on the odor profile, the classification had the highest accuracy
and F1 of the five models with 0.855 from NB and 0.846 from AB, respectively, in the process of model establishing. The highest
specificity and sensitivity of the five classifiers were 91.6% from NB and 91.7% from RF and KNN, respectively, in the evaluating set.
Conclusions: The proposed AIO system can be used to diagnose PD through the odor profile of sebum. Using the AIO system is
helpful for the screening and diagnosis of PD and is conducive to further tracking and frequent monitoring of the PD treatment
process.

1. INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder of the central nervous system in
the world.1 It has a long course of the disease and requires life-
long treatment, which brings great inconvenience to the
patients’ work and life. People with PD often suffer from some
motor and nonmotor symptoms that vary from patient to
patient. Motor symptoms include bradykinesia, tremor,
rigidity, and postural instability, and the nonmotor symptoms
comprise depression, memory loss, anosmia, constipation, and
urinary frequency.1−3 The prevalence was 65.6−12,500/
100,000, 537−614/100,000, and 51.3−176.9/100,000 in
Europe,4 North America,5 and Asia,6 respectively, and will
double by the next 30 years along with population aging as
predicted by the Global Burden of Disease (GBD).7 According
to the data from GBD, the disease caused 211,296 deaths and
3.2 million patients with disability-adjusted life-years in 6
million patients in 2016.8 PD does not have an effective way to
cure, but early diagnosis of PD and early medical,

psychological, and social interventions can significantly
improve the health-related quality of life, relieve symptoms,
and prolong the patients’ survival time. Therefore, the
standardized diagnosis of PD is very important.9−11

Currently, the diagnosis of PD is mainly based on clinical
manifestations supplemented by test rating scales, including
Hoehn−Yahr stage (H−Y),12,13 unified PD rating scale
(UPDRS),14,15 nonmotor symptom scale,16,17 PD-cognitive
rating scale,18,19 and so on. There has been a lack of objective
and consistent diagnostic criteria for a long time. Dopamine
transporter single-photon emission computed tomography is
currently a high-value imaging-assisted diagnosis method,20,21

Received: September 13, 2021
Accepted: January 11, 2022
Published: January 26, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

4001
https://doi.org/10.1021/acsomega.1c05060

ACS Omega 2022, 7, 4001−4010

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wei+Fu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Linxin+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qiwen+Yu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiajia+Fang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Guohua+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chenying+Pan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hao+Dong"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Di+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Haiyan+Ren"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Haiyan+Ren"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi+Guo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qingjun+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jun+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xing+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.1c05060&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05060?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05060?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05060?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05060?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c05060?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/5?ref=pdf
https://pubs.acs.org/toc/acsodf/7/5?ref=pdf
https://pubs.acs.org/toc/acsodf/7/5?ref=pdf
https://pubs.acs.org/toc/acsodf/7/5?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.1c05060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


but this item is expensive and unsuitable for routine use.
Moreover, the body fluid (blood and cerebrospinal fluid)
biomarkers for the diagnosis of PD are still in the research and
verification stage.22 Pilot studies have shown that the volatile
organic compounds (VOCs) in the sebum of PD have a
different smell from healthy people, which provides a new idea
and method for the diagnosis of PD.
Recently, Nazik described that the increased sebum

secretion in PD patients was associated with the increase in
the production of yeast and enzymes in the body,23 and the
secretion of hormones may lead to seborrheic dermatitis
(SD).24 SD is considered to be one of the premotor symptoms
of PD and has an auxiliary value for diagnosing PD.25 Trivedi
used gas chromatography−mass spectrometry (GC−MS) to
prove that there were different VOCs in the sebum of PD and
healthy people.26 These VOCs such as perillic aldehyde and
eicosane may change with the increase of sebum secretion, and
the interaction between sebum and the yeast of the
microbiome can make human skin smelly.26−29 Besides,
Tsuda used GC−MS to analyze the smell of sebum and
found that the types and concentrations of VOCs such as
dodecane, acetone, and ethyl acetate released in the sebum of
PD patients were related to UPDRS part 3,30 representing the
severity of motor in PD. These studies indicated that sebum
gas could be used for the detection of PD.
At present, the detection and analysis of VOCs in human

sebum in scientific research mainly adopt chromatography.
One of the most mainstream methods is to use a combination
of GC and general detection technology or gas sensors and
electronic noses.31−34 GC−MS is one of the most common
methods, but its bulky size, long analytical time, and high cost
may still be unsuitable for clinical use. Fast GC systems, which
have been used to detect VOC markers for many diseases, had
the characteristics of small size, easy to use, portability, and low
cost.35 These characteristics make it possible to perform point-
of-care testing of sebum’s smell from PD patients.
In this study, GC combined with a surface acoustic wave

(SAW) sensor with embedded machine learning (ML)
algorithms was proposed to establish an artificial intelligent
olfactory (AIO) system for the diagnosis of Parkinson’s
through smell. The system has the advantages of being fast,
small, easy to operate, portability, and low cost. Experimental
data from 31 PD patients and 32 healthy controls (HCs) were
obtained by the AIO system. Univariate and multivariate
analysis of biomarker features was performed, and ML
strategies, including support vector machine (SVM), random
forest (RF), k nearest neighbor (KNN), AdaBoost (AB), and
Naive Bayes (NB), were used to construct diagnostic
biomarker-based models and odor profile-based models. Data
from 12 PD and 12 HC were used to evaluate the clinical usage

of the models. The results showed that the AIO system could
diagnose PD through the smell of sebum, indicating the
potential usage of the AIO system in clinical practice.

2. RESULTS
2.1. Clinical Characteristics. The VOC data of 31 cases of

PD and 32 cases of HC were used to build the Parkinson’s
odor diagnosis model. The data of 12 cases of PD and 12 cases
of HC were used to evaluate the models. The characteristics of
patients who participated in the experiment are shown in Table
1.

2.2. Calibration of AIO. 2.2.1. Calibration of AIO by
Using the Mixed Solution. Figure 1 shows the chromato-

graphic frequency response curve of a mixed solution of
nonane, decane, undecane, dodecane, tridecane, tetradecane,
and pentadecane. The mixed solution was used to prepare
standard calibration gases (the details of preparation are shown
in Section 5.2.2). The AIO can detect the VOCs in the gas
phase. In Figure 1, the horizontal axis is the retention time,
which characterized different substances, and the vertical axis is
the SAW’s response frequency, which characterized the quality
of each substance.

2.2.2. Calibration of AIO by Using the Selected Biomarker
Reagent. Figure 2 shows spectra for different concentrations
(0.025, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 25, and 50 mM) of gas-
phase octanal (Figure 2A), hexyl acetate (Figure 2B), perillic
aldehyde (Figure 2C), and dodecane (Figure 2D) generated by
VOC solvents. The clinical range of concentrations was from
0.25 to 2.5 mM.26,27 The results showed good reproducibility
of the AIO system in the detection of these four reagents.

Table 1. Characteristics of Participants in the Experiments

development cohort validation cohort

characteristics PD (n = 31) HC (n = 32) P-value PD (n = 12) HC (n = 12) P-value

gender (n, % ratio)
male 18 (58.0%) 15 (46.9%) 0.184 6 (50.0%) 5 (41.7%) 0.698
female 13 (41.9%) 17 (53.1%) 6 (50.0%) 7 (58.3%)
age (median, range) 64.74 ± 11.31 64.81 ± 8.89 0.453 64.00 ± 6.86 57.97 ± 16.52 0.251
BMI 23.28 ± 2.26 22.06 ± 1.93 0.032 23.82 ± 2.79 23.72 ± 2.40 0.310
abuse alcohol (n) 2 0 0 0
disease process (Avg) 5.23 0 5.25 0
malignant tumor (N) 0 0 0 0

Figure 1. Chromatographic frequency response curve of a mixed
solution in the AIO system: peak 1 is the internal standard at a
concentration of 1.12 mM; peaks 2, 3, 4, 5, 6, 7, and 8 are nonane,
decane, undecane, dodecane, tridecane, tetradecane, and pentadecane,
respectively, and all VOCs were diluted to parts per million of the
original concentration.
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Figure 2A shows a linear detection range of the system (R2 =
0.9876, P < 0.0001) from 0.025 to 50 mM covering the
reported octanal concentrations in human sebum. Figure 2B

shows hexyl acetate (R2 = 0.9656, P < 0.0001). Figure 2C
shows perillic aldehyde (R2 = 0.9099, P < 0.0001). Figure 2D
shows dodecane (R2 = 0.9919, P < 0.0001). The calibration of

Figure 2. Calibrations of AIO by different reagent concentrations of the gas phase (0.025, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 25, and 50 mM): (A)
responses of AIO to the concentrations of nine different samples of octanal and the detection spectra of different octanal concentrations in the gas
phase; (B) responses of AIO to the concentrations of nine different samples of hexyl acetate and the detection spectra of different hexyl acetate
concentrations in the gas phase; and (C) responses of AIO to the concentrations of nine different samples of perillic aldehyde and the detection
spectra of different perillic aldehyde concentrations in the gas phase. (D) Responses of AIO to the concentrations of nine different samples of
dodecane and the detection spectra of different dodecane concentrations in the gas phase. The linear correlation with red dashed lines represents
the fitting with 95% confidence interval.
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the AIO system indicated that the system had good sensitivity
and reproducibility for the quantitative detection of these
reagent concentrations.
2.3. Selection of Significant Features Which Classify

PD. The data detected by the AIO system were preprocessed
(to achieve signal adaptive filtering denoising, baseline
correction, drift compensation, normalized). We conducted
further analysis and statistical tests on the four extracted
features’ data to detect the difference between the PD and HC
groups. To evaluate the performance of these biomarkers, we
used the data of the discovery cohort to perform a
nonparametric test. It can be found that octanal and hexyl
acetate had significant differences in the Kolmogorov−Smirnov
Z test (p < 0.05). Perillic aldehyde was lower in PD samples in
the box plots and had significant differences in the Mann−
Whitney U test (p < 0.05). However, dodecane was not
significantly different in the two tests (p > 0.05). The results of
the nonparametric test are shown in Table S2. The area under
the curve (AUC) and box plots of the three markers of octanal,
hexyl acetate, and perillic aldehyde are shown in Figure 3.
2.4. Model Based on Significant Features Which

Classify PD. Table 2 shows the classification effect of the

development cohort’s (31 PD and 32 HC) three marker
features when the classification model was established. We
used 80% for the training set and 20% for the validation set.
The accuracy of the model was 82.6%. The F1 of 0.771 also
showed that the model has good robustness. Then, we used a
blind experiment to diagnose 12 PD and 12 HC, evaluated
them with clinical indicators, and found that the accuracy was
70.8%. The sensitivity was 91.7%, which means that the
mistake diagnosis rate was less than 10%. However, the
specificity effect of the model was 50%. As shown in Figure 4,
AUC indicated that the model established by the AIO system
had good accuracy.

2.5. Five Different Classifiers for the Classification of
PD Patients by the Odor Profile. Table 3 shows the
classification effect of the models. We used 80% for the training
dataset and 20% for the validation dataset. It can be seen that
the odor profile diagnosis model established by AB obtained
the highest accuracy with 0.855 scores. Except for the model
established by KNN, the models established by other classifiers
were all greater than 0.800. The best F1 was 0.846 from AB.
The RF model had the highest recall with a score of 0.981. The
SVM model got the highest precision with a score of 0.882.
The relationship between specificity and sensitivity was

obtained by plotting the ROC curve. As shown in Figure 5A,
the area under the ROC curve indicated that the model
established by the AIO system through SVM had good
accuracy.

2.6. Medical Diagnostic Tests for the Established
Model. Considering that the odor diagnosis model of PD had
a better classification effect, the clinical application of the
model was evaluated. To ensure the cleanliness of the test
dataset, the researchers were blinded in this trial, and all
participants’ information was kept in the third partythe

Figure 3. ROC curves and box plots of three biomarker features for the discovery cohort. The ROC curve comprehensively considers the
characteristics of sensitivity and specificity. Box plots show a comparison of means of log scaled peak intensities of these analytes, where black dots
are outliers. In the box plots, the green on the left represents HC, and the orange on the right represents PD patients.

Table 2. Model Evaluation Parameters and Clinical
Application Evaluation Results

evaluation parameters

cohort accuracy
recall

(sensitivity) precision F1 specificity

development
cohort

0.826 0.982 0.836 0.771

validation
cohort

0.708 0.917 0.500
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Fourth Affiliated Hospital of Zhejiang University School of
Medicine. After the analysis and model diagnosis experiment,
the doctor will then send the participants’ information to the
experimenter for statistical analysis to evaluate the clinical
application value of the model. The results of the evaluation of
the clinical application for the five models are shown in Table
4. The ROC curve of the results is shown in Figure 5B.
Table 4 shows the results of the evaluation of the clinical

application. We blindly diagnosed 12 PD and 12 HC. The
odor diagnosis model constructed by RF obtained the highest
accuracy with 0.792. We could find that the ensemble-learning

classifiersRF and ABhave higher accuracy than others.
The highest sensitivity was 0.917 from RF and KNN. NB
achieved the highest specificity with 0.916. The highest +PV,
which doctors care about in clinical situations, was 0.800 from
NB, and the highest −PV was 0.889 from RF. NB had the
highest accuracy rate of TP in predicting positives. RF had the
highest accuracy rate of TN in predicting negatives. However,
the classification effect of SVM in the classifier did not reflect
good results. The ROC curve in Figure 5B also showed that
the ensemble classifiers had better results, and these classifiers
also had the evaluation of the clinical application.

3. DISCUSSION
This research proposed fast GC combined with a SAW sensor
with embedded ML algorithms to build an AIO system to
diagnose PD through smell. ML was used to classify the
sebaceous skin gas of PD patients based on the peaks in the
chromatogram. There were three significant biomarkers
(octanal, hexyl acetate, and perillic aldehyde) between PD
patients and the control group. Using the three VOC
biomarkers and the odor profile collected by the AIO system,
the accuracies of classification between PD and HC were 70.8
and 79.2%, respectively.
The three significant biomarkers might be caused by

different metabolic ways of PD patients. Hexyl acetate was
usually found in many fruits and alcoholic beverages.36,37

Perillic aldehyde was used in perfumes, cosmetics, and food.26

The concentrations of hexyl acetate in HC were lower than
those of PD, but the concentrations of perillic aldehyde in HC
were higher than those in PD. It could be speculated that PD
had a special metabolic ability for these two lipid hydrophobic
metabolites (hexyl acetate and perillic aldehyde). SD was a

Figure 4. ROC curve of the development cohort and validation
cohort based on significant features: X-axis: false positive rate, Y-axis:
true positive rate, purple line: development cohort, and pink line:
validation cohort. The AUCs were 0.754 and 0.646, respectively.

Table 3. Model Evaluation Parameters

evaluation parameters

model accuracy recall precision F1

SVM 0.812 0.865 0.882 0.813
RF 0.841 0.981 0.836 0.818
KNN 0.754 0.980 0.754 0.689
AB 0.855 0.960 0.857 0.846
NB 0.841 0.924 0.875 0.835

Figure 5. ROC curve analysis to evaluate the performance of different classifier construction models. Each colored line represents the ROC curve of
the Parkinson’s odor diagnosis model constructed by different classifiers: (A) development cohort: the ROC curve of the model. The AUCs of five
classifiers (SVM, RF, KNN, AB, and NB) are 0.808, 0.868, 0.800, 0.929, and 0.914, respectively and (B) validation cohort: the ROC curve of the
medical diagnostic tests. The AUCs of five classifiers are 0.681, 0.819, 0.729, 0.826, and 0.698, respectively.

Table 4. Results of the Evaluation of Clinical Application for
Five Different Classifiers

model
sensitivity

(%)
specificity

(%)
accuracy
(%)

+PV
(%)

−PV
(%)

SVM 66.7 66.7 66.7 66.7 66.7
RF 91.7 66.7 79.2 73.3 88.9
KNN 91.7 16.7 54.2 52.4 66.7
AB 83.3 66.7 75.0 71.4 80.0
NB 66.7 91.6 62.5 80.0 57.9
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typical nonmotor symptom of PD and was developed by the
increasing sebum excretion and proliferation of Malassezia
yeasts.38 Increased sebum excretion in PD patients would
increase yeast and the production of enzymes, leading to
sebum inflammation.23 Both neural and epidermal tissues
originated from the ectoderm. Gioti described that the growth
of Malassezia bacteria required specific exogenous lipids, which
might be related to the increase of lipophilic molecules.39 Both
hexyl acetate and perillic aldehyde were lipophilic molecules
and were insoluble in water, so they might be required for the
growth of Malassezia, which might be related to PD. Hirayama
pointed out that PD could cause abnormal sweat glands,
leading to excessive sweating and night sweats.40 Octanal was a
common marker in human skin sweat.41,42 Moreover, Agapiou

showed that octanal might be related to oxidative stress.43

Besides, Puspita demonstrated that oxidative stress was one of
the pathogeneses of PD.44 Therefore, oxidative stress might
cause an increase of the octanal content on the skin surface of
PD patients. All potential explanations for changes in odor in
PD indicated that the changes in skin physiology and skin
metabolomics were highly specific to PD. This made them
useful as biomarkers for identifying patients with PD. Besides,
the clinical concentration range was expected to be 0.25−2.5
mM according to the experimental results from Trivedi’s
studies. The results from our study also supported their reports
since the response of AIO was always ranging from 1 to 25
kHz in most of the chromatograms, which was referring to
0.25−2.5 mM of various markers by the calibration curves.

Figure 6. (A) System design of the AIO system; solid red line: sampling mode system operating gas path; dotted blue line analyzing mode system
operating gas path. (B) Process of clinical experiments: (1) basic information about the participants was recorded; (2) the gauze was placed on the
participants’ back to extract the skin sebum VOCs, and then, the sample gauze was placed in a glass bottle with an inert brown background gas; (3)
the bottles were transported in ice packs; (4) the samples were taken back to the laboratory and placed in the refrigerator; and (5) analytical
experiments were carried out on the collected samples by the AIO system to obtain odor profiles (created with BioRender.com).
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The results of the classification model based on the sebum
odor profile are pretty good. The classification accuracies of
PD and HC were 70.8 and 79.2%, respectively, using the
significant biomarker features and odor profile. The model
based on the odor profile has a highest sensitivity of 91.7%, a
highest specificity of 91.6%, and a highest AUC of 0.826. It
could be inferred that some peaks were not significant on the
chromatogram and were also included in the algorithm when
classifying based on the odor profile. These insignificant peaks
also contributed to the classification, improving accuracy,
sensitivity, and specificity. Besides, the smell profile, which
covered many VOCs’ peaks, also helped improve the sensitivity
and specificity of the classification model based on the odor
profile of sebum.
The fast, easy-to-use, and portable AIO system can balance

sensitivity, specificity, linearity, dynamic range, detection limit,
detection efficiency, and discrimination ability. Compared with
the GC−MS, liquid chromatography−MS, or paper spray
ionization coupled with ion mobility-MS, the AIO system
greatly improves the detection speed and reduces the detection
cost.26,27,30,45,46 Compared with traditional clinical PD
diagnosis methods, the AIO system is a fast and noninvasive
method. It can also be widely used in hospitals, clinics, and
homes as a PD patient screening or family self-health check
method. PD is a chronic neurodegenerative disease caused by
the loss of dopaminergic neurons in the substantia nigra.
Therefore, when PD patients develop motor symptoms, they
have already lost dopaminergic neurons.47 The neurodegener-
ation process may be too fast, so it is essential to identify PD
before widespread neuron loss occurs, and the AIO provides a
possible solution.
However, there were several limitations to the present study.

First, AIO used fast GC to separate mixed VOCs. The GC
method has a limitation. According to the principle of GC
separation, each peak represented a pure chemical compound
that had a unique retention time to be recognized. However, in
some circumstances, two or more compounds had quite close
retention times, which would cause overlaps of the peaks in the
fast GC separation. We used these retention times to identify
the biomarkers (Table S2). However, it is hard to avoid the
situation when the interfering compounds’ retention time was
the same as that of the biomarkers. Second, the diagnostic
accuracy based on the classification largely depended on the
size of the training set and the representativeness of the sample
population. In our study population, the data distribution of
samples generally needed to be relatively balanced, so the
results obtained by the model may be expected to have high
classification accuracy. Furthermore, the controlled equal-
ization of samples in the PD and HC did not represent the
distribution of the PD disease in real clinical settings, leading
to the limited utility of the model. Third, the metabolic
mechanism of hexyl acetate and perillic aldehyde in the
organism was not clear. Moreover, the differentiation of
dodecane, which was proved to be related to the UPDRS3, was
not observed in this study, indicating the existence of
interfering factors such as race. Nonetheless, this study
provided some ideas worthy of further study. If more research
supported our hypothesis, additional biomarkers such as hexyl
acetate, perillic aldehyde, octanal, and dodecane could be
incorporated into the risk score model to identify individuals at
a high risk of PD. From a future perspective, when the high
sensitivity and specificity of the AIO system is reproduced
within more extensive studies, the AIO system might assist

clinicians in monitoring the extent of PD in patients who have
PD or who may be at a high risk of PD.

4. CONCLUSIONS

In conclusion, we proposed a fast GC system combined with
the SAW sensor with embedded ML algorithms to establish an
AIO system for the diagnosis of PD through smell. This
method presents a new possibility for the early diagnosis of
PD. Compared with olfactory testing, sleep testing, and other
solutions, the combination of the AIO system and ML may
produce a new method of gaseous-assisted diagnosis of PD
with an improved detection speed and a reduced detection
cost. Moreover, the AIO system is a fast, easy-to-use, and
noninvasive method that can be widely used in hospitals,
clinics, and homes to screen, diagnose, and monitor PD
treatment.

5. MATERIALS AND METHODS

5.1. Artificial Intelligence Olfactory System. 5.1.1. De-
sign of the Fast GC System. The AIO system is a combination
of GC and SAW sensor. The system comprises three modules:
gas injection and preconcentration module, chromatographic
separation module (GC), and sensor detection module
(SAW). As shown in Figure 6A, an adsorbent tube filled
with 10 mg of Tenax TA (60/80 mesh, purchased from
Analytical Columns, Croydon, England), a six-way valve, and a
vacuum pump was used to preconcentrate the sample gases for
the injection. A 1 m long DB-1 capillary column (cut from an
Agilent column of 10 m × 0.1 mm × 0.33 mm) with a direct
resistive heating component (manufactured by Ningbo
Oulaike Metal Capillary Technology Co., Ltd., Ningbo,
China) was used to fast separate the compounds in the
sample gases. A 36° Y−X cut quartz substrate double-ended
resonant Rayleigh wave gas sensor with a center frequency of
500 MHz (manufactured by Hua Ying Electronics, Wukang,
China) was used to detect the separated compounds with a
sensitivity of −69,766 Hz/ng to mass deposition. Also, the
AIO system uses Bluetooth to connect with the host computer.
The AIO system has two working states controlled by a six-

way valve, including the sampling mode and the analyzing
mode. The six-way valve was the key component of the AIO
system. Under the normal conditions, the six-way valve was in
the sampling mode, as indicated by the solid red line in Figure
6A. Under the control of the vacuum pump, the gas sample
flowed from the gas inlet to an adsorbent tube, before the
sample gets adsorbed into this tube. After adsorption, the six-
way valve was switched to the analyzing mode, as indicated by
the dotted blue line in Figure 6A. By instantaneously heating
the adsorption tube, the analyte in the adsorbent was desorbed
before flowing into the DB-1 capillary column for future
separation. Additionally, the separated substances were tested
for quality on the SAW.

5.1.2. Design of the Surface Acoustic Wave Sensor. A 36°
Y−X cut quartz substrate double-ended resonant Rayleigh
wave gas sensor with a center frequency of 500 MHz was used
to detect the mass loading of the compounds separated by GC.
The specific parameters of the SAW sensor are shown in Table
5. According to the mass deposition effect formula of the SAW
device, the sensitivity of the sensor mass deposition can be
calculated as −69,766 Hz/ng. The SAW sensor vibration
spectrum measured by the spectrum analyzer is shown in
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Figure S2. Also, the image of the SAW sensor is shown in
Figure S1.
5.1.3. Operation Method of the AIO System. The initial

temperatures of the injection port, six-way valve, capillary
column, and sensor were, respectively, set to 80, 130, 30, and
35 °C. The flow rate of carrier helium gas was fixed at 1 mL/
min. After preheating, the gas path was set to the sample mode.
The sampling time was 20 s, and the analysis time was 30 s.
Then, about 20 mL of sample gas was adsorbed into the Tenax
TA adsorption tube. For gas analysis, the Tenax TA adsorption
tube was heated. Next, the valve was used to change the gas
path to the analysis mode. The initial temperature of the
capillary column was maintained at 30 °C for 1 s and then
increased to 120 °C at a rate of 6 °C/s. Finally, the SAW
sensor was heated to 105 °C for cleaning. All the procedures,
including sampling, separation, detection, and cooling, took 90
s in one analysis cycle. Moreover, the ambient temperature in
the laboratory was controlled at about 22 °C.
5.2. Calibrating AIO by Standard Samples. 5.2.1. Re-

agents and Materials. Octanal was (C8H16O, 98.0%)
purchased from TOKYO Chemical Industry. Perillic aldehyde
(C10H14O, 95.0%) was purchased from Shanghai Yuanye
Biological Technology Co., Ltd. Hexyl acetate (C8H16O,
98.0%), nonane (C9H20, 98.0%), decane (C10H22, 99.0%),
undecane (C11H24, 99.5%), dodecane (C12H26, 98.0%), and
tetradecane (C14H30, 98.0%) were obtained from Aladdin
Industrial Corporation.
Tridecane (C13H28, 98.0%) and pentadecane (C15H32,

98.0%) were purchased from Macklin. All solutions were
stored at 4 °C and protected from light.
5.2.2. Preparation of Standard Samples. The first part is to

test the AIO system’s ability to distinguish the mixed
substances. Standard solutions of nonane, decane, undecane,
dodecane, tridecane, tetradecane, and pentadecane were
prepared into a mixed solution, and all solutions were diluted
to parts per million of the original concentration. The second
part is the calibration of the linear repeatability of the AIO
system. Standard samples of four biomarkers (octanal, hexyl
acetate, perillic aldehyde, and dodecane) were applied to
calibrate AIO. Four biomarkers’ reagents were used to prepare
standard solutions, and the corresponding solvents were used
to configure nine different types: 0.025, 0.25, 0.5, 1.0, 1.5, 2.0,
2.5, 25, and 50 mM concentrations of four marker solutions.
Among them, the solvent of octanal, perillic aldehyde, and
dodecane reagents was ethanol, and the solvent of the hexyl
acetate reagent was methanol. Then, AIO was calibrated by
injecting samples (0.02 μL) with a microinjector (1 μL,
manufactured by Shanghai High Pigeon Industry and Trade

Co. Ltd.), each concentration was measured 3 times, and linear
regression analysis was performed (Section 5.4).

5.3. Clinical Experiment Design. The experiments were
conducted in the Fourth Affiliated Hospital of Zhejiang
University School of Medicine, Hangzhou, China. This study
was approved by the ethics committee of the Fourth Affiliated
Hospital of Zhejiang University School of Medicine (approval
no. K2020052, 15 June 2020). A total of 87 participants were
recruited in our experiment, including 43 PD patients and 44
HC. The patients in the study were diagnosed as PD and were
staged by the neurologist according to the H−Y clinical staging
scale in the hospital. The early stage includes stages I and II,
and the middle and late stages are stages III−V. Basic clinical
data (patients’ ID, age, weight, drug exposure history, years of
education, high-protein diet, smoking and drinking history,
cerebrovascular history, disease duration, and skin condition)
were collected.
Each participant had signed informed consent. To ensure

the accuracy of the results, subjects are required to comply
with the following requirements: (1) no bathing, body lotion,
or other cosmetics are allowed 12 h before the sample
collection; (2) subjects are required to refrain from exercise for
12 h before sample collection; (3) no perfume shall be sprayed
12 h before sample collection; and (4) fasting 4 h before
collection.
Initially, considering that the subjects are mostly elderly,

paper questionnaires were used to record relevant information
of the participants, and the information was organized and
stored on the computer. Second, each participant was swabbed
using a medical gauze (7.5 × 7.5 cm) on the upper back to
collect sebum samples. The gauze with the sebum sample was
sealed in background-inert plastic bags and transported from
the hospital to the laboratory using the ice bag. The samples
were stored in a −25 °C refrigerator. Next, the above method
(Section 5.1) was used to set up the AIO system for the
chromatographic analysis of the experiment. At last, the data
obtained by the analysis were displayed on the host computer
via Bluetooth. The process of the clinical experiments is shown
in Figure 6B.

5.4. Data Analysis. VOC data and data from each
volunteer were recorded in a dataset. Statistical analysis was
done by Statistical Package for the Social Sciences (PASW
Statistics 18, IBM Corp., Armonk, NY, USA), GraphPad
(Prism 5, GraphPad Software, Inc., La Jolla, CA, USA), and
Python (Python 3.7, the MathWorks, Inc., Natick, MA, USA)
for Windows.
The linear regression was used to fit the average sensor

response to the concentrations of the three calibration reagent
solutions (octanal, hexyl acetate, and perillic aldehyde). The
goodness of fit was evaluated using the correlation R. The
Mann−Whitney U test and Kolmogorov−Smirnov Z test were
used to select the significant features. The differences with a p-
value less than 0.05 were considered to be statistically
significant. Python was used to create the five different
classifiers (SVM, RF, KNN, AB, and NB). Parameters of the
classifiers were selected based on GridsearchCV, and they were
as follows. The linear kernel was utilized for SVM. The number
of trees was 25 for RF. The k parameter was 10 for KNN for all
experiments. The area under the ROC curve (AUC) was a
performance indicator for binary classification problems based
on classification.

Table 5. Parameters of the SAW Sensor

index parameter

substrate materials 36° Y−X quartz
electrode material aluminum
electrode thickness 200 nm
central frequency 500 MHz
input/output transducers 50.5 pairs
reflectors 350 in each side
transducer aperture 800 μm
input/output transducer cycle (λ) 6.3 μm
reflector cycle λ

reflector and transducer spacing λ

input/output transducer spacing 1.25λ
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