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Abstract

Mass-spectrometry-based proteomic analysis is a powerful approach for discovering new disease 

biomarkers. However, certain critical steps of study design such as cohort selection, evaluation of 

statistical power, sample blinding and randomization, and sample/data quality control are often 

neglected or underappreciated during experimental design and execution. This tutorial discusses 

important steps for designing and implementing a liquid-chromatography–mass-spectrometry-

based biomarker discovery study. We describe the rationale, considerations and possible failures 

in each step of such studies, including experimental design, sample collection and processing, 

and data collection. We also provide guidance for major steps of data processing and final 

statistical analysis for meaningful biological interpretations along with highlights of several 

successful biomarker studies. The provided guidelines from study design to implementation to 
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data interpretation serve as a reference for improving rigor and reproducibility of biomarker 

development studies.

More than 20,000 diseases have been reported to affect humans1, of which only a small 

portion are supported by accurate, sensitive and specific diagnostic tests. Even for diseases 

with well-established diagnostic assays, such as diabetes, the discovery of new prognostic 

biomarkers can enable further studies on disease development and progression. For example, 

type 1 diabetes mellitus can be diagnosed by measuring blood glucose concentration, 

but the disease is known to be preceded by immunological changes sometimes years 

before clinical manifestation. Biomarkers for detecting and discriminating early stages 

of the disease could contribute to an improved understanding of the associated etiology 

and pathogenicity, while informing new therapies and prevention targets2,3. Additionally, 

biomarkers are urgently needed to improve many current diagnostic assays, particularly in 

the context of personalized medicine, such as for inflammatory bowel disease4. There is 

also a demand for biomarkers that can predict the outcome of the patient or that can be 

used in clinical trials to follow the progression of patients to treatments5. In this context, 

proteomic analysis of biological samples, including tissues, blood plasma, exhaled breath 

condensate, saliva and urine, are promising approaches for discovering new biomarkers and 

advancing knowledge of disease pathology, prevention, diagnostics and therapeutics across a 

wide range of diseases.

Proteomic analysis of human biofluids and tissues can detect and quantify thousands 

of proteins, leading to the discovery of many potential biomarkers. However, improper 

experimental design, lack of standardized procedures and quality controls (QCs) (see 

Box 1 for key terminology) for sample collection and analyses, and failure to validate 

identified biomarkers have led to reproducibility challenges and identification of biomarkers 

that are not clinically relevant6–12. There are some excellent reviews highlighting the 

main issues faced during biomarker development8–10,12–14. Indeed, experimental rigor and 

reproducibility have been the theme of ample discussion in the scientific community. 

Funding and regulatory agencies and scientific journals have implemented guidelines to 

these aspects of research15–19. A systematic review of 7,631 tuberculosis biomarker citations 

revealed some common challenges that cause misinterpretation: (1) small number of 

samples (underpowered studies), (2) inappropriate control groups, and (3) overemphasizing 

P-values for candidate discovery without further validation efforts20. The authors also found 

that most of these studies failed to specify whether the study was performed in a blinded 

fashion20.

In this tutorial, we describe key points that should be considered for performing 

biomarker discovery experiments based on liquid-chromatography–mass-spectrometry 

analysis of human clinical samples. Experimental rationale, possible failing points and 

QC considerations are provided for sample selection criteria, sample preparation, data 

collection and data analysis. These recommendations are based on protocols developed 

by our group and by colleagues from NIH-funded consortia that we participate in, 

such as Clinical Proteomic Tumor Analysis Consortium (CPTAC), The Environmental 

Determinants of Diabetes in the Young (TEDDY), Molecular Transducers of Physical 
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Activity Consortium (MoTrPAC), Early Detection Research Network (EDRN), Cancer 

Moonshot and Undiagnosed Diseases Network (UDN). Overall, careful implementation of 

each of these steps should enhance the rigor and reproducibility of biomarker studies and the 

overall likelihood of discovering relevant, actionable biomarkers.

Phases of biomarker development

Biomarker development is typically described in the literature as being divided into 

three phases: discovery, verification and validation (Fig. 1)21,22. The validation phase is 

itself often divided into two stages: analytical validation and clinical validation, with 

the latter often described as ‘qualification’. Here we will focus only on the analytical 

aspects of biomarker validation. Fewer peptides and proteins are measured and more 

samples and subjects are studied as the study moves from discovery to verification to 

validation phases22,23]. This transition requires a different set of quality assessments to 

ensure the analytical validity of an assay. In general, analytical validity includes several 

standard parameters including precision, specificity, sensitivity, recovery and stability. 

Precision includes a measure of repeatability, which refers to within-day variability, and 

reproducibility, which refers to day-to-day variability24. Repeated measurements can be 

used to define an assay’s coefficient of variation under different conditions and at different 

concentrations. The robustness of a coefficient of variation must be interpreted within the 

context of what is a clinically significant change in the analyte. As part of the validation of 

reproducibility, it is also important to test whether an assay produces similar results when 

performed by different individuals and in different laboratories.

The discovery phase is focused on the identification of a large number of candidate 

biomarkers. This phase is primarily based on in-depth, untargeted proteomic analysis to 

identify and quantify as many proteins as possible21,25, leading to the identification of tens 

to hundreds of biomarker candidates that will then be assessed further in the verification 

and validation phases. However, due to the cost, logistics and relatively low throughput of 

discovery proteomics, this phase is often carried out using a limited number of samples. 

Because the discovery phase involves the putative (yet still highly confident) identification 

of peptide (and therefore protein) markers based on matching experimental tandem mass 

(MS/MS) spectra to computationally predicted MS/MS spectra, the initial identifications 

must be verified in the same or similar samples as used for the discovery phase.

The verification phase is focused on confirming that the abundances of target peptides are 

significantly different between disease and control groups compared through quantitative 

measurements. Stable-isotope-labeled, synthetic peptides are often spiked into the samples 

of interest to facilitate confident detection and quantification of targeted peptides using 

targeted mass spectrometry (MS)-based assays. The confident detection of the putative 

markers is determined by coelution and similarity of MS/MS fragment pattern compared 

with the synthetic peptide standards26. Subsequent steps of the fold change verification 

are usually carried out across clinical samples. Targeted MS provides much more 

accurate quantitative measurement of biomarker candidates with relatively high analytical 

throughput19,23,27. The number of samples analyzed in this phase depends on the complexity 

of the disease condition, prior research and the analytical assay platform. It should be 
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determined by power analysis, but often dozens to hundreds of samples are analyzed to 

confirm the differential abundances of the biomarker candidates.

The goal of the analytical validation phase is to confirm the utility of the biomarker assays 

by analyzing samples from an expanded or independent cohort of individuals that have the 

same disease as was investigated in the discovery and verification phases. This provides a 

measure of robustness of the biomarkers and of the assays used to measure them. Usually, 

only a few (three to ten) of the best biomarker candidates are tested in the analytical 

validation phase. There are, however, many conditions where panels containing multiple 

biomarkers have better diagnostic performance28,29. Therefore, it is important to consider 

how many candidates need to be evaluated. Similar to the verification phase, the number of 

samples should be determined by power analysis and depends on multiple factors, including 

the number of candidate biomarkers used. It can vary from tens to thousands of samples 

from patients in an appropriate clinical patient cohort. This phase is often performed by 

either immunological assays, such as ELISA, if available, or targeted MS assays in cases 

where specific antibodies are not available. If both the verification and analytical validation 

phases are done using targeted MS, these phases will have the same design and experimental 

considerations, so for the purposes of this tutorial we have combined the considerations of 

both of these phases below.

Subject selection

Critical to making appropriate inference in disease biomarker prediction is selection of 

samples representative of both disease cases as well as the population from which the 

cases are drawn30. The limited number of samples that can be analyzed in the different 

phases reinforces the importance of properly selecting the study cohort. Sample matching 

improves the comparative analysis and reduces the number of samples required to obtain 

proper statistical power. However, this needs to be done carefully as it limits inference to 

a generalizable population, and the process of matching itself may preclude the ability to 

evaluate the direct effect of any of the matched characteristics because the sampling scheme 

is inherently biased31–33. Samples from subjects with disease should be appropriately paired 

with those from nondiseased individuals with similar characteristics for comparison to 

reduce confounding factors. Many diseases are differentially affected by sex, age, body 

mass index, race/ethnicity, comorbidities and preexisting conditions. Therefore, such factors 

should be considered during experimental design, and testing and control groups should be 

matched as closely as possible during cohort recruitment. Additional samples or comparison 

groups might be needed to account for multiple factors or outcomes of the disease due 

to these covariates. Conventional observational studies may use a number of different 

approaches for study design, such as secondary assay or analysis of clinical trials, cohort, 

nested case–cohort, case–control, or others (see Box 2 for details on different types of study 

design), with different degrees of bias34–36 in case and control sample selection inherent 

to each design. Modern statistical methods, such as inverse probability weighting37,38 or 

Bayesian methods39, should be used to adjust estimates of effect or estimate the degree 

to which selection bias may influence the findings. Further consideration for making 

appropriate inference is the problem of confounding factors40, which should be typically 
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addressed either by randomization in experimental studies or adjustment in observational 

ones, although the problem of residual confounding41 can persist in both circumstances.

Once the cohort is selected, the study should be approved by an institutional review board or 

equivalent before the project starts. An institutional review board reviews protocols, consent 

forms and captured information to assure that the rights and welfare of the human subjects 

(sample donors) are protected.

Power analysis

The number of study subjects and associated samples is dependent on the selected study 

design, which is itself dependent on the scientific question and intended inference42. In 

this context, a power analysis provides an estimate of the number of study subjects and 

associated samples required to obtain statistical significance for a certain effect size. For 

binary outcomes, the effect size is typically a fold change, but for more complicated designs 

with multiple treatment groups or longitudinal samples, the effect size is set by the goals of 

the experiment to be low or high, dependent on the level of effect that needs to be detected. 

This is akin to a larger sample size being required to detect a twofold change versus a 

threefold change.

For biomarker studies, one must consider both the epidemiological and analytical factors 

that influence the required number of study subjects. The incidence of disease in the general 

population, likely attrition rate and biological variability in protein expression levels will 

impact the number of individuals needing to be recruited. The inherent analytical variability 

in the proteomics platform to be used for biomarker discovery will also contribute to the 

final cohort size.

Case–control or nested case–cohort studies are approaches that can be taken to reduce the 

population size required for analysis; this is especially useful in situations where you would 

want to collect a large amount of data for each individual—something that would be very 

difficult to achieve in a classical cohort study. These designs trade cost for improvements in 

statistical power43,44, with a design focused on the outcome of interest.

Cohort studies track the incidence of diseases or conditions across a temporal sequence, 

which can take longer but provide better capacity for strong causal inference. This type of 

study often requires larger sample sizes for the same statistical power45, and focuses on the 

exposures of interest.

It is sometimes convenient to perform secondary analysis of trials (i.e., querying for 

different disease outcomes or factors that were not the main question of the study) or 

intervention studies, but some caution should be exercised. Often studies are sufficiently 

large and well powered for the primary analysis46, but the secondary analyses may require 

statistical adjustment to correct for confounding factors, making the study underpowered. 

It is therefore important to have a statistical analysis plan for both the primary and the 

secondary analysis in place before performing the power analysis.
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Power analysis is more complicated in studies where the analysis involves simultaneously 

measuring multiple analytes, because standard approaches to compute power are based on 

a single metric of estimated variance, irrespective of the study design. Even in the same 

set of MS runs, different peptides have different variability and require different numbers 

of samples for proper statistical power. To manage this issue, the standard approach is to 

estimate the variances of all proteins from a proteomics study where data were collected 

within a similar population and sample matrix47–49, then select a threshold based on the 

minimum percentage of proteins to be quantified. In this context, the threshold is the 

statistical power expected for the majority of the proteins. This threshold is rarely 100% 

because variances tend to be highly skewed across an omics-based dataset, especially for 

low-intensity peptides/proteins. A few proteins with extreme variability in either expression 

or measurability can drive up the sample size dramatically. For example, Levin et al. showed 

that for a study to be properly powered at a minimum of 80% (or 0.8), with a detectable 

fold change of 1.5 comparing two groups for all proteins, the minimum sample size is 60 

per group47. Reducing the power expectation to 75% of the proteins results in a minimum 

sample size of 35, and reducing the power requirement even further to 50% decreases the 

minimum number of samples per group to 16. This will come with the tradeoff that fewer 

proteins will be adequately powered for the comparison of interest. Therefore, it is important 

to evaluate during the experimental design the tradeoff of the number of proteins that will be 

properly powered for a given sample size and detectable fold change based on the needs of 

the study.

As an example of power calculation for a large-scale MS analysis, the Metabolomics Core 

for the NIH Common Fund Undiagnosed Diseases Network (UDN) Phase I evaluated the 

number of samples from healthy individuals required for building a baseline of metabolite 

and lipid reference values to be compared against similar profiles from individuals with 

disease. In the UDN, each patient had a unique and undiagnosed illness; therefore, it was 

important to have a well-defined baseline of normal metabolite and lipid profiles to compare 

against an N of 1. Using data from previous analyses of similar samples, the minimum 

numbers of reference samples were selected on the basis of power calculations considering 

a Student’s t-test with a type I error of 0.05 and a twofold detectable change for 80% 

of the tested molecules. It was found that 102 samples would be necessary for urinary 

metabolomics, and 136 samples for plasma lipidomics50. In another example, a proteomics 

study on the mechanism of pancreatic β-cell killing by proinflammatory cytokines found 

that only four samples would be necessary for a twofold detectable change using Student’s 

t-test with a type I error of 0.05 for 80% of the proteins51. These examples show that the 

number of required samples can be drastically different. This difference depends on the 

biological and technical variability and the study design.

Sample handling, collection, storage and tracking

Both discovery and validation efforts can be impacted by a number of preanalytic variables 

that should be carefully considered when designing sample collection protocols and when 

deciding the characteristics of clinical cohorts for sample collections. Analysis may be 

influenced by physiologic factors, including age, sex, body mass index, fasting status, 

timing of collection (i.e., circadian or diurnal influences), phase of menstrual cycle, exercise 
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status, season of collection, medical comorbidities and interfering medications52–57. Due 

to this biological variability, it is important to keep the experimental/analytical variance to 

a minimum to obtain meaningful data. The impact of these variables can be minimized 

by strict matching criteria for prospective collections and through development and 

implementation of standard operating procedures (SOPs) by those responsible for sample 

collection. SOPs should include detailed criteria for sample collection and processing, and 

whenever possible, manufacturers and lots of reagents should remain consistent for the 

duration of a study58. Results may be influenced by the type of anticoagulant used in 

blood collection tubes or by the type of collection tube used for other biofluids59. Certain 

labile analytes may require specific additives such as protease inhibitors or antioxidants for 

stabilization60. To avoid sample degradation, the time between sample collection, sample 

processing and number of freeze–thaw cycles should be minimized and also kept consistent 

among all samples to avoid introduction of artifacts in the data. Of note regarding sample 

preservation, extensive efforts have been dedicated to evaluating the suitability of formalin-

fixed paraffin-embedded (FFPE) samples for proteomics analysis61,62. These studies have 

demonstrated that, when combined with specialized sample preparation protocols discussed 

further below, FFPE specimens are well suited to biomarker discovery studies63,64.

When preparing the sample collection, questionnaires should be formulated to capture 

all the relevant metadata, including sex, age, height, weight, race/ethnicity, comorbidities 

and preexisting conditions. Depending on the disease or condition under study, it is also 

important to capture information about any prescribed medicines or diets, as they can impact 

the composition of the collected sample. For instance, even a meal has a strong effect on 

the composition of the plasma proteome65. Once the protocol is approved and the SOP is 

established, the samples should be collected in a standardized way, taking care to prevent 

degradation (low temperature or addition of proper preservatives). Sample accessioning (i.e., 

assigning accession numbers) should be performed with care to avoid mislabeling, and the 

use of barcoding and printing labels rather than hand-writing can be employed to minimize 

the chances of sample mix-up66.

Once the samples are collected, storing them in a single batch provides an opportunity to 

control for variability in how the researcher handles the samples. Different peptides/proteins 

might have different stability based on their physical/chemical properties67. Therefore, 

freeze–thaw cycles should be minimized, and long-term storage should be done at −80 

°C. Stability of the samples can be tested by spiking internal standards and monitoring their 

abundances across different freeze–thaw cycles and storage time. Such experiments can also 

provide information on analyte recovery and assay specificity and sensitivity68. Caution 

should be used when analyzing previously collected samples, especially where details 

of collection and storage are not available and when combining samples from multiple 

sources58. These factors can introduce variability in the data.

The importance of sample blinding

Technical bias in assay-based studies can present an additional source of error69. Small 

differences in sample handling and preparation throughout the experiment can cause major 

differences in the results and compromise the integrity of the study. Therefore, when it 
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is possible, samples should be randomized and deidentified by the statistician, with no 

subject information given to researchers who will process and analyze the samples, to 

avoid inadvertent differences in sample handling based on some subject feature, such as 

case status. Additionally, attention should be paid to assessing and minimizing, if possible, 

batch effects when the number of samples exceeds the assay batch size. One approach is to 

randomize cases and controls across chip or plate locations, to avoid batch clustering based 

on assay chip or plate, date, or reagent. There are some situations where blinding is not 

feasible, e.g., when samples have identifiable characteristics (different color, sizes, texture, 

etc.). Other cases where it is difficult to perform completely blind studies are studies that 

involve either food or surgery, where both the subjects and researchers know the control 

and treatment groups70. When blinding is impractical, analyzing samples from additional 

independent cohorts helps to confirm that biomarker candidate identification was not due to 

human bias71,72.

Considerations for discovery-phase experiments

The main goal of the discovery phase is to analyze as many biomarker candidates as 

possible. To achieve this goal, an in-depth proteomics analysis is carried out by liquid 

chromatography (LC)-MS/MS with a limited number of samples, with a focus on the depth 

of proteome coverage. Depending on the sample complexity, abundant protein depletion 

and peptide prefractionation is performed to increase the chances of detecting proteins 

present in low abundance. In addition, peptide labeling with isobaric tags can be used for 

multiplexing several samples in a single experiment, which decreases variability between 

measurements. Checkpoints along with QCs and statistical analysis improve the chance 

of identifying meaningful biomarker candidates. The overall workflow is shown in Fig. 2, 

while checkpoints, expected results, potential pitfalls and troubleshooting are listed in Table 

1.

Abundant protein depletion

Blood plasma and serum are challenging specimens because of their complex composition 

and the presence of highly abundant proteins. The most abundant plasma protein, serum 

albumin, is present at 35–50 mg/mL in normal conditions, whereas cytokines are only 

present in low pg/mL range, differing by a factor of 1010. In addition, the 20 most 

abundant proteins account for 97% of the total plasma protein mass73. These highly 

abundant proteins represent a major challenge for proteomic analysis since the MS data 

collection is biased towards high-abundance peptides74. Two main approaches have been 

taken: immunodepletion and fractionation by chromatography.

The removal of highly abundant proteins through immunodepletion allows for better 

detection of moderate- and low-abundance proteins75,76. Unfortunately, immunodepletion 

can also codeplete other associated proteins77. Other methods to simplify sample 

complexity, such as denaturing size exclusion chromatography or extensive high-pH 

reversed-phase fractionation, have been successfully applied78, with the trade-off of an 

increased number of LC-MS/MS runs. Therefore, the method of decreasing sample 

complexity needs to be considered carefully.
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Immunodepletion has to be performed before protein digestion. If this approach is chosen, 

we recommend that you run a QC sample before each batch of samples to be depleted. 

Consistently running QCs of well-characterized samples, such as NIST 1950 plasma, allows 

the development of baselines for determining fluctuations in instrument and depletion 

column performance. This can be monitored with UV detection and overlaying the elution 

profiles. For instance, an increase in the unbound protein peak might represent degradation 

of the column or improper buffer pH. Samples should be kept at low temperatures (i.e., on 

ice or at 4 °C) to avoid proteolytic degradation.

Removal of abundant proteins or peptides by chromatographic fractionation is discussed 

further below as part of the information relating to the chromatographic separations.

Protein digestion

Sample preparation for proteomic analysis typically includes the initial homogenization 

of solid samples, protein solubilization, and lysis, followed by enzymatic digestion and 

solid phase extraction to remove contaminants (Table 2). We have previously found that 

protein extraction is a major source of experimental variability79. Therefore, it needs to be 

performed in the most consistent way possible. Lysis buffers usually consist of a buffering 

agent (e.g., ammonium bicarbonate, Tris-HCl or triethylammonium bicarbonate) and 

denaturing agents (e.g., urea, guanidine hydrochloride, thiourea). They are formulated and 

optimized to release and improve solubility of proteins by disrupting hydrogen bonds and 

hydrophobic interactions between and within proteins. When working with FFPE specimens, 

harsher extraction conditions are required to undo the extensive protein crosslinking that 

occurs during fixation80–82. It may also be necessary to start with larger specimens when 

working with FFPE tissue, to ensure sufficient protein amounts for downstream processing. 

Reduction of protein disulfide bonds (with dithiothreitol, tris(2-carbox-yethyl)phosphine) 

and alkylation of the free SH-groups (with iodoacetamide, iodoacetic acid, acrylamide 

or chlor-oacetamide) improves sample digestion and MS detection of cysteine-containing 

peptides83. Lysis buffer may contain protease and other inhibitors (e.g., phosphatase 

inhibitors for phosphopeptide analysis) to minimize the biodegradation of extracted proteins. 

Protease inhibitors should be carefully chosen to not interfere with the protein digestion 

step.

Performing protein quantification on the cell lysate is an important step to ensure the 

extraction efficiency, calculation of enzyme needed for sample digestion and allowing 

control checks of the following steps. This procedure also allows normalization of the 

digest parameters through the study, and it is essential for the final quality of the digest 

and the protocol reproducibility. For protein digestion, trypsin has been considered as the 

gold standard in proteomics sample preparation, but other enzymes such as endoproteinases 

Glu-C and Lys-C can also provide additional information. Walmsley et al. have shown that 

trypsin from different sources can add substantial variability to the samples84. Therefore, it 

is important to use enzyme from the same lot throughout the experiment. The experimental 

conditions for trypsin digestion can be adjusted for a specific application. Typically, trypsin 

digestion is performed at neutral pH at 37 °C, and it may take up to 18 h. The digestion 

is stopped by reducing the pH of the sample with trifluoroacetic or formic acid. The 
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acidification of the samples also allows for better performance on the sample desalting 

step and better recovery of the peptides85. Sample desalting using solid-phase extraction 

is vital since it removes salts and buffers that are not compatible with the following steps. 

At this point, quantification of the peptides should be performed to assess the recovery 

of the samples and ensure that variability between samples are in a reasonable range. As 

an additional QC step, a small aliquot of digested peptides can be taken at this point 

and analyzed by 1D LC-MS/MS analysis to interrogate digestion quality and identify 

problematic samples prior to subsequent steps.

Peptide labeling with isobaric tags and sample multiplexing

There are multiple approaches for quantitative global proteomics analysis, all with 

advantages and disadvantages14. Peptide labeling with isobaric tags (e.g., tandem mass tag 

(TMT) reagents) has become a popular method in large-scale discovery studies because 

it allows in-depth proteome coverage with sample multiplexing to achieve relatively good 

throughput and reduced technical variability86,87, enabling the discovery of low-abundance 

biomarker candidates. The disadvantage of isobaric labeling is that these approaches often 

lead to underestimation of fold changes between samples due to interfering signals coming 

from reagent impurities, background noise and cofragmented peptides87. On the other hand, 

label-free analysis by data-dependent acquisition or data-independent acquisition provide 

more accurate fold changes. One disadvantage of the label-free approach is that only one 

sample can be analyzed at a time, compared with up to 16 in the TMT experiments. 

Compared with TMT-labeled experiments, data-dependent acquisition and data-independent 

acquisition analyses often lead to low coverage of the proteome in challenging samples, 

such as plasma and serum88,89, since TMT-labeled samples are more amenable to 

fractionation prior to LC-MS/MS. Prefractionation of data-dependent acquisition and data-

independent acquisition samples adds the challenge of increasing the analysis time and may 

introduce more variability to the samples. Despite all these approaches being powerful and 

successfully used for global proteomics analysis90–94, in this section, we will mainly cover 

isobaric tag labeling because of its popularity and the complexity of overall workflow.

To facilitate the comparison between multiple sets of TMT experiments, a ‘universal’ 

reference sample can be included in one of the multiplexing channels for each TMT set. 

This reference sample can be just an aliquot mixture of all the samples. It can be used 

to normalize signal intensities across different TMT sets and also serves as a standard 

for QC analysis. There are two important steps in peptide labeling and multiplexing: (1) 

ensure the right pH of the samples since it affects the efficiency of peptide derivatization, 

and (2) quantify peptides before labeling and multiplexing. We have found that remaining 

acids from solid phase extractions can lower the pH of the samples, drastically reducing 

the efficiency of TMT labeling. We have also observed that post hoc data normalization 

is effective for only small variations of sample loading. A postlabeling QC is also 

recommended. To achieve this, a small aliquot is taken from each sample prior to quenching 

the labeling reaction, mixed, and analyzed by LC-MS/MS to determine the efficiency of 

labeling for each channel. Because the labeling reaction is left unquenched, samples with 

low labeling efficiency can often be effectively rescued by adding additional label.
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Peptide-level fractionation

Digestion of tissue lysates, whole cells or body fluids can generate >500,000 peptides 

per sample95. In shotgun proteomics, the depth of the analysis is partially limited by 

the tandem mass spectra scan rates. Therefore, reducing the complexity of the sample 

by prefractionating the peptides improves the proteomic coverage95. Peptide fractionation 

prior to the LC-MS/MS analysis also helps with the problem of ratio compression. Ratio 

compression refers to a phenomenon where the measured fold changes are smaller than 

the real abundance differences present in the samples, and is a known issue in experiments 

where peptides are labeled with isobaric tags. This problem is caused by cofragmentation 

of multiple coeluting peptides (and anything else that would create a high chemical 

background) such that the peak contains reporter ion fragments from both the selected 

peptide and these interfering factors87. Prefractionation of peptides results in a lower 

chemical background and better separation of peptides from each other, reducing the ratio 

compression issue96.

There are several types of chromatography that can be used for peptide prefractionation, 

including strong-cation exchange, hydrophilic interaction and reverse phase (reviewed in 

reference97). High-pH reverse-phase separation has become increasingly popular as the first 

dimension for tryptic peptide fractionation in a biomarker discovery workflow. For large 

projects, assay variables should be as consistent as possible, i.e., buffers, columns, gradients 

and temperatures of separation, to have the most reproducible measurements. Indeed, even 

small fluctuations in pH can lead to major shifts in retention times98. Monitoring elution 

profiles with UV detection also helps to ensure that the separation is reproducible. For 

preservation of sample quality, peptides are stored dry in vials to be rehydrated prior to 

LC-MS/MS analysis.

Data collection

Many parameters must be monitored for the LC-MS/MS data collection to be effective. 

Calibrations should also be performed following mass spectrometer manufacturer 

recommendations to ensure the accuracy of the measurements. The performance of the 

instrument should be assessed by regularly running well-characterized standard samples. 

For a robust assessment of the instrument performance, the standard samples should have 

similar complexity and properties to the samples to be analyzed. The mass spectrometers 

should be serviced when the analysis of standard samples indicates suboptimal performance, 

which is determined by comparing with the historical performance of the instrument (e.g., 

a QQ or Bland–Altman plot). For instance, in our laboratory, we use the tryptic digest 

of the bacterium Shewanella oneidensis as the standard sample. However, each laboratory 

can develop their own QC sample based on material availability. There are several QC 

standards from bacterial and mammalian cells, as well as human biofluids, commercially 

available. The analysis of this standard sample on a high-resolution mass spectrometer 

such as Q-Exactive (Thermo Fisher Scientific) with a 100 min chromatography gradient 

usually leads to the identification of ~12,000 peptides. We clean the instrument once these 

numbers drop below 11,000 identified peptides, which restores the number of identifications 

(Fig. 3). Peak width and other metrics can also give indication of specific problems 
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with the LC or the mass spectrometer99. Therefore, it is important to set baselines for 

multiple parameters to assess the overall performance of the instrument. Samples should 

be blocked and randomized when analyzed to avoid bias due to instrument performance 

decay100,101. Our data and those from other groups have shown that even normal decay 

in instrument performance can introduce confounding factors to the data101,102. Standards 

should run before and after a block of samples. The block size is determined considering 

mass spectrometer performance drift over time and separation length. This allows breaks 

between blocks to clean, calibrate and perform preventative maintenance. Randomization 

should be done within blocks. Complete randomization can lead to imbalances (i.e., more 

control samples run first and more of the test samples run after, or vice versa), which can 

reintroduce some confounding factors101. Without blocking, data collection would need to 

be restarted from the beginning to avoid bias due to the instrument performance differences 

before and after servicing.

Data QC

The quality of the sample and data is crucial for obtaining meaningful results. Therefore, in 

our protocol, we implement QC measurements for each major procedure step. Quantification 

of proteins and peptides is a good way to assess whether a sample is being lost during 

depletion, digestion and labeling steps. During the crucial period of data collection, it is 

desirable to assess the quality of data acquired in real time. Relatively few tools have 

been developed for real-time monitoring of LC-MS data quality. We recently introduced 

the Quality Control Analysis in Real Time (QC-ART) software, a tool for evaluating data 

as they are acquired to dynamically flag potential issues with instrument performance or 

sample quality102. QC-ART identifies local (run-to-run variations) and global (across large 

sets of data) deviations in data quality due to either biological or technical sources of 

variability. For instance, QC-ART can detect trends in signal intensity decline or reduction in 

the number of identified peptides, which can result from instrument performance decay102. 

Chromatographic shifts, especially in the first and last quartile of the elution time, may 

represent problems in column integrity, solvent composition or tubing dead volumes. The 

QC-ART procedure is similar to that of Matzke et al.103 in the context of the statistical 

outlier algorithm employed but adds a dynamic modeling component to analyze the data in a 

streaming LC-MS environment.

In addition to real-time monitoring tools, several QC methods exist for checking data 

postcollection to remove low-quality data that would degrade downstream statistics 

(reviewed in reference104). Data QC allows the detection of important differences in the 

samples that might not result from drifts in instrument performance or problem in sample 

preparation. For instance, QC-ART was able to detect minor differences in chromatography 

profiles between samples, with reduction of some peak intensities but appearance or increase 

of others (see highlighted region of Fig. 4a). A deeper investigation led to the identification 

of oxidation in amino acid residues (Fig. 4b), such as cysteine, tryptophan and tyrosine (Fig. 

4c,d), which, despite being previously described, were underappreciated during analysis 

of plasma samples. By recognizing and specifically searching for these oxidations, the 

proteome coverage was significantly improved (P < 0.05) (Fig. 4e,f)102. Therefore, QC not 
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only identifies technical issues, but can also lead to the identification of characteristics of the 

samples that are different across the cohort, such as posttranslational modifications.

Data analysis

Currently, there are excellent tools for peptide identification, such as MS-GF+, MSFragger, 

Andromeda and TagGraph105–108. Although most of these tools work in an almost 

completely automated fashion, an important aspect of the peptide identification is to 

control the number of false-positive identifications. The most common approach is to 

use a target-decoy database for sequence searching, which allows calculation of the 

false-discovery rate (FDR)109. Most commonly, FDRs are kept at 1% at the protein and 

peptide levels to maximize the balance between rigor in peptide identification and yield 

of biological information. Less-stringent FDRs can introduce a substantial number of 

false-positive identifications, while more stringent FDR criteria may exclude biologically 

relevant peptides. The balance of these choices will depend on the scientific question, and 

whether it is preferable in the study context to identify more false positives or more false 

negatives. Manual inspection of the spectra can also be performed, but it is only practical 

for small numbers of peptides since it is labor intensive and requires well-trained personnel. 

For instance, in our laboratory, we only manually inspect spectra from posttranslationally 

modified peptides that we use to study signaling mechanisms. True-positive peptides 

usually have sequentially matching tandem mass fragments110. In addition, the tandem mass 

analysis of some posttranslational modifications generates diagnostic fragments that can be 

used to further confirm their presence. For subsequent targeted proteomics experiments, 

peptides will also be validated in the verification/validation phases using their heavy labeled 

internal standard versions.

Once a set of peptides is identified, their intensity information is extracted for 

the quantitative analysis. In the first quantification step, normalization is focused on 

accounting for the bias introduced due to technical and biological variation. Common 

normalization strategies include total abundance normalization to the average or median, 

linear-regression-based approaches, quantile normalization and variance stabilization 

normalization (Vsn)111–114 (Table 3).

Despite these considerations, there is no consensus in the community on a single best 

strategy to normalization, and the optimal approach can vary based on sample type, study 

scale and the complexity of the sample matrix (e.g., cell lines, tissue, plasma). For example, 

global-based normalization makes two assumptions that might not hold115: (i) that the 

amount of peptide detected is proportional to the amount of protein present and (ii) that the 

total concentration of protein within all samples in an experiment is constant.

If the biological effect of a condition is to increase (or decrease) the total amount of protein 

produced in the sample, or generate different types of proteins resulting in a change in 

the relationship between total proteins and peptides quantified, then global normalization 

strategies would introduce bias. Examples of this are conditions where the abundance of 

inflammatory proteins is at a level where lower-abundance proteins are no longer detectable 

in the analysis.
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Webb-Robertson et al.113, proposed a strategy called Statistical Procedure for the 

Analyses of peptide abundance Normalization Strategies (SPANS), which performs multiple 

normalizations and uses metrics of variability and bias to make recommendations. More 

recently, Valikangas et al.114 noted that the number of methods available in SPANS is 

limited and performed a comprehensive review of multiple normalization approaches. 

They found that Vsn was the most effective for reducing variation between technical 

replicates and performed well for evaluation metrics associated on differential expression 

statistics. The goal of Vsn normalization is to bring the samples to the same scale by 

first performing a transformation to remove variance caused by systematic experimental 

factors and then, second, apply a generalized log2 transformation. Since Vsn is focused 

on addressing the relationship between the variance and mean intensity for the example 

data used by Valikangas et al., it also underestimates the log2 fold changes of spiked in 

proteins. Supervised approaches to incorporate more accurate estimates of variance also 

show great promise in managing the differences in measured protein across samples116,117. 

These approaches use machine learning algorithms, mostly random forest and support vector 

machines, to identify and quantify batch effects or other systematic experimental factors, 

from which they adjust for these effects. The primary issue with this approach currently 

is that the accuracy of these approaches for smaller datasets has not been well quantified. 

In general, most guidance regarding normalization of proteomics data suggests careful 

consideration of both data and scientific goals of the analysis in order to select the most 

appropriate method.

Statistical analysis is generally performed in a univariate manner, evaluating each protein 

independently using an appropriate test based on the experimental design. For discrete 

outcomes, standard approaches such as a standard t-test, ANOVA or the generalized linear 

mixed-effects model (GLMM) are the usual approaches in order of experimental complexity. 

For example, in a simple bench biology experiment of a cell line, a simple t-test may be 

adequate, but in a complex analysis with multiple levels of a factor or multiple experimental 

parameters, an ANOVA would be well suited. Further, in complex cohort studies where 

repeated measures of subjects may be taken or other covariates, such as age, need to be 

adjusted for, a GLMM is a flexible strategy to perform statistics. However, in some cases, 

nonparametric equivalents of these tests should be utilized if the underlying assumptions 

of the model are not met (e.g., a standard t-test yields meaningful information only if the 

distribution of the data is normal; if the distribution is not normal, then one could use a 

Wilcoxon rank sum test). Quantitative outcomes are most commonly evaluated using linear- 

and nonlinear-regression-based approaches.

Proteomic experiments generate a large number of peptides/proteins, and each are evaluated 

independently using one of the tests previously described (e.g., ANOVA, Wilcoxon rank sum 

test). This yields a large number of test statistics (P-values), for which the standard type 1 

error used to draw a significance threshold is no longer accurate and an approach must be 

taken to obtain a more accurate measure of the uncertainty or error level. This is commonly 

referred to as an FDR calculation. There are many approaches to perform this task, such 

as a Bonferroni correction, which simply defines a protein as significant if the P-value is 

less than 0.05/P, where P is the total number of proteins statistically analyzed118. This is 

one of the most conservative approaches to adjusting for this error. Alternatively, there have 
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been multiple methods developed to control the FDR, such as Benjamini and Hochberg, 

Strimmer, and q-values, the latter of which is probably the most widely used119,120. In 

general, these approaches perform a correction based on an estimate of the ratio of false 

positives to true positives at a defined test statistic (P-value), which is estimated from the 

data.

It should be noted that the utilization of FDR calculations is extremely challenging for 

specific experimental designs, such as ANOVA and GLMM when testing multiple factors 

or time-based factors. Thus, it is not unusual to evaluate the data generated in the discovery 

phase using multiple type 1 error thresholds, sorting, machine learning121,122 or network-

based123,124 inference to identify the best candidates for targeted analyses.

Considerations for experiments of the verification and validation phases

Verification and validation phases for selected biomarker candidates from discovery 

phase are mostly performed with targeted MS-based assays or targeted proteomics 

analysis26,125,126. Targeted proteomics is a complementary technique, where candidate 

biomarker peptides are measured alongside heavy-isotope-labeled synthetic counterparts. 

This not only improves the quantification process but also ensures that the correct peptide 

is being measured with high level of specificity. Selected-reaction monitoring (SRM, also 

known as multiple reaction monitoring) on a triple quadrupole mass spectrometer and 

parallel reaction monitoring on a high-resolution mass spectrometer (e.g., Q-Exactive) are 

commonly applied targeted MS techniques. In general, targeted MS assays provide high 

accuracy, selectivity and sensitivity, because they use two-stage mass filtering of both 

precursor and fragment ions with high resolution. Recent advances in MS have made 

it possible to perform large-scale candidate biomarker validation involving hundreds of 

peptides127–129.

Similar to the discovery phase, the validation phase has an extensive workflow from 

sample selection to assay development and data collection, to final data analysis (Fig. 5). 

Checkpoints, expected results, potential pitfalls and troubleshooting are listed in Table 1.

Biomarker candidate prioritization

Biomarker discovery studies can lead to the identification of hundreds to thousands of 

candidates. Unfortunately, logistics and cost often limit the number of biomarker candidates 

that can be studied in the following verification and validation experiments. There is 

no community consensus on how candidates should be prioritized, and several strategies 

have been described, including prioritization based on statistical significance, machine 

learning analysis, functional-enrichment analysis, correlation with published literature, and 

integration of multi-omics datasets. Frequently, the main criteria for prioritizing biomarker 

candidates are their statistical significance and fold change when comparing cases versus 

controls130.

Machine learning approaches are powerful methods to prioritize biomarker candidates based 

on their performance in predicting the disease outcome131. A suite of machine learning 

techniques, such as logistic regression, random forests and support vector machines have 
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been used to build predictive models of disease; however, the true power of this approach 

is in the identification of a multivariate biomarker panel. Various approaches, such as 

random forest feature importance metrics132 are common, as well as Bayesian integration 

and statistical sampling strategies that can be used to extract feature sets from disparate 

datasets121. While machine learning has been shown to be effective for selecting candidates, 

other more basic analyses, such as linear regression, can be as effective in many cases. For 

instance, Carnielli et al. have successfully verified biomarker candidates selected based on 

their association with the clinical characteristics of the patient, using linear regression94. 

Functional-enrichment analysis can also provide insights about the disease or condition 

and is applicable to lists of biomarkers identified either by univariate statistics or machine-

learning-based biomarker discovery. This type of analysis allows the user to determine 

pathways that are likely to be altered in disease. Often, proteins from the same pathway have 

similar regulation; depending on the purpose of the study, you could purposefully choose 

protein candidates that represent different pathways (diversity of effect) or study those that 

are involved in the same pathway (mechanistic insight). Information from the literature 

can be very helpful, since a better understanding of the disease process can allow for the 

selection of more meaningful biomarker candidates, such as key regions of pathways (e.g., 

regulatory members and bottlenecks). Finally, a powerful approach is the integration of data 

from multi-omics measurements, which can select biomarkers that have positive correlations 

between their levels of transcript and proteins, for example, or enzymes and metabolites133.

Targeted peptide selection

After candidate prioritization, multiple peptides per protein are selected based on their 

detectability and SRM suitability. Suitable peptides for SRM assays typically need to be 

6–25 amino acids in length, fully tryptic and without any missed cleavage sites (lysine 

and arginine before proline, KP/RP, are not considered missed cleavage)134. Peptides 

with different chemical properties (molecular weight, amino acid composition, length 

and hydrophobicity) should be included because peptides with similar characteristics 

will coelute. The duty cycle of the instrument limits the number of peptides that 

can be monitored simultaneously. Therefore, selecting targets across the length of the 

chromatographic separation, for example, with a retention time prediction tool135, allows 

maximization of the number of targeted peptides. Coelution can also cause signal 

interference between multiple peptides. Rost et al. developed a tool named SRMCollider 

that predicts interference between peptides and can be used to exclude problematic 

transitions136. Some amino acids have properties that are not ideal for developing assays. 

Methionine, asparagine and glutamine residues are prone to spontaneous modification 

into oxidized methionine, aspartate and glutamate, respectively134. Sequences containing 

these amino acids should be avoided. In addition, some sequences are hard to chemically 

synthesize137; analysis requires that you have a corresponding heavy-isotope-labeled 

standard, so one should choose a sequence that is easy to synthesize.

In deciding which standards to make, we recommend analysis of the alkylated version 

of cysteine-containing peptides (e.g., carbamidomethylation), because free cysteine 

residues can oxidize or dimerize into disulfide bonds. For the standard peptides, 

carbamidomethylated cysteine can be directly incorporated during synthesis.
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All the candidate peptides need to be searched against the human proteome to ensure their 

uniqueness. In general, at least three unique peptides per protein should be selected at this 

stage as some peptides are excluded during assay development because of interfering signals 

or poor detectability.

LC-SRM assay development

Once the biomarker peptides have been chosen, LC-SRM assays are developed in three main 

steps: transition selection, gradient optimization and best peptide selection.

Transition selection

The importance of the first step is to choose transitions that are both specific and sensitive. 

Initially, five or six transitions per precursor ions are selected for developing the targeted 

proteomics assays based on their intensity in the tandem-mass spectra138. Some peptides 

may have more than one precursor ion, depending on the distribution of charge states. Next, 

stable-isotope-labeled peptide standards are spiked into a nonhuman peptide matrix (e.g., 

bacterial lysate, bovine serum albumin or chicken plasma digests) in multiple concentrations 

and analyzed by LC-SRM. The different concentrations of spiked standard peptides help to 

differentiate the actual signal versus the background. The best precursors and transitions are 

determined based on the highest signal intensity and least interference. A final number of 

two to four transitions per peptide are usually included in the assay. In addition, the collision 

energy can be optimized for individual transitions to further improve the sensitivity. This 

feature is available in Skyline, a popular software used for LC-SRM analysis139.

Optimize the LC gradient

In experiments measuring hundreds of peptides, it is crucial to have a well-balanced 

gradient. Peptides should not be aggregating in a narrow window of retention time. Instead, 

they should be well distributed across the entire gradient length. This will make it possible 

to schedule more transitions without a decrease in dwell time and sensitivity. Selection of 

peptides with distinct characteristics, as mentioned above, helps to distribute the peptides 

across the length of the gradient. Once the gradient is optimized, the last assay development 

step is to select peptides with the best performance.

Choose the best peptides

The best performing peptides are the ones that have good endogenous detectability, little 

matrix interference, and good correlation between peptides representing the same protein. 

This can be accessed by spiking the stable-isotope-labeled peptide standards in a set of test 

samples and monitoring the performance of all the peptides in an LC-SRM study. In general, 

at least one to two peptides per protein are included in the final targeted proteomics assay.

Assay evaluation

The sensitivity of the assay can be accessed by the limit of quantification (LOQ) and limit 

of detection (LOD) for peptides. There are three approaches to obtain the LODs and LOQs: 

(1) reverse response curve of increasing concentrations of stable-isotope-labeled internal 
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standard peptides with endogenous peptides as reference, (2) forward calibration curve of 

increasing concentrations of unlabeled peptides in a matrix without the targeted proteins, 

and (3) a matrix-matched calibration curve approach by diluting sample matrix and a 

pooled reference matrix of diverged species at various ratios140. Additional characterization 

experiments can also be conducted, including the evaluation of repeatability, selectivity, 

stability and reproducible detection of endogenous analytes141.

Sample preparation

Biomarker validation studies have many similarities, with important considerations 

discussed above for discovery studies and some additional considerations to accommodate 

the increased throughput required to sufficiently expand the patient cohort. Our approach to 

increasing sample processing throughput has been to carry out the procedure in multiwell 

plates79. Targeted proteomics measurements require less sample input and fewer preparation 

steps, making it feasible to carry out preparation in commercially available 96-well plates.

Working in plate format requires some modifications to standard laboratory practices to 

maintain uniform application of SOPs across larger sample batches. First, when making 

reagent additions, the use of liquid handling robots is highly recommended, to increase both 

the speed and accuracy. Adding reagent to 96 or 192 wells using a single-channel pipette 

will introduce substantial differences in treatment conditions between sample 1 and sample 

192. Furthermore, having a large number of repetitive tasks in a workflow makes it more 

prone to intermittent errors, such as missed samples, which will result in outliers and lost 

patient measurements from the study. Secondly, we have found that the largest contributor 

to sample variance in our plate-based sample preparation is nonuniform temperature during 

sample incubations79. Due to the geometry of the 96-well plate, samples in inner wells can 

experience a different temperature than those in outer wells. For this reason, it is critical 

to evaluate temperature distribution, for your incubator and chosen deep well plate. Lastly, 

QC for large processing batches is required to gain an accurate estimation of the variance 

across the entire study, which may take place over the course of years. To do this, we 

recommend the creation of a pooled sample containing aliquots from existing patients in the 

study, whenever possible. This sample is then included in multiple randomized positions on 

each well plate and carried through the entire analysis process142. In addition to determining 

variance, these samples serve as instrument QCs for maintaining optimal assay performance.

Stable-isotope-labeled standard peptide spiking and storage

In LC-SRM analysis, samples are spiked with heavy-isotope-labeled versions of each 

targeted peptide. To create consistent samples for SRM analysis, it is important to normalize 

the protein concentration using a suitable assay such as the bicinchoninic acid (BCA) 

assay. Adjusting all samples to the same concentration serves the dual purpose of creating 

more-stable light-to-heavy ratios for data analysis, and ensures the consistent sample loading 

necessary for reproducible chromatography. For projects with large cohort of samples, it 

is important to plan for enough stable-isotope-labeled standard peptide mixtures to use 

during the study of the entire cohort. Standard peptide mixture is often prepared in acidified 

solution, such as 0.1% formic acid in water with 15–30% acetonitrile. The mixture is 
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prepared into aliquots in multiple vials, and each vial is enough for all the samples in a 

96-well plate. The mixture aliquots are stored in a −80 °C freezer until their further usage67.

Immunoaffinity enrichment

Peptide immunoaffinity enrichment is a technique often coupled with targeted MS for 

improving the detection and quantification of low-abundance peptides. In this approach, 

heavy-isotope-labeled peptides are spiked into samples prior to enrichment, and they are 

captured along with their endogenous counterparts by specific antibodies143–148. This 

procedure decreases the overall sample complexity, boosting the signal of the targeted 

peptides. A few checkpoints in this approach are to ensure equal spiking of peptides and 

antibodies to the samples, and to ensure the correct pH for optimal capture143. Crosslinking 

antibodies to the beads can reduce the amount of these molecules in the samples and reduce 

the chemical background noise of the analysis143.

Data QC

The day-to-day QC and quality assurance (QA) in data acquisition can be quite 

overwhelming for a targeted proteomics study of thousands of samples. A graphical-user-

interface-based software tool, Q4SRM149, can be used to rapidly access the signal from all 

stable-isotope-labeled standard peptides once the data acquisition is done and flags those 

that fail QC/QA metrics.

Data analysis

For LC-SRM data analysis, we usually use Skyline software139. Raw files were imported 

into Skyline along with peptide transitions. Normally, it is done in batch mode; for example, 

data files processed in the same 96-well plate can be imported and processed in one single 

Skyline file. Manual inspection of the data is often required to ensure the correct peak 

assignment and peak boundaries. While going through the manual inspection in Skyline, it 

is a good idea to inspect both graphs of retention time and peak area of individual peptides 

over all the samples to check any unusual behaviors. The total peak area ratio of endogenous 

peptides over stable-isotope-labeled internal standard peptides can be exported directly from 

Skyline for downstream analysis.

Establishing the robustness of the targeted MS assays

For large-scale validation phase using targeted MS assays, it is critical to fully characterize 

assays for each surrogate peptide for its performance to ensure the robustness of these assays 

in such applications. Recently, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) 

and other groups have published assay characterization guidelines for ensuring robustness of 

the assays67,150–152. These guidelines recommend the following items:

1. Response curve: assays should be checked against a sample with similar 

complexity. For example, assays for human plasma analysis can be checked in 

chicken plasma, which has similar complexity but different peptides. This allows 
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determination of the LOD and LOQ, and if the assay has a linear dose–response 

curve.

2. Selectivity: assays should be analyzed without internal standards and with low 

and medium concentrations (based on the linear curve) with multiple biological 

replicates to determine their selectivity.

3. Stability: the stability of peptides can be tested by spiking samples with internal 

standards and assessing the peak area variability after storage in different storage 

conditions (4, −20 and −80 °C), over time (weeks to months), and through free–

thaw cycles.

4. Repeatability and reproducibility: assays can be tested by preparing and 

analyzing representative samples multiple times independently in different days.

These recommendations should be taken into close consideration before implementing 

assays for large-scale validation efforts. Once the assays are fully characterized, SOPs 

should be established for implementation.

Examples of successful biomarker studies

All successful biomarker studies involve multidisciplinary teams of clinicians, analytical 

chemists and statisticians. They require rigorous experimental design, considering potential 

technical issues and adequate numbers of samples.

To highlight the technical aspects described in this tutorial, we discuss a few examples of 

successful MS-based biomarker studies using different analytical pipelines (Table 4).

Type 1 diabetes

Zhang et al.153 performed a biomarker study comparing serum from individuals with type 1 

diabetes to controls. The discovery experiment consisted of ten pooled sera from individuals 

with type 1 diabetes compared with controls of healthy individuals; each pool consisted of 

five individuals. Samples were depleted of 12 abundant proteins, digested with trypsin and 

analyzed by LC-MS. The analysis resulted in the identification of 24 differentially abundant 

proteins, which were verified by LC-SRM analysis of sera from 50 individuals with type 1 

diabetes versus 100 healthy controls. The peptides were further examined in a third blind 

cohort of 10 individuals with type 1 diabetes versus 10 healthy controls, and against a cohort 

of 50 individuals with type 1 diabetes paired against 50 individuals with type 2 diabetes to 

test the biomarker performance to distinguish between the two diabetes forms. The study 

identified platelet basic protein and C1 inhibitor, both achieving 100% sensitivity and 100% 

specificity. Of these proteins, C1 inhibitor was particularly good in discriminating between 

the two types of diabetes153.

Oral squamous cell carcinoma

In a study of oral squamous cell carcinoma, Carnielli et al. explored the histopathological 

features to identify biomarkers94. In this type of cancer, morphological features, such as 

the invasive tumor front and the inner tumor region, are good indicators of the disease 
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prognosis154. Therefore, they performed proteomics of laser capture microdissected tissue 

from 20 samples taken from each of six regions: small neoplastic island (abnormal tissue 

growth), large neoplastic island, and stroma from both invasive tumor front and inner tumor. 

Biomarker candidates were verified by immunohistochemistry (IHC) and were prioritized 

based on statistical significance, correlation protein abundance in different morphological 

features with clinical characteristics, positive staining in the Human Protein Atlas, and 

limited studies on oral cancers94. IHC was performed for neoplastic islands of 125 cases and 

stroma of 96 cases. To find out whether the profiles of the biomarker candidates could be 

seen in saliva, they also performed LC-SRM analyses for 14 cases with no metastatic cancer 

and 26 cases with metastatic cancer. They found that the expression of CSTB, NDRG1, 

LTA4H, PGK1, COL6A1 and ITGAV proteins alone or in combination is a good predictor of 

the disease outcomes and could lead to potential diagnostic assays94.

Chronic kidney disease

In another example of a biomarker study, Good et al. developed a panel of 273 urinary 

peptides, named CKD273, to study biomarkers of chronic kidney diseases. This panel 

was developed using a capillary electrophoresis coupled to MS (CE-MS) platform by 

analyzing a group of 379 health subjects and 230 patients with various biopsy-proven 

kidney diseases29. CKD273 was developed using a support vector machine model to 

discriminate between CDK and control groups. This panel was used in a clinical trial to 

test the performance of the hypertension medicine spironolactone in preventing diabetic 

nephropathy5. The study followed up 1,775 participants, of which 216 had a high risk of 

developing diabetic nephropathy, and of these, 209 were included in the trial cohort and 

were assigned spironolactone (n = 102) or placebo (n = 107). CKD273 was able to predict 

kidney disease. However, spironolactone failed to prevent progression of the disease155.

Ovarian cancer

Perhaps one of the most successful examples of biomarker development is the OVA1 

panel for ovarian cancer. OVA1 panel is composed of CA125, prealbumin, apolipoprotein 

A1, β2-microglobulin and transferrin, with the last four of them being discovered by 

surface-enhanced laser desorption ionization (SELDI)-time of flight (TOF) MS13,71,72. In 

SELDI-TOF, samples are deposited on top of an affinity matrix that binds to limited 

numbers of proteins based on their physical–chemical properties, reducing the complexity 

of the samples. Matrices of different properties can be used to bind to different panels 

of proteins156. Zhang et al. analyzed 57 samples from patients with ovarian cancer paired 

against 59 healthy controls from two different centers that were divided into two different 

sets for discovery and cross-validation. Candidate biomarkers were validated against two 

independent sets with 137 ovarian cancer, 166 benign tumor and 63 healthy control 

samples. These finding were further validated by immunoassays of another independent 

set containing 41 ovarian cancer, 20 breast cancer, 20 colon cancer, 20 prostate cancer and 

41 healthy control samples71. We should note that, despite the initial promising reports for 

the discovery and validation of biomarkers, SELDI-TOF was not robust enough for clinical 

use, and immunological assays were used for biomarker qualification. This is due to the 

complexity of the instrument, on which small changes in settings can have major impacts on 
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its performance. The time required to perform the measurements is also an important factor 

as the instrument calibration and detector can drift over time. This is not an issue for ELISA, 

as whole plates can be read in seconds to a few minutes.

The final assay was tested in the clinic and approved by the Food and Drug Administration 

(FDA) for clinical use157. However, OVA1 has limited application since it has suboptimal 

performance for screening patients for ovarian cancer. OVA1 is only used to predict the 

malignancy of the disease158.

Concluding remarks

There is an urgent need for diagnostics that can be applied to a variety of diseases and 

conditions. In certain scenarios, including the current coronavirus disease 2019 pandemic, 

precise tests are needed to diagnose and predict disease outcome. However, biomarker 

development is a complex task with several phases and multiple failure points. To date, 

many published biomarker studies are not conclusive or not reproducible because of the 

failure to consider important factors during project planning and execution. A systematic 

review of solid tumor biomarkers showed that the low number of samples and lack of 

proper validation of biomarkers are some of the major challenges of the field159. This 

highlights that better planning, scientific rigor and QCs are necessary to develop biomarkers 

that can diagnose or predict the outcome of disease with high accuracy, sensitivity and 

specificity. Detailed SOPs and consistency during experiments are key elements to ensure 

reproducibility.

Advances in MS instrumentation will also have a major impact in the field in the near future. 

Challenges for analyzing an adequate number of samples are the low throughput and high 

cost of data collection. Typically, a LC-MS/MS run takes 1–2 h to be acquired. However, 

sample multiplexing with isobaric tags, faster chromatography and additional separation 

techniques, such as ion mobility spectrometry, have potential to drastically increase the 

speed and reduce the cost of analysis160–162. Therefore, they will have an important role 

in enabling the analysis of adequate numbers of samples for biomarker development. 

Technology improvements along with standardized guidelines, such as the one provided 

by this tutorial, will contribute to the identification of biomarkers that are biologically 

meaningful and useful in the clinic.
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Box 1 |

Key terminology

Blinded experiments:

Blinded experiments: in blinded experiments, participants (subjects or researchers) have 

no access to information that can influence the results of the study. This procedure 

reduces or eliminates biases due to expectations of both subjects and researchers.

Isobaric peptide labeling:

Isobaric peptide labeling: a technique for sample multiplexing in proteomics analysis. 

Peptides are labeled with reagents (tags) that are synthesized with a combination of heavy 

and light isotope atoms, but with the same final mass (isobaric). Once the peptides are 

analyzed by tandem MS, these tags are fragmented into distinct reporter ions that are 

used for quantification. The reporter ions for individual samples are called ‘channels’. 

Currently two sets of isobaric tags are commercially available: tandem mass tags (TMT) 

(Thermo Fisher Scientific) and isobaric tags for relative and absolute quantification 

(iTRAQ) (AB Sciex).

Limit of detection (LOD) and limit of quantification (LOQ):

LOD is the lowest concentration of an analyte that can be reliably detected above the 

signal background, whereas LOQ is the lowest concentration of the analyte that can be 

quantified within a predefined range of accuracy and precision. LOD and LOQ can be the 

same, but often LOQ is much higher because of the increased measurement variability in 

low concentrations of analytes.

Quality control (QC) and quality assurance (QA):

QC is a process for checking whether the analysis met a set of predefined quality criteria. 

QA is similar to but differs from QC because it assesses the reliability of the overall 

project, whereas QC is implemented in different steps of the study.

Selected-reaction monitoring (SRM) and transition:

Selected-reaction monitoring (SRM) and transition: also known as multiple-reaction 

monitoring, an MS technique designed to quantitatively measure the concentration of 

specific, targeted analytes. SRM analysis is usually performed in triple quadrupole mass 

spectrometers, in which the targeted analyte is selected in the first quadrupole and 

fragmented and a specific fragment is measured. This process of selection, fragmentation 

and measurement of specific fragments is named a ‘transition’ and highly increases the 

sensitivity of the analysis by eliminating most of the chemical background noise.

Standard operating procedure (SOP):

Standard operating procedure (SOP): a predefined protocol with step-by-step instructions 

of the experiment execution. It has the goal of ensuring quality and uniformity of the 

procedures.

Statistical power:
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Statistical power: the probability correctly finding a differentially expressed protein. It 

ranges from 0 to 1 and can be used to determine the minimum number of samples 

required to achieve significance based on the variability (of the analyte and the 

measurement) and the minimum expected fold change.
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Box 2 |

Common types of study design and applications

Animal studies

Animal models can also be used as a platform for performing initial biomarker discovery 

experiments, and there are several models of human disease that can be used for initial 

analyses. The advantage of performing studies in animals is that different factors can 

be ethically and effectively controlled, such as age, genetics, food and environment, 

and more-invasive analyses can be performed (e.g., after necropsy). Additionally, 

small animals reproduce more rapidly, allowing for high throughput in generational 

investigations. A major disadvantage is that animal models do not necessarily recapitulate 

the biological and environmental circumstances of human disease; therefore, biomarker 

candidates must be verified and validated with clinical samples from human cohorts.

Case studies

In case studies, patients may have been given a pharmaceutical off-label treatment 

(treatment of a condition that the specific medicine is not approved for), or a physician 

may notice some clinical association that other patients may not have experienced. Such 

studies may be limited to one or a small number of patients and may be reported with 

informal or limited comparisons.

Case–control studies

In case–control studies, individuals are selected based on their ultimate outcome status, 

which is generally the disease outcome of interest. This study design is particularly 

efficient for rare diseases or diseases with long lead times. In this type of study, 

individuals with the condition of interest are usually readily identified, but appropriate 

controls must be selected; these should comprise a group who would otherwise have 

been selected for the study if they had developed the condition of interest but who do 

not have competing exposures or outcomes related to the condition of interest. For a 

hospital-based study, cases for a cancer study might require a control group who are 

patients within the hospital and therefore would have been present for inclusion, but 

who do not have cancer-related conditions; these may include incidentally injured people 

of similar age, such as orthopedic recovery patient populations. This type of control 

selection is often called the counterfactual condition. An additional method to increase 

comparability for case–control study comparisons is to match on key confounders, such 

as age, sex or other features, but it should be noted that any matched features cannot be 

evaluated for association in primary models, so these features cannot comprise features of 

interest, but only nuisance features that require adjustment.

Clinical trials

In clinical trials, participants are assigned, generally randomly, into two or more groups 

to receive different interventions or treatments. Trial studies are often double blinded, 

meaning that both study participants and administrators are unaware of the treatment 

assignments, so that outcome assessments will not be biased; however, blinding to 

study data is not always possible. There are many ways to structure and assign trial 
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studies, but fundamentally, the purpose of these types of studies is to disentangle the 

role of confounding from the random or placebo effect of the intervention. Formal 

randomization, to be effective, should balance comparison groups by pairing treated 

and control individuals with similar characteristics. This avoids adding factors, such as 

age, gender, ethnicity and comorbidities, to the experimental design, which can cause 

confounding effects. Proper randomization in clinical trial studies allows for stronger 

inference than in other observational studies, which are subject to confounding, bias, and 

other methodological considerations that may limit causal inference, such as in the effects 

of drugs or other treatments.

Cohort studies

Cohort studies involve prospective study of a particular study group based on their 

exposure status, although retrospective cohort studies also exist. The difference between 

cohort and clinical trial studies is that cohort studies are based on the natural or incidental 

exposure of individuals, while clinical trials perform interventions in a controlled setting. 

Cohort studies are especially useful to investigate the risk factors associated with disease 

outcomes and for estimating the frequencies of those diseases. Population-based cohort 

studies must be selected based on membership within a defined group, with selection 

carefully defined and designed for inference to some target, such as all individuals living 

in some area, all members of a given health membership organization, or all people 

living with some specific health condition. The exposure should be collected so that 

comparisons may be made among cohort participants—those with and without whatever 

exposure condition. However, selection should not be tied to exposure status; otherwise, 

selection bias is likely to occur.

Systematic reviews and meta-analyses

Systematic reviews and meta-analyses comprise formal, critical evaluations of studies in 

the literature or of many studies across a large harmonized dataset. These methods allow 

better statistical power, stronger inference and a basis for evaluation of the accumulated 

knowledge compared with individual, primary studies.
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Fig. 1 |. Phases of biomarker development studies.
Biomarker discovery is usually divided into three different phases: discovery, verification 

and validation. In the discovery phase, a small number of samples is submitted for 

in-depth proteomics analysis where thousands of proteins are measured to identify 

biomarker candidates. Often, larger cohorts of samples are analyzed in the subsequent 

phases, increasing the statistical power. Biomarker candidates are also downselected each 

developmental phase based on their performance to accurate predict the disease or condition. 

In some cases, a combination rather than individual protein is tested as a biomarker. In the 

verification phase, biomarker candidates undergo additional proteomics analysis to verify 

both their identities and expression in the same or similar samples as in the discovery phase. 

A few of the most promising candidates are tested in the validation phase to determine its 

performance for clinical use.
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Fig. 2 |. Considerations for each step of the discovery-phase workflow.
The main consideration points for each step of the workflow are shown. Note that an 

example for blood plasma analysis is shown, but other sample types may have some 

additional or fewer steps in the workflow. For tissue analysis, the immunodepletion step 

should be replaced by a tissue lysis step, the details of which are documented in the text.
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Fig. 3 |. Monitoring instrument performance with standard samples.
In our laboratory, we use a tryptic digest of the bacterium Shewanella oneidensis as a 

standard sample to check the LC-MS/MS performance. This standard is run before and after 

each batch of samples. a, Number of identified peptides in S. oneidensis runs. Note a slow 

decay in the number of identified peptides, which is almost unnoticeable in consecutive runs 

but has a major effect across time. The number of peptide identifications was reestablished 

after cleaning the instrument. b,c, Chromatograms from analysis of S. oneidensis before and 

after instrument cleaning, respectively. This shows the cumulative reduction in instrument 

performance across time.
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Fig. 4 |. Identification of unexpected peptide modifications with data QC analysis.
a, Total-ion chromatogram from analysis of three LC-MS/MS runs from corresponding 

high-pH reversed-phase chromatography fractions of different multiplexed sets of isobaric-

tagged samples. The runs were analyzed by QC-ART, and the flagged run is highlighted. 

The highlighted region has a different peak profile compared with the unflagged runs. b, 

A selected m/z range of the region highlighted in a. The analysis reviewed a shift of 15.99 

Da, corresponding to the mass of an oxidation, on the peptide GQYCYELDEK, which 

does not contain the methionine residues, which are commonly searched during peptide 

identification. c, Workflow of the MSGF + database searches to identify new oxidized 

residues. The searches considered oxidation in any residue and used Ascore163 to ensure 

the site of modification. d, Normalized counts of oxidized amino acid residues. e,f, Average 
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number of peptide (e) and protein (f) identifications per fraction of reanalyzed data. The blue 

bars represent the database search performed considering methionine oxidation as the only 

possible modification, whereas the red bars also considered methionine, cysteine, tryptophan 

and tyrosine oxidations. This shows that not only can QC analysis find runs with drift 

in in sample preparation and instrument performance, but it can also find runs that have 

distinct profiles due to unexpected posttranslational modifications. The asterisks represent P 
≤ 0.05 by t-test. Reproduced from ref.102 with permission from the American Society for 

Biochemistry and Molecular Biology.
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Fig. 5 |. Considerations for each step of the validation-phase workflow.
The main consideration points for each step of the workflow are shown.
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 d
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 c
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 c
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 b
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 b
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 c
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 p

ro
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 p
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 r
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 b
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 p
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 d
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 d
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