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Abstract

Mesenchymal progenitor cells are broadly distributed across perivascular niches – an observation 

conserved between species. One common histologic zone with a high frequency of mesenchymal 

progenitor cells within mammalian tissues is the tunica adventitia, the outer layer of blood 

vessel walls populated by cells with a fibroblastic morphology. The diversity and functions of 

(re)generative cells present in this outermost perivascular niche are under intense investigation; we 

have reviewed herein our current knowledge of adventitial cell potential with a somewhat narrow 

focus on bone formation. Antigens of interest to functionally segregate adventicytes are discussed, 

including CD10, CD107a, ALDH isoforms, and CD140a among others. Purified adventicytes 

(such as CD10+, CD107alow, and CD140a+ cells) have stronger osteogenic potential and promote 

bone formation in vivo. Recent bone tissue engineering applications of adventitial cells are 

also presented. A better understanding of perivascular progenitor cell subsets may represent a 

beneficial advance for future efforts in tissue repair and bioengineering.

Graphical Abstract

Mesenchymal progenitor cells in the tunica adventitia have a hierarchy of differentiation and 

proliferation potential. On top of the hierarchy, PDGFRα+ and ALDHHigh cells show a bi-potent 

differentiation potential into osteogenic and adipogenic cell lineages with high proliferative 
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rate. Conversely, CD10 and CD107a expression separate osteogenic progenitors from adipogenic 

progenitors, respectively. Moreover, osteoprogenitors can transition into adipogenic phenotype.
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Introduction

From her observations of chicken blastoderms within her anatomy laboratory at Johns 

Hopkins University, Florence Sabin concluded in 1917 that “Angioblasts and later 

endothelial cells give rise to red blood cells” [1]. This visionary insight into hematopoietic 

stem cell biology, more than 40 years before Till & McCulloch’s discovery of blood cell 

progenitors, received dazzling experimental confirmations from the 1970s [2], to result in 

recent years in the thorough anatomic, molecular, and developmental characterization of the 

“hemogenic endothelium” [3]. Much later in life, endothelial cells contribute to scarring 

in the infarcted myocardium by transdifferentiating into fibroblasts [4] in a reversible 

manner [5]. Moreover, the embryonic dorsal aorta and other adult blood vessels host potent 

skeletal myogenic progenitors [6], further illustrating the developmental flexibility of some 

vascular cells. In a teleological perspective, physical association of progenitor cells with 

blood vessels should permit the ubiquitous dissemination of tissue regenerative potentials. 

Such a tentative correlation between anatomy and function guided the search for the native 

origin of mesenchymal stem cells (MSCs), the culture derived multi-lineage mesodermal 

progenitors that can be extracted from all vascularized tissues [7]. Markers expressed by 

perivascular cells had been detected on cells from the human uterus that give rise to MSC 

like progenitors [8]. Then, some of us observed that pericytes, the mural cells that ensheath 

capillaries and microvessels [9], purified by flow cytometry from all human organs tested 

produce MSCs in culture [10], establishing a perivascular distribution for the forerunners of 

these multipotent cells. Purified pericytes have been used experimentally to engineer blood 

vessels [11], and regenerate lung [12], skeletal muscle [13], cartilage [14], ischemic limbs 

[15], tendon [16], and uterus [17]. Besides, pericytes naturally contribute to regenerating 
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Leydig cells in the testis [18], satellite cells and myofibers in skeletal muscle [19], white 

adipocytes [20], follicular dendritic cells [21], dental cells [22], and fibroblasts in multiple 

tissues [23,24]. Mesodermal lineage potential is also present in the tunica media and tunica 
adventitia of larger arteries and veins, where it has been studied in the context of pathologic 

vascular remodeling [25,26]. In agreement, presumptive MSCs have been described in the 

human [27] and murine vascular adventitia [28], allowing to conclude that blood vessels 

of all sizes are repositories for mesodermal progenitor cells. Quantitatively, the tunica 
adventitia represents a substantial reserve of primitive mesodermal progenitors [29] of 

undisputable pathophysiologic relevance and possible therapeutic significance. The diversity 

and functions of (re)generative cells present in this outermost perivascular niche are under 

intense investigation; we have reviewed herein our current knowledge of adventitial cell 

potential with respect to bone formation, in culture and in vivo.

Different cell types

The osteoblastogenic potential of perivascular adventitial cells

Adventitial cells (a.k.a. adventicytes), so-named as they lie in the tunica adventitia of blood 

vessels, have a non-descript fibroblastic morphology and at times appear to be in continuity 

with fascial connective tissue. Defined as a CD34+CD146−Lin− cell population, we and 

others have described their multipotency [27,28]. The osteoblastic potential of adventitial 

cells has been summarized in several recent reviews [30,31]. Perivascular adventitial cells 

participate directly in bone formation and repair [32,33] as well as indirectly induce 

bone repair via interaction with native skeletal cells [34,35]. Implanted perivascular cells 

regenerate bone indirectly via pleiotropic mechanisms, including for example release of 

extracellular vesicles (EV) [34] as well as non-vesicular paracrine effectors, such as bone 

morphogenetic proteins [36]. For example, human perivascular EVs induce osteoprogenitor 

cell proliferation, migration and osteogenic differentiation to induce bone repair [34]. 

In contrast, human perivascular cells inhibit osteoclast formation and prevent bone graft 

resorption via non-vesicular paracrine mechanisms [36]. Negative regulators of osteoclast 

differentiation were enriched within perivascular stem cells (PSCs), including the decoy 

receptor for RANKL osteoprotegerin (TNRSF11B), the Wnt and RANKL inhibitor secreted 

frizzled-related protein-1 (SFRP1), and anti-osteoclastic/axonal guidance molecules such as 

semaphorin 3A (SEMA3A) and slit guidance ligand 3 (SLIT3). The relative roles of human 

adventitial cells and pericytes in bone repair were described recently by our group [37]. 

Here, CD34+ adventitial cells have a more prominent synthetic role in the formation of 

bone matrix, whereas CD146+ pericytes play a supportive role in the induction of blood 

vessel ingrowth [37]. Other markers that typify adventitial cells have been described in 

mouse models, including stem cell antigen-1 (Sca-1) [38], Gli1 [28], and platelet-derived 

growth factor receptor (PDGFR) α [32]. The expression of PDGFRα on most adventitial 

cells brings to the fore the possible overlap in terminology between fibro-adipoprogenitor 

cells (FAPs) and adventitial cells. Certainly soft tissue resident FAPs, like adventitial cells, 

have been described to ossify under appropriate contexts [39,40]. Although adventitial cells 

have been clearly identified as an osteogenic precursor, the heterogeneity within this cell 

population has been increasingly documented.
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Roles in pathophysiologic processes

Cellular heterogeneity within the tunica adventitia of mice—The functional study 

of subsets of adventitial cells has been possible by the generation of different mouse models 

that helped track the origin and contribution of these cells during injury and disease as 

well as tissue homeostasis. Indeed, different groups have identified subsets of adventitial 

cells involved in fibrosis, calcification and regeneration. Earlier studies implicated Sca-1- 

and PDGFRβ-expressing adventitial cells enriched for sonic hedgehog (Shh) signaling 

activity as cells with a stem-like identity [41]. For instance, Gli1+ adventitial cells are 

myofibroblast progenitors and contribute to fibrosis in different organs [42,43]. Moreover, 

this same population of adventitial cells expressing Gli1 can migrate to the intima, become 

osteoblast-like cells and contribute to vessel calcification during chronic kidney disease 

(CKD) [28], and in the bone marrow Gli1+ mesenchymal cells contribute to bone marrow 

fibrosis (BMF) and dysregulation of hematopoietic stem cells [43]. In this context, Gli1 

appears to be a pan-marker of fibrotic cells in different organs making it a potential 

therapeutic target. Nonetheless, the adventitia shows high heterogeneity and other markers 

have been described.

Understanding of the mechanisms by which perivascular cells contribute during the 

regeneration process is crucial to develop new strategies to treat diseases such as fibrosis. 

In specific, the identification of functional subsets is important to either inhibit or promote 

a given cell fate and improve tissue regeneration. For example, Rafael Kramann’s group 

has recently reported a cell atlas of both human and mouse kidney in which they identified 

subpopulations of mesenchymal cells including perivascular cells as likely contributors to 

kidney fibrosis and furthermore described Naked Cuticle Homolog 2 (Nkd2) as a specific 

myofibroblast target [44].

PDGFRα and PDGFRβ play key roles in mesenchymal biology. Both of these receptors are 

involved in cellular proliferation, migration and differentiation [45]. Moreover, subsets of 

cells expressing PDGFRα, PDGFRβ, or both have divergent functions in regeneration. For 

example, PDGFRα+PDGFRβ+ perivascular cells within skeletal muscle have been observed 

to have fibroadipogenic properties, whereas PDGFRβ+PDGFRα− perivascular cells have 

regenerative / myogenic features [32]. In skeletal muscle and cardiac tissue, αv integrins on 

PDGFRβ+ perivascular cells promote the formation of fibrotic tissue [24]. In adipose tissue, 

PDGFRα/PDGFRβ regulate cell differentiation into white or brown adipocytes as well as 

transition into myofibroblasts [46,47].

The use of PDGFRα reporter activity within mouse white adipose tissue to differentiate 

subsets of adventitial cells has been recently described [32] (Fig. 1). PDGFRα reporter 

cells are located predominantly in the inner layer of the adventitia, while the cell surface 

marker CD34 highlights the majority of this layer [32]. Using fluorescence-activated cell 

sorting (FACS) isolation of adventitial cell subsets, PDGFRα and CD34 co-expressing 

adventicytes showed greater osteogenic potential than PDGFRα+ only or CD34+PDGFRα− 

cells [32]. Indeed PDGFRα+ perivascular cells demonstrated more stem cell features than 

other cell fractions. In addition to higher proliferation rate, PDGFRα+ cells re-populated 

the tunica adventitia more effectively than PDGFRα− perivascular cells upon isolation and 
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re-transplantation. However, the stem-like identity of PDGFRα-expressing adventitial cells 

was restricted to bone and adipose lineages. For example, long-term lineage tracing failed 

to reveal any contribution of PDGFRα-expressing adventicytes to the smooth muscle medial 

layer in homeostatic conditions [32]. When implanted with bone graft material, PDGFRα+ 

cells participated in osteoblastogenesis to a greater degree than PDGFRα− perivascular 

cells. Finally, upon stimulation with BMP2, endogenous PDGFRα+ reporter cells and their 

cellular descendants became both osteoblasts, adipocytes and new perivascular cells within 

new-formed ossicles [32]. These results parallel experimental studies in skeletal muscle 

where a large portion of PDGFRα-expressing cells give rise to dystrophic calcification and 

ossification during heterotopic bone formation [41].

Cellular heterogeneity of the human adventitia—Less is known about the 

mechanism regulating vascular stem cells in the human adventitia, and whether the subsets 

described in mice have analogous counterparts in the human vasculature. In vitro studies of 

FACS sorted perivascular cells, transcriptomic analysis and immunohistochemistry on tissue 

samples from healthy and diseased individuals can help us understand the mechanisms by 

which these cells contribute to regeneration and link findings from mouse models to human 

pathobiology. For example, Kramann et al. extended their findings on vascular calcification 

during mouse CKD by performing Gli1 immunohistochemistry on human arteries obtained 

from dialysis-dependent and non-CKD subjects. Expression of Gli1 in non-CKD patients 

was mainly found in the adventitial layer, whereas in dialysis-dependent patients Gli1 

expression was present in the calcified media and atherosclerotic plaque [28]. This suggests 

that Gli1 has similar functions in human and mouse arteries, making it a possible therapeutic 

target in vascular calcification. We have identified cell subsets in the human adventitia 

expressing CD10 or CD107a, and distinct differentiation potentials [33,48]. Transcriptomic 

analysis of human adventitial cells also revealed that high aldehyde dehydrogenase (ALDH) 

activity marks stem cell-like cells [29]. In this section, we will discuss in detail these novel 

markers of the human adventitia.

ALDH activity has been used as a marker of stem cells: hematopoietic and neural stem 

and progenitor cells exhibit high ALDH activity [49], also reported in adipose tissue [50] 

and myogenic progenitors [51]. On the other hand, high ALDH activity has been linked, in 

various cancers [52], to stem cell features such as tumor initiation, clonogenic growth, self-

renewal and drug resistance [53,54]. Hardy et al. analyzed gene expression in single human 

pericytes and adventitial cells further separated according to ALDH activity and revealed the 

existence of a developmental hierarchy of human perivascular cells, ranging from ALDH 

high adventicytes (most primitive) to ALDH low pericytes (least primitive). Adventitial cells 

show a distribution of cells ranging from low to high ALDH activity, whereas pericytes 

exhibit mostly low ALDH activity, suggesting that adventitial cells contain more stem cell-

like cells than pericytes do. Therefore, the tunica adventitia and more specifically adventitial 

cells with high ALDH activity may contain cells with stem cell properties [29]. The stem 

cell properties of this subset of adventitial cells may be related to the involvement of 

ALDH isoforms in the retinoic acid pathway. For instance, the ALDH1 family of enzymes 

regulate cell proliferation and differentiation by converting oxidase retinaldehyde (retinal) 

to retinoic acid (RA), which subsequently interacts with nuclear receptors to promote gene 
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transcription [28,55]. Lastly, unpublished data from our group indicate the existence of a 

specific isoform from the ALDH1 family expressed in adventitial cells (Gomez-Salazar et 
al., in preparation).

CD10, also known as neprilysin, or membrane metalloendopeptidase, is a zinc-dependent 

metalloendoprotease involved in peptide signaling. CD10 regulates the extracellular 

concentration of various peptides, changing the availability for receptor binding and 

therefore regulating biological processes [48]. Expression of CD10 plays key roles in the 

regulation of stem cells by cleaving peptides which are then either activated or inhibited to 

continue or stop the signaling cascade [56]. For example, CD10 regulates cell migration and 

angiogenesis through Akt, Rho, and FGF signaling [57,58]. CD10 is also highly expressed 

in leukemia and in solid childhood tumors including nephroblastoma and neuroblastoma 

[59], and is used as a marker of good prognosis in certain types of leukemia [60]. On 

the other hand, CD10 expression also identifies normal stem cells in different tissues 

including hematopoietic (lymphoid) progenitors, as well as other organ systems [61,62]. 

In the context of vascular biology, our group identified a novel CD10+ adventitial progenitor 

cell type with higher proliferation rate and osteogenic differentiation potential compared to 

the negative population, suggesting pathological functions during vessel remodeling [48]. 

Ding et al., showed that expression of CD10 by adventitial cells is regulated through SHH/

Gli1, which is interesting since Gli1 is involved in vessel calcification. CD10+ adventitial 

cells express genes related to stem cell potential, such as SRY-box transcription factor 2 

(SOX2) and NANOG, as well as the cell proliferation related gene cell cycle G1/S specific 

cyclin D2 (CCND2). Moreover, CD10+ adventitial cells strongly express neural epidermal 

growth factor-like 1 (NELL1), which is a promoter of bone development. Whether bone 

regeneration or vascular calcification directly involve CD10, or whether this is a mere 

marker of a functional cell subset within the adventitia, is not known yet.

CD107a, also known as lysosome-associated membrane protein-1 (LAMP1), is a type 1 

membrane protein highly expressed in lysosomes and other intracellular vesicles [63]. 

While CD107a is ubiquitously expressed intracellularly, only a fraction of mammalian 

cells display detectable surface CD107a. Our group recently identified surface CD107a 

as a marker to segregate functionally relevant cells within the human adventitial cell 

niche [33]. CD107a immunoreactivity is found most frequently within the outermost 

layers of blood vessels, and more common in the outer tunica adventitia. FACS-derived 

CD107alow and CD107ahigh stromal cells from human white adipose tissue have opposite 

differentiation potentials. The CD107alow stromal component contains a precursor cell 

population with high osteoblastogenic potential, while CD107ahigh cells represent an 

adipocyte precursor cell. Transcriptomic analysis demonstrates that genes associated with 

adipogenic differentiation, such as FABP4 (fatty acid binding protein 4), LPL (lipoprotein 

lipase), PPARGC1A (PPARG coactivator 1 α), and CEBPA (CCAAT enhancer binding 

protein α), are highly expressed among CD107ahigh stromal cells. Conversely, negative 

regulators of adipogenesis, such as KLF2 (Krüppel-like Factor 2), KLF3, SIRT1 (sirtuin 1), 

and DDIT3 (DNA damage inducible transcript 3), are increased among CD107alow stromal 

cells. In addition, CD107alow stromal cells are enriched for signaling pathways associated 

with bone formation and cellular respiration and metabolism, including Wnt/β-catenin 

signaling, oxidative phosphorylation, and glutathione metabolism. CD107alow cells also 
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drive higher osteogenic differentiation in vivo. Xenotransplantation confirmed significant 

quantitative differences in bone generation among CD107a cellular subsets. Briefly, an 

accumulation of new bone at 8 weeks was observed after intramuscular implantation in 

NOD-SCID mice of CD107alow rather than CD107ahigh sorted cells. Human CD107alow 

cells also increased posterolateral lumbar spine fusion in athymic rats. Analyses performed 

after 8 weeks demonstrated 62.5% spine fusion among CD107alow cell treated animals, 

whereas CD107ahigh cell transplanted animals only showed 37.5% fusion. In summary, these 

studies pointed to CD107alow mesenchymal cells as a cell subset with higher osteogenic 

potential. Interestingly, and as expected from functional differences, zones of expression of 

CD10 and CD107a within the tunica adventitia of vessels are distinct (Fig. 2).

Clinical application and perspectives

Despite the high number of pre-clinical studies showing positive results with the use of 

mesenchymal progenitor cells, their use in the clinical setting is limited [64]. Among the 

factors affecting efficiency is the use of total cell preparations containing subsets that may 

hinder the efficacy of regeneration, resulting in inconsistent clinical outcomes. Moreover, 

clonal selection within total cell preparations may further reduce numbers of highly 

regenerative progenitor cells. Our group specially has focused on elucidating functional 

heterogeneity of perivascular cells that may contribute to standardizing cell preparations and 

improving clinical outcomes. For instance, we have shown that CD10+ cell preparations 

have increased osteogenic potential, which will likely enhance regeneration in skeletal 

injuries. Tailoring of cell therapies for specific pathologies may represent a step forwards in 

realizing the potential of multipotent progenitor cells for tissue engineering [7].

Not discussed here, the vehicle or scaffold for cell deployment is also vitally important 

for efforts in skeletal tissue regeneration. Progenitor cells are highly influenced by their 

microenvironment, and the physical and molecular characteristics of a given scaffold 

will result in shifts in cell phenotype and functional outcomes in terms of tissue 

formed. One such example using human perivascular cells was recently reported, where 

tunable supramolecular hydrogels along with different stiffnesses exert changes in pericyte 

differentiation toward osteogenic and chondrogenic lineages [65].

Conclusion

Despite its relatively unremarkable histologic appearance, the tunica adventitia houses a 

wealth of cell types – some of which have mesenchymal progenitor cell attributes. This 

brief review covered only some of the established and emerging markers in mouse and 

human tissues that resolve functionally relevant subsets of perivascular cells. In addition to 

harboring progenitor cells, the adventitial layer is a major site of accumulation of immune 

cells including macrophages, lymphocytes, mast cells and dendritic cells that carry out 

important surveillance and innate immune functions in response to foreign antigens and play 

a role in vascular pathologies including atherosclerosis and tissue fibrosis [66]. Whether 

a specific subset of mesenchymal progenitor cells in this perivascular niche is involved in 

immune regulation and subsequent tissue remodeling is yet to be investigated. A critical 

point is that many markers used to purify cells within the tunica adventitia are also present 
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in minor degrees in other cellular locations, such as the perineural tissues or fascia of 

white adipose tissue. The fascia is a framework of connective tissue that envelops and 

separates organs and tissues [67]. In adipose tissue, the fascia contains pre-adipocytes 

with high differentiation potential [68]. Cells in the fascia express markers shared with 

perivascular cells such as CD34 and CD44 [69]. In a similar manner, perineural cells 

express markers also found in mesenchymal cells such as vimentin, CD34 and α-SMA 

[70,71]. Moreover, during development in zebrafish and mouse, Schwann cell precursors 

give rise to mesenchymal progenitors that subsequently differentiate into chondrocytes and 

osteocytes, describing a common developmental origin that may explain why they share 

similar expression patterns with adventitial cells [72]. All this exemplifies the complexity of 

purifying and studying perivascular progenitor cells. Until we have more specific markers 

for adventitial cells, purification of perivascular progenitors will be prone to contain a 

fraction of other cell types. Importantly, the inherent regenerative potential of specific 

subsets of adventitial cells will further improve efficiency and consistency when used in 

bioengineering approaches.

This review focused on adipose tissue perivascular cells, but similar cells within the bone 

marrow are also well characterized as multipotent progenitors, termed CXC chemokine 

ligand (CXCL)12-abundant reticular (CAR) cells or leptin-receptor-positive (LepR+) stromal 

cells. LepR+ cells are the major source of bone and adipocytes in adult bone marrow 

[73]. Short-term ablation of CAR cells in vivo impairs osteogenesis from marrow cells 

[74]. Furthermore, CAR cells and LepR+ stromal cells have been implicated in maintaining 

the quiescent hematopoietic stem cell (HSC) pool and appear to be a key component of 

HSC niches [75,76]. Mechanistically, Foxc1, expressed in CAR cells, is essential for HSC 

maintenance and promotes CAR cell development by upregulating CXCL12 and stem cell 

factor expression [77]. In addition, the transcription factor early B-cell factor 3 (Ebf3) is 

preferentially expressed in CAR/LepR+ cells, required to create HSC niches and maintain 

spaces for HSCs [78]. In contrast to adipose tissue as discussed above, bone marrow 

perivascular cells are primarily housed within microvessels and have a perivascular position 

consistent with pericytes. To our knowledge, adventitial cells have not been isolated or 

characterized from skeletal sources.

Several unanswered questions regarding these recent findings are most notable. For example, 

distribution of novel markers such as CD10 and CD107a suggests a microarchitectural 

spatial organization of the tunica adventitia within fat tissue that had been previously 

underrecognized. Yet, the broader spatial relations between adventitial cells, and whether 

these are conserved across organ systems remain unknown. Most obviously, the hunt for 

a definitive stem cell within the tunica adventitia – one with self-renewal potential – is a 

matter of considerable interest. Certainly, identification of more primitive / progenitor cell 

types within vessel walls has broad implications for vascular biology, but also usefulness in 

the field of tissue engineering and regenerative medicine.
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Figure 1. PDGFRα marks a population of cells within the tunica adventitia.
(A) PDGFRαmT/mG reporter mice contain green PDGFRα + cells within the tunica 
adventitia in the inguinal fat pad . All other cells are red. Nuclear counterstain appears 

in blue. (B) High magnification of the tunica adventitia.
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Figure 2. CD10 and CD107a mark distinct subpopulations within the tunica adventitia.
(A-E) Immunofluorescent staining for CD107a, CD10, and CD34 in an artery within 

human subcutaneous white adipose tissue. (A) Whole vessel in cross-section showing CD34 

expression in the endothelial and adventitial layers. CD10 and CD107a expression are seen 

on different subsets in the inner and outer adventitia. (B-E) High magnification of the tunica 
adventitia.
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Table 1.

Phenotypes and functionalities of arterial adventitial cells in man and mice.

Markers Organisms Function Reference

ALDHhigh Human Osteogenic and adipogenic potential (predicted) Hardy WR, et al. Stem Cells 2017 29

PDGFRα+ Mice Osteogenic and adipogenic potential Wang Y, et al. Stem Cells 2020 32

CD107ahigh Human Adipogenic potential Xu J, et al. Elife 2020 33

CD10+ Human Osteogenic potential Ding L, et al. Stem Cells 2020 48
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