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Abstract

Despite tremendous success against hematological malignancies, the performance of chimeric 

antigen receptor (CAR) T-cells against solid tumors remains poor. In such settings, the lack 

of success of this groundbreaking immunotherapy is in part mediated by ligand engagement 

of immune checkpoint molecules on the surface of T-cells in the tumor microenvironment 

(TME). Though CTLA-4 and PD-1 are well-established checkpoints that inhibit T-cell activity, 

the engagement of glycans and glycan-binding proteins are a growing area of interest due 

to their immunomodulatory effects. This review discusses exemplary strategies to neutralize 

checkpoint molecules through an in-depth overview of genetic engineering approaches aimed at 

overcoming the inhibitory program death ligand-1 (PD-L1)/program death-1 (PD-1) axis in T-cell 

therapies and summarizes current knowledge on glyco-immune interactions that mediate T-cell 

immunosuppression.

Introduction

CAR T-cells are often met with an immunosuppressive milieu that contributes to 

their subpar performance in solid tumors. The establishment of this immunosuppressive 

microenvironment is partially due to ligands on tumor cells that engage their cognate 

inhibitory receptors upregulated on the surface of activated T-cells. Such inhibitory 

receptors, or checkpoint molecules, are the intrinsic brakes of the immune system that 

protect against autoimmunity under homeostatic conditions. Consequently, treatment with 

checkpoint inhibitors has revolutionized the treatment of different hematological and solid 

tumors (1). Indeed, the success of FDA-approved monoclonal antibodies targeting the 

PD-1/PD-L1 axis in some settings has prompted the investigation of PD-1/PD-L1 blockade 

combined with the killing prowess of CAR T-cells (2). However, this approach is limited by 

immune-related adverse effects resulting from the systemic administration of the inhibitors, 

as well as the high cost of such combination therapies (3-5). To this end, several genetic 

engineering strategies have been employed to overcome checkpoint-mediated inhibition and 

render the TME immune-permissive to CAR T-cell performance (Figure 1).
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Genetic engineering approaches targeting the PD-L1/PD-1 axis

Many groups have sought to overcome the effects of the PD-1/PD-L1 pathway by PD-1 

knockdown using gene silencing technologies such as shRNA and siRNA (6, 7). However, 

discrepancies on whether this approach enhances effector functions suggests that further 

research on the effect of PD-1 silencing may be warranted. Furthermore, compensatory 

mechanisms due to other inhibitory receptors expressed on tumor-infiltrating T-cells render 

knockdown of more than one checkpoint molecule a promising approach that has been 

explored by some groups. Accordingly, Simon et al. have shown that dual downregulation 

of PD-1 and cytotoxic T-lymphocyte antigen 4 (CTLA-4) improved the cytotoxicity of 

CAR T-cells in vitro relative to targeting each checkpoint alone (8), and shRNA-mediated 

downregulation of PD-1 and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) 

has been found to yield synergistically beneficial effects on the performance of CD19-

targeting CAR T-cells (Y-H. Lee, H. J. Lee, H. C. Kim, Y. Lee, S. K. Nam, C. Hupperetz, 

J. S. Y. Ma, X. Wang, O. Singer, W. S. Kim, et al., manuscript posted on bioRxiv, 

DOI: 10.1101/2020.11.07.372334). Another method to overcome PD-1 inhibition is to 

permanently knockout PD-1 using CRISPR/Cas9, which has enhanced the anti-tumor 

activity of CAR T-cells in vitro and in vivo across different solid tumor models (9, 10). 

However, additional studies will be imperative to further elucidate the effect of permanent 

PD-1 knockout on the long-term survival and toxicity of the engineered CAR T-cells since 

PD-1-deficiency may hinder inhibition of endogenous auto-reactive T-cell receptors.

An alternative approach to circumvent the potential downsides of PD-1 knockdown or 

knockout are “armored” CAR T-cells that release factors able to enhance antitumor 

performance. Though Suarez et al. showed the ability of PD-L1-secreting anti-carbonic 

anhydrase CAR T-cells to improve anti-tumor activity in vitro and in vivo (11), a greater 

focus has been placed on engineering of CAR T-cells to instead secrete single-chain variable 

fragment (scFv) forms of anti-PD-1, as their smaller size and reduced stability compared 

to full-length antibodies serves to promote localization in the TME and prevent systemic 

distribution. Several studies have collectively established the ability of scFv secretion by 

armored CAR T-cells to mediate an immune-permissive environment through blockade and 

downregulation of PD-1 in the milieu of tumor cells expressing the CAR target antigen 

(12-16).

Yet another promising strategy is the alteration of the PD-1 receptor itself. In one example, 

engineered T-cells that co-express a mesothelin-targeting CAR and a PD-1 dominant-

negative receptor were more efficacious in vitro and mediated greater tumor control in vivo 
compared to T-cells expressing only the mesothelin-targeting CAR (17). In lieu of solely 

abrogating PD-1 signaling, PD-1 chimeric switch receptors have also been designed to 

provide the CD28 costimulatory signal to CAR T-cells upon PD-L1 ligand engagement (18). 

These receptors have resulted in enhanced antitumor effects of CAR T-cells in vitro and in 
vivo, which was dependent on the CD28 signaling domain. Alternatively, to render T-cell 

activation dependent on tumor expression of PD-L1, Qin et al. designed CARs consisting 

of the extracellular and transmembrane domains of PD-1 (19). This study also assessed the 

efficacy of T-cells expressing an anti-PD-L1 scFv-based CAR, and although T-cells bearing 

both constructs showed enhanced anti-tumor activity, anti-PD-L1 scFv-based CAR T-cells 
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provided a greater in vitro and in vivo advantage. These findings hint to the potential benefit 

of PD-L1-targeting CAR T-cells against solid tumors; however, PD-L1 expression on normal 

tissues and immune cells – activated T-cells included – suggests a need to assess the safety 

of these CAR T-cells and ways of enhancing their safety.

New studies are warranted to directly compare the safety and efficacy of the aforementioned 

genetic engineering strategies and evaluate which approach is the most potent way of 

abrogating the effects of PD-1/PD-L1 signaling. Furthermore, despite the pre-clinical 

success shown by these innovative works, tumor progression or relapse observed in some 

studies reflect the reality that many patients have primary or acquired resistance to PD-1/

PD-L1 blockade (20). This suggests that other inhibitory mechanisms are at play, and 

that the interplay between different checkpoint receptors merits further investigation. Thus, 

even as the PD-1/PD-L1 axis remains an active area of research, an increased focus on 

alternative pathways driving T-cell suppression and tumor escape could further help improve 

the performance of CAR T-cells against solid tumors.

Glyco-Immune Checkpoints

Glycosylation, or the conjugation of carbohydrates to other essential macromolecules, is 

a key post-translational modification resulting in diverse cell surface glycan structures 

that regulate many biological processes (21). It is well established that cancer cells are 

aberrantly glycosylated due to the changes in glycan synthesis pathways-- a hallmark 

implicated in their proliferation, metastasis, and other tumor-promoting processes. Such 

tumor-associated glycans commonly mediate their effects by engaging glycan-binding 

proteins, or lectins, that typically contain one or more carbohydrate-recognition domains. 

Accordingly, mechanisms by which tumor-specific glycan signatures mediate tumor cell 

recognition by the immune system have garnered increased attention (22), resulting in 

growing evidence of lectins modulating anti-tumor innate and adaptive immune responses – 

including various Sialic-acid binding immunoglobulin-type lectins (Siglecs), galectins, and 

C-type lectins. The engagement by such lectins of their glycan ligands in immune cells 

constitute glyco-immune checkpoints and present the potential to develop novel or improved 

cancer immunotherapeutic modalities, including T-cell therapies.

The immunomodulatory sialoglycan-Siglec axis

Cell surface glycans are often modified with terminal sialic acids that mediate many aspects 

of cell-cell interaction. In this sense, sialoglycans act as self-associated molecular patterns 

(23), and tumor cells commonly mask themselves by hypersialylating their surface glycans. 

Sialoglycans are ligands for Siglecs, which are implicated in tumor cell immunoevasion. 

These pattern recognition receptors are generally divided into the evolutionary conserved 

Siglecs and the rapidly evolved CD33-related Siglecs, differing in the sialic acid ligands 

they recognize and their expression profiles across immune cells whose activities they 

can inhibit or promote (22). Most Siglec receptors contain intracellular immunotyrosine 

inhibitory motif (ITIM) domains, which recruit and signal through SHP1 and SHP2, 

and negatively regulate immune cell activation, proliferation and survival. As such, the 
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sialoglycans overexpressed by tumor cells engage these inhibitory Siglecs, often culminating 

in the dampening of anti-tumor immune responses.

Various studies have identified sialoglycan ligands for CD33-related Siglecs that mediate 

tumor cell escape from surveillance and elimination by the immune system (23-29). Though 

Siglec-9 expression on myeloid and natural killer (NK) cells had previously been implicated 

in immune modulation (24-26), consistent and prominent expression of this receptor on 

tumor-infiltrating lymphocytes has also been found in primary samples of non-small cell 

lung cancer (23). Sialoglycan interaction with Siglec-9 negatively impacts T-cell activation 

in vitro, while in vivo studies further implicate human Siglec-9 expression in accelerated 

tumor growth and worse overall survival. A CRISPR inference-based genomic screening 

approach identified a specific glycoform of CD43 expressed on K562 leukemia cells as 

the primary ligand for Siglec-7, establishing a novel axis with therapeutic potential (30). 

As Siglecs continue to emerge as targets to boost the antitumor immune response (31), the 

identification of ligands that engage these receptors on T-cells and other immune cells will 

be imperative. Such findings could allow the development of potent engineering strategies 

targeting the sialoglycan-Siglec axis, particularly within the context of CAR T-cell therapy 

against solid tumors. Meril et al. designed second generation CAR T-cells based on the 

extracellular region of the Siglec-7 and Siglec-9 proteins (32). These engineered cells 

showed anti-tumor activity against hypersialylated tumor targets in vitro and extended the 

survival of tumor-bearing mice by delaying tumor growth.

Other groups have proposed alternative ways of interfering with Siglec-sialoglycan 

interactions, including pharmacologically inhibiting sialic acid expression using a sialic acid 

glycomimetic (33). More recently, Gray et al. demonstrated that an anti-HER-2-sialidase 

conjugate selectively desialylated breast cancer cells specifically within the TME in vivo 
(34). This strategy hints at the potential of armored CAR T-cells secreting sialidase or a 

sialic acid-blocking glycomimetic for the treatment of solid tumors. Such antibody-targeted 

approaches have the potential to minimize systemic exposure to therapeutic strategies 

against sialoglycans, as sialoglycan expression on normal tissue may present concerns for 

off-target activity. Thus, Siglec-based CAR T-cells, as engineered by Meril et al., will 

require additional assays to assess the risk of toxicity to normal tissues that may express 

ligands for Siglec-7 and Siglec-9.

Galectins

A broadly-expressed class of lectins, galectins – previously known as “S-type lectins” due to 

their dependence on disulfide bonds – specifically bind to β-galactoside carbohydrates and 

play a valuable role in modulating the TME by regulating the innate and adaptive immune 

systems (35). Moreover, galectins can positively and negatively regulate T cell death. Of the 

11 galectins identified in humans, galectin-1, galectin-3, and galectin-9 have been subject to 

extensive investigation as it pertains to tumor progression and immune escape (36).

Galectin-1, −3, and −9 can all regulate T-cell death, both intra- and extracellularly. 

Extracellular galectin-1 and galectin-3 directly induce death of both T-cells and thymocytes. 

However, galectin-3 possesses both pro- and anti-apoptotic activity as intracellular 
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galectin-3 can also suppress apoptosis (36). Although both galectin-1 and galectin-3 can 

induce events that lead to cell death, the mechanisms by which each perform its tasks differ 

in various ways. Galectin-3 binds to a complement of T-cell surface glycoprotein receptors, 

including CD71, that differ from those recognized by galectin-1. T-cell apoptosis mediated 

by galectin-1 requires CD7 but not CD45 which contrasts with galectin-3, despite previous 

work implicating a role for CD7 in galectin-3 induced T-cell death. Lastly, thymocyte 

subsets vary in susceptibility to galectin-1 and −3 induced cell death. Galectin-1 can kill 

both double-negative and double-positive human thymocytes, while galectin-3 preferentially 

induces cell death in double-negative thymocytes.

Galectin-1 is involved in the apoptosis of various activated immune cells – CD8+ T-

cells included, the secretion of anti-inflammatory factors such as IL-10 and TGF-β, and 

maintenance and activity of CD8+CD122+PD-1+ regulatory T-cells (Tregs) (37). In the 

azoxymethane-dextran sodium sulfate model of colitis-associated colorectal cancer, mice 

lacking galectin-1 developed fewer tumors and had decreased frequency of such Tregs, 

suggesting that the regulatory activity of galectin-1 is associated, at least in part, with 

these cells. Of mouse and human CD4 helper T-cell subsets, galectin-1 selectively induces 

apoptosis of pro-inflammatory Th1 and Th17 cells, but not naïve, Th2, and regulatory 

FoxP3+ T-cells (38). This susceptibility to galectin-1-induced apoptosis is associated with 

decreased N-acetylneuraminic acid α2,6-galactose residues on the surface of Th1 and Th17 

cells as well as decreased expression of beta-galactose α2,6-sialyltransferase ST6Gal1. 

Interestingly, ST6Gal1 expression in CD4+ T-cells is also associated with self-renewing 

properties and is required for optimal expression of the stemness-associated transcription 

factor TCF1 (39).

The engagement of galectin-3 and PD-1 leads to tumor-induced immune suppression, 

and both PD-L1 and galectin-3 have been implicated in M2-macrophage polarization and 

reduced CD8+ T-cell recruitment to the tumor site (40). Blockade of galectin-3 enhanced the 

antitumor efficacy of checkpoint inhibitors and T-cell agonists by restoring the function of 

tumor-reactive T-cells, including restored cytokine production and cytolytic activity (40). 

This finding was further supported by another study from Vuong et al. showing that 

treatment with anti-PD-L1 antibody or galectin-3 inhibitor GB1107 alone could not reduce 

tumor size in mice with NSCLC, whereas combination treatment produced a significant 

decrease in tumor growth (41). In humans, there is a correlation between patients’ responses 

to anti PD-1 immunotherapy and galectin-3 expression, which identifies galectin-3 as a 

potential marker for tumor responsiveness (42). Findings from a pilot study by Capalbo 

et al. indicate early and dramatic tumor progression for patients with PD-L1+ non-small 

cell lung carcinoma (NSCLC) and concomitant high expression of galectin-3 treated with 

pembrolizumab, whereas patients with low-intermediate or negative expression of galectin-3 

showed early and durable response.

In addition to galectin-1 and galectin-3, galectin-9 has garnered increased interest due to 

its involvement in many aspects of tumor cell biology and ability to modulate the immune 

system. Galectin-9 plays a pivotal role in the regulation of immune suppressive features of 

gliomas, and patients with high galectin-9 expression were shown to be more susceptible to 

the development of malignant tumors (43, 44). Galectin-9 recognizes the N-linked glycan 
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chains present within the T-cell immunoglobulin and mucin domain-containing protein 3 

(Tim-3) IgV domain, a higher affinity interaction compared to galectin-1 and galectin-3 

(45). Tim-3 is a co-inhibitory receptor expressed on IFN-γ-producing T-cells and interaction 

between Tim-3 and galectin-9 downregulates Th1 immunity (45, 46).

Recent work by Yang et al. has shown that galectin-9 binds to PD-1, an interaction that is 

highly selective, mediated by glycans, and does not disrupt PD-L1 binding to PD-1 (47). In 

addition, PD-1 expression desensitizes T-cells to cell death mediated by the interaction of 

galectin-9 with Tim-3, and galectin-9 expression and secretion is regulated by interferons. 

Considering that co-expression of PD-1 and Tim-3 indicates the functional exhaustion of 

CD8+ T-cells, these findings could be leveraged to improve the persistence of CAR T-cell 

therapy in the TME. In addition, and since galectin-9 is upregulated by IFN signaling 

similar to IFN-mediated upregulation of PD-L1, targeting IFN-induced galectin-9 expression 

and secretion may be a promising strategy. Lastly, galectin-9 has an immunosuppressive 

role in pancreatic ductal adenocarcinoma (PDA). In PDA cell lines HPAFII and CFPAC, 

which are resistant to tMUC1-CAR T cell therapy treatment, qPCR analysis revealed 

the overexpression of galectin-9 (48). Targeting galectin-9 with a blocking antibody 

reduced resistance of these PDA cell lines to tMUC1-CAR T cell therapy, illustrating the 

immunosuppressive role galectin-9 plays and its potential in the future development of T-cell 

therapy.

C-type Lectins

Another promising group of immunotherapeutic targets are the C-type lectins, a superfamily 

of over 1,000 proteins defined by the presence of one or more C-type lectin-like domains 

(49). Many reports have identified specific axes with immunomodulatory effects, findings 

that could potentially be exploited to improve CAR T-cell function.

Ligation of galectin-9 by dectin-1, mostly expressed on the surface of macrophages and 

other myeloid cells, has been implicated in producing tolerogenic macrophages that lead 

to adaptive immune suppression and disease progression (50, 51). Blockade of this axis or 

dectin-1 deletion increased the anti-tumor activity of T-cells in vivo (51). In addition, CD8+ 

T-cells from dectin-1-deficient mice show significantly decreased PD-1 induction (52). 

Towards therapeutics, an exosome-based dual delivery system containing surface oxaliplatin 

prodrug and loaded with siRNA targeting the galectin-9/Dectin-1 axis reversed tumor-

associated macrophage (TAM)-mediated immunosuppression, downregulated regulatory T-

cells, and promoted the recruitment of cytotoxic immune cells (53).

NKG2 proteins are another group of C-type lectins expressed on NK cells that most 

notably dimerize with CD94 on the cell surface (54, 55). With regards to cancer, two of 

the more well-studied members of this family are the inhibitory NKG2A and activating 

NKG2D receptors, the latter of which is also expressed on CD8+ T-cells among other 

cells. Consequently, blockade of the NKG2A-CD94 axis has been found to stimulate CD8+ 

T-cells and NK cells (55). Some groups have alternatively sought to interfere with NKG2A 

expression via shRNA and lentiviral transduction of protein expression blockers (56, 57). 

NKG2D ligand binding is normally an activating signal for NK and CD8+ T-cells, when 
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ligands are expressed on the cell surface. However, continuous stimulation of NKG2D 

has been shown to be detrimental to NK and T-cell immune function (58, 59), further 

exacerbated by ligation from soluble ligands secreted by tumors, which bind NKG2D, but 

do not activate receptor-mediated signaling. This is a strategy employed by many different 

tumor types (58, 60-64) contributing to the immunosuppressive TME. One approach to 

enhance NKG2D-mediated elimination of tumors is a fusion protein comprised of the 

NKG2D ligand MICA and an anti-CD20 single chain variable fragment; this MICA-scFv 

recombinant protein ligated MICA on the surface of CD20+ leukemia cells, which activated 

NKG2D+ NK cells to induce apoptosis (65). Targeting these soluble ligands via antibody 

blockade can abrogate their immunosuppressive effects and enhance CD8+ T-cell effector 

functions, especially when used in concert with other therapies such as PD-1/PD-L1 

blockade (66), suggesting this approach could be used to improve CAR T-cell cytotoxicity.

The macrophage galactose-type lectin (MGL) is most commonly expressed on dendritic 

cells and macrophages and binds GalNAc residues, galactose, O-linked Tn-antigen and TF-

antigen (67, 68). Tn antigen engagement by MGL results in the polarization of tolerogenic 

dendritic cells and immunosuppressive macrophages (69, 70). In addition, MGL binding of 

CD45 on effector T-cells suppresses activation and leads to apoptosis (71). In a model of 

lung cancer, Tn antigen expression on tumor cells engaging MGL2 (mouse homolog for 

human MGL) on antigen presenting cells mediated recruitment of IL-10 secreting T-cells 

and an immunosuppressive milieu (72). Similarly, in a mouse model of glioma, Tn+ glioma 

tumors influenced local recruitment of PD-L1+CCR2+ tumor-associated macrophages as 

well as an expansion of these cells in the bone marrow (70), suggesting that the existence of 

a MGL/Tn antigen immunosuppressive checkpoint axis.

Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) 

is another C-type lectin also expressed on APCs (73, 74), and its interaction with Lewis X 

antigens on tumor cells leads to immune suppression through various mechanisms driven by 

TAMs, including increased PD-L1 expression (75, 76). Importantly, blockade of DC-SIGN 

can abrogate immunosuppressive activity from TAMs and increase anti-tumor activity of 

CD8+ T-cells, while working synergistically with PD-1 immunotherapies in vitro (76).

The P-selectin glycoprotein ligand-1 (PSGL-1) is most widely known for its interactions 

with selectins and role in cellular migration (77); additional evidence points to its ability 

to also hinder T-cell activity by interfering with IL-2 and IL-7 signaling while increasing 

IL-10 production (78-80). In melanoma models marked by T-cell dysfunction, a deficiency 

in PSGL-1 improved T-cell response and tumor control (80, 81). Additionally, PSGL-1 

can bind to V-domain immunoglobulin suppressor of T cell activation (VISTA) to mediate 

T-cell suppression in acidic environments, characteristic of many TMEs (82). Consequently, 

blockade with antibodies specific to this PSGL-1/VISTA axis reversed immunosuppression 

in vivo, and ongoing clinical trials are assessing the blockade of VISTA. In light of 

these findings, PSGL-1 could also be a promising therapeutic target to overcome T-cell 

suppression (83, 84).

E-selectin receptor is expressed on vascular endothelial cells and is known to be one of the 

key players in the processes of cell adherence and homing of cells circulating throughout the 
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body. (85, 86). Ligation of E-selectin by its associated tetra-saccharide ligand sialyl-Lewis 

X, expressed on many circulating cells, leads to their adherence and infiltration (86). Mondal 

et al. utilize ex vivo fucosylation of CAR T-cells as a glycoengineering strategy to increase 

sialyl-Lewis X expression and improve their homing to the bone marrow (87). The ability of 

immunotherapies, such as CAR T-cells, to induce tumor regression is highly contingent on 

whether or not the cells are able to sufficiently penetrate and accumulate in the tumor site 

itself (88, 89). Improved homing of CAR T-cells to targeted tissues may mean that a lower 

dose could achieve the same amount of infiltration, potentially combatting treatment-related 

toxicities that arise from large immunotherapy doses (87, 90).

Conclusion

Although CAR T-cell therapy has revolutionized the treatment of cancer, great focus 

remains on overcoming the immunosuppressive microenvironment that lessens their efficacy 

against solid tumors. This has given rise to innovative approaches aimed at reducing 

inhibitory effects stemming from the interaction of checkpoint receptors on T-cells with 

their cognate ligands, with many groups targeting the PD-L1/PD-1 axis. However, primary 

and secondary resistance to PD-L1/PD-1 blockade in the clinic signals the presence of 

alternative immunosuppressive mechanisms, such as the inhibition of immune cells driven 

by lectins engaged by tumor cell-surface glycans. Such inhibitory glycan-lectin interactions 

present new and exciting avenues to improve immunotherapeutic modalities, and existing 

engineering strategies aiming to disrupt the PD-L1/PD-1 axis could serve as a blueprint to 

target such glyco-immune checkpoints.
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Figure 1. Engineering strategies to target the PD-1/PD-L1 axis and enhance CAR T-cell 
performance.
Researchers have interfered with PD-1 expression via shRNA or siRNA-mediated 

knockdown or CRISPR/Cas-9-mediated knockout. CAR T-cells have also been engineered 

to secrete full length antibodies or single chain variable fragments (scFvs) that block the 

binding of PD-1 with its cognate ligand PD-L1. Alternatively, groups have generated PD-

L1-targeting CAR T-cells as well as CAR T-cells co-expressing PD-1 dominant-negative 

receptors with no intracellular signaling domains, or PD-1 switch receptors containing the 

intracellular domain of the costimulatory molecule CD28.
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Figure 2. Aberrantly glycosylated tumor cells can engage lectins to inhibit the activity of CD8+ 
T-cells.
a) Examples of tumor-associated sialoglycan engagement of sialic acid-binding 
immunoglobulin-like lectins (Siglecs) to modulate the immune response. Specific axes 

that modulate myeloid and natural killer cells have been identified, such as the binding of 

MUC1 aberrantly glycosylated with short, sialylated O-glycans (MUC1-ST) to Siglec-9 

expressed on macrophages to promote a tumor-associated macrophage-like phenotype. 

Although Siglec-9 upregulation on T-cells and Siglec-15 expression on macrophages and 

tumor cells have been implicated in the inhibition of CD8+ T-cells, the specific ligands 

that mediate their effects have not been identified. b.) Galectin-3 regulates proliferation 
and cytokine production by CD8+ T-cells. Galectin-3 binding to β-galactoside glycan 

structures, N-acetyllactosamine (LacNAc), causes an increase in tumor cell proliferation 

and immune escape. The galectin-3 inhibitor GB1107 reduced mouse and human lung 

adenocarcinoma growth and caused an increased expression of cytotoxic (IFNγ, granzyme 

B, perforin-1) and apoptotic effector molecules, recruitment and activation in CD8+ T-

cells, and decreased tumor cell proliferation. c.) Examples of C-type Lectin modulation 
of adaptive immune function. Macrophage galactose-type lectin (MGL) interacts with 

terminal α-GalNAc residues (Tn antigen) on tumor cells to induce an immunosuppressive 

phenotype as well as on CD45 on effector T-cells to directly inhibit activity. NKG2A/

CD94 recognizes HLA-E on tumor cells, leading to immunosuppression through increased 

TGF-β and decreased IL-15 secretion. This effect has been prevented through lentiviral 

transduction to produce shRNA against NKG2A transcripts, leading to increased NK and 

T-cell cytotoxicity. The interaction of DC-SIGN expressed on dendritic cells with Lewis X 

antigens on the tumor surface causes adaptive immunosuppression through many pathways, 

including increased PD-1 expression on T-cells, leading to apoptosis.
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