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Abstract
Background: Cyclin-dependent kinase 13 plays a critical role in the regulation 
of gene transcription. Recent evidence suggests that heterozygous variants in 
CDK13 are associated with a syndromic form of mental deficiency and develop-
mental delay, which is inherited in an autosomal dominant manner.
Methods: A mentally retarded mother (33-year-old) and son (10-year-old boy) 
in our hospital with CDK13 variant (c.2149 (exon 4) G>A. p.Gly717Arg) were 
detected by whole-exome sequencing (WES). All published CDK13 variant syn-
drome cases as of November 11, 2021, were searched, and their clinical informa-
tion was recorded and summarized.
Results: We studied two patients in a Chinese family with a heterozygous con-
stitutional CDK13 variant (c.2149 (exon 4) G>A. p.Gly717Arg), exhibiting the 
classical characteristics of dysmorphic facial features and intellectual develop-
mental disorder (CHDFIDD, OMIM # 617360), without congenital heart defects. 
This is the first reported case of an adult patient with a CDK13 variant that gave 
birth to the next generation with the same variant. Preimplantation genetic test-
ing for monogenic disease (PGT-M) was performed for the proband and her hus-
band with full informed consent and successfully blocked the inheritance of the 
disease.
Conclusion: Our study is of great significance for molecular diagnosis and ge-
netic counseling of patients with CDHFIDD and extends the variant spectrum of 
CDK13.
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1   |   INTRODUCTION

The CDK13 (cyclin-dependent kinase 13) gene, located on 
chromosome 7p14.1, contains 16 exons and encodes the 
CDK13 protein, a member of the cyclin-dependent serine/
threonine protein kinase (STK) family (Hamilton & Suri, 
2019). Members of this family are vital master switches 
in gene expression and cell cycle progression (Bostwick, 
2019). Furthermore, this kinase uses adenosine triphos-
phate (ATP) as a source of phosphate groups and forms, 
in association with cyclin K, a protein complex that ac-
tively regulates transcription by phosphorylation of RNA 
polymerase (Pol) II (Greenleaf, 2019). Recent work has 
shown that CDK13 is related to RNA processing and its 
mouse homolog plays a role in converting the transcrib-
ing Pol II from an initiating to an elongating form (Chen 
et al., 2014; Liang et al., 2015). CDK13 cooperates with 
CDK12 to control global RNA polymerase II processiv-
ity through phosphorylating the C-terminal domain (Fan 
et al., 2020; Quereda et al., 2019). The genetic targets of 
CDK13 activity seem to be mainly involved in processes 
associated with extracellular and growth signal trans-
duction (Even et al., 2016). Embryonic lethality of mouse 
model with non-functional CDK13 has been observed 
by the embryonic day 16.5, while live embryos were ob-
served on embryonic day 15.5 (Novakova et al., 2019). At 
this stage, improper development of multiple organs has 
been documented, partly resembling defects observed in 
patients with mutated CDK13 (Novakova et al., 2019). To 
date, pathogenic variants in CDK13 are mainly clustered 

in the highly conserved STK domain, through molecular 
modeling, to predict the perturbations of each interaction 
with cyclin K, ATP, and magnesium binding (Deciphering 
Developmental Disorders, 2017) (Figure 1).

The CDK13 protein is predominantly expressed in 
plasma, monocytes, lymphocytes, T cells, natural killer 
(NK) cells, blood mononuclear cells, lymph nodes, bone 
marrow mesenchymal stem cells, the brain, retina, heart, 
lungs, breast, pancreatic juice, placenta, ovaries, and tes-
tes (https://gtexp​ortal.org/home/gene/CDK13). Until 
the recent analysis of exome sequencing data in the 
Deciphering Development Disorders study (Firth et al., 
2011; Kohoutek & Blazek, 2012), the variants of CDK13 
were not reported to be associated with human diseases. 
Mutations in CDK13 were reported to cause congenital 
heart defects, dysmorphic facial features, and intellectual 
developmental disorder (CHDFIDD, OMIM # 617360) 
(Bostwick et al., 2017). All patients had a history of de-
velopmental delay and craniofacial dysmorphism, char-
acterized by a wide nasal bridge and a narrow mouth, 
hypertelorism, and upslanted palpebral fissures, with ad-
ditional features including clinodactyly and joint hyper-
mobility, structural brain abnormalities, and skin changes 
(Ito et al., 2018; Sifrim et al., 2016).

Although CHDFIDD, caused by CDK13 variants, was 
initially considered to be an extremely rare disease, 30 
patients were diagnosed in less than three years after the 
discovery of the initial disease gene (Bostwick et al., 2017; 
Hamilton et al., 2018; Hamilton & Suri, 2019; Sifrim et al., 
2016; Turner et al., 2019; Yakubov et al., 2019). At the 

K E Y W O R D S
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F I G U R E  1   Schematic of CDK13 domain composition, annotated with the position of reported pathogenic variants. NBR, nucleotide-
binding region; SR-rich domain, serine-arginine-rich domain

https://gtexportal.org/home/gene/CDK13
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moment, more than 50 patients have been diagnosed up 
to now including current study in the last few years and 
the number is increasing every year. Here, we report two 
patients in a Chinese family with a heterozygous constitu-
tional CDK13 variant (c.2149 (exon 4) G>A. p.Gly717Arg), 
exhibiting the classical features of CHDFIDD without 
congenital heart defects.

Preimplantation genetic testing for monogenic (PGT-
M) was employed as a part of the in vitro fertilization (IVF) 
process to select the unaffected embryo from patients with 
single genetic diseases, which can effectively prevent the 
transmission of genetic diseases from patents to the off-
spring before pregnancy (De Rycke et al., 2017; Treff et al., 
2013). To prevent the pathogenic mutation from passing 
down to the next generation, this couple was counseled 
and suggested to receive IVF using PGT-M. After the pre-
cise screening, a normal embryo was transferred and a 
healthy male was born at full term.

1.1  |  Case presentation

A 33-year-old mother and a 10-year-old boy were re-
ferred to the genetic counseling clinic at the reproduc-
tive medicine center. The karyotype of the maternal 
peripheral blood was 46, XX, and that of the son was 
46, XY. However, both the mother and child had intel-
lectual and learning disabilities and autistic features. 
Interestingly, there have been at least three patients 
with Cdk13 mutations diagnosed without heart de-
fects in Bostwick’ research (Bostwick et al., 2017) and 
three more patients in other studies (Uehara et al., 
2018). Apart from the fact that she also had a mentally 
impaired boy, her family history was typical. She was 
the first child of healthy, non-consanguineous Chinese 
parents. Physical examination revealed craniofacial 
dysmorphism (narrow mouth, thin upper vermilion, 
epicanthus, telecanthus, low-set ears, a depressed nasal 
ridge with a wide nasal bridge, strabismus, ptosis, up-
wards palpebral fissure oblique, and micrognathia), de-
layed speech and language development, dysgnosia, and 
hypotonia; however, the remaining examination was 
unremarkable (Table 1). No cardiac or musculoskeletal 
abnormalities (including skull and vertebral column) 
were noted (Figure 2).

1.2  |  Genetic testing

Informed consent was signed by the parents of the pa-
tients; 5 ml of peripheral blood was extracted from the 
patients, parents and husband of the female patient. 
Genomic DNA was extracted according to manufacturer 

instructions (Kangweishiji, China). The Chigene 
Translational Medicine Research Center (Beijing, 
China, https://www.chige​ne.cn) conducted sequencing 
and basic bioinformatic analyses, including read map-
ping, variant detection, filtering, and annotation. This 
test is divided into three main steps: variant screening 
(using high-throughput sequencing technology), gene 
data analysis (using bioinformatics and clinical infor-
mation analysis technology), and suspected pathogenic 
variant verification (using Sanger sequencing technol-
ogy). Whole-exome sequencing (WES) was performed 
using IDT xGen Exome Research Panel V1.0, and the 
whole exon cores were captured and sequenced using an 
Illumina NovaSeq 6000 series sequencer. The target se-
quencing coverage was not less than 99%. Through mo-
lecular biology annotation, biology genetics, and clinical 
characteristics analysis for the integration of genetic 
disease screening cloud platform system for precise di-
agnosis analysis, combined with the pathogenic variant 
database normal human genome database known for 
thousand kinds of hereditary disease clinical features, 
such as database and data analysis algorithms, for hun-
dreds of thousands of genetic variants were classified, 
grade of variation USES, the three elements of grading 
system, and the genetic variant grading system of the 
American College of Medical Genetics and Genomics 
(ACMG, journal of the American medical society). 
After PCR, Sanger sequencing was performed using an 
ABI3730 sequencer to verify the target sequence, and 
the verification results were analyzed using sequence 
analysis software. Minor allele frequency (MAF) data 

T A B L E  1   Summary of major clinical features of two patients 
with variants in CDK13

Patient Proband Son

CDK13 variant c.2149 G>A (p. 
Gly717Arg)

c.2149 G>A (p. 
Gly717Arg)

Sex Female Male

Age at examination 33 y, 1 m 8 y

Gestational age at 
birth

38/40 40/40

Developmental delay + +

Intellectual disability + +

Autism + +

Seizures − −

Facial dysmorphism + +

Structural heart 
anomaly

− −

Structural brain 
abnormality

− −

Digital anomalies + +

https://www.chigene.cn
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were used to distinguish between common and rare vari-
ants. The smaller the MAF, the lower the variant rate in 
the population, indicating a rare variant. A MAF < 1%, 
against the 1000 Genomes Project, was used to screen 
candidate variants. According to the 2015 interpreta-
tion guidelines recommended by the ACMG, a patho-
genic variant of the CDK13 gene was identified as the 
cause of the condition. The sequencing results showed 
that a missense variant in c.2149 (exon 4) G>A of the 
CDK13 gene, resulted in glycine being replaced by ar-
ginine (p.Gly717Arg), which was verified by Sanger se-
quencing. (Figure 3). In addition, the sequencing results 
revealed that the genotypes of the parents and sister 
were wild type (WT), indicating that it was a de novo 
variant. The three-dimensional (3D) structure of the WT 
CDK13 protein was generated using the SWISS-MODEL 
web and analyzed using the UniProt database (https://

www.unipr​ot.org/). The database demonstrated that 
amino acids 711–719 are nucleotide-binding domains. A 
nucleotide-binding domain plays a vital role in normal 
functioning of the CDK13 protein (Akker et al., 2018). 
According to ACMG guideline (Richards et al., 2015), 
this missense variant can be classified as “pathogenic” 
(PS1 + PS2 + PM2 + PP3; Table 2).

To further detect the effects of variant c.2149 (exon 4) 
G>A on the function of CDK13 protein, I-TASSER was 
used to predict the WT and mutated type of the CDK13 
protein (Berro et al., 2008; Fan et al., 2020; Roy et al., 2010; 
Trinh et al., 2019). Visualization and analysis of the 3D 
protein structure were performed using SWISS-MODEL 
(Figure 4). The substitution of Gly717Arg leads to a change 
in the topological structure of the glycine-rich loop on the 
surface of the ligand-binding pocket, resulting in a change 
in the hydrogen bonding in this region. It is also possible 

F I G U R E  2   Craniofacial and 
dysmorphology features in individuals 
with pathogenic CDK13. Both mother (a) 
and child (b) had intellectual disability, 
learning disabilities and autistic features

(a) (b)

F I G U R E  3   Pedigree of the family (a) and electropherograms (b) of normal, the patient and his parents; c.2149 (exon 4) G>A 
substitution causes Gly to Arg at position 717 of protein.

https://www.uniprot.org/
https://www.uniprot.org/
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that since the Gly717Arg substitution occurs in a glycine-
rich region, which reveals a high degree of evolutionary 
conservation, the effect of this variant on protein folding 
in vivo is more profound than that in comparative model-
ing in silico.

1.3  |  Embryo preparation and 
genetic testing

The IVF and embryo biopsy were processed with 
the conventional protocol at Center of Reproductive 

T A B L E  2   Criteria for classifying pathogenic variants

Evidence of 
pathogenicity Category

Very strong PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) 
in a gene where LOF is a known mechanism of disease

Caveats:
•	 Beware of genes where LOF is not a known disease mechanism (e.g., GFAP, MYH7).
•	 Use caution interpreting LOF variants at the extreme 3′-end of a gene.
•	 Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein 

intact.
•	 Use caution in the presence of multiple transcripts.

Strong PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change
Example: Val→Leu caused by either G>C or G>T in the same codon
Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level
PS2 De novo (both maternity and paternity confirmed) in a patient with the disease and no family history
Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, 

and so on, can contribute to nonmaternity
PS3 Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product
Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic 

laboratory setting are considered the most well established
PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in 

controls
Note 1: Relative risk or OR, as obtained from case–control studies, is >5.0, and the confidence interval around the 

estimate of relative risk or OR does not include 1.0. See the article for detailed guidance
Note 2: In instances of very rare variants where case–control studies may not reach statistical significance, the prior 

observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, 
may be used as moderate level of evidence

Moderate PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an 
enzyme) without benign variation

PM2 Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes 
Project, or Exome Aggregation Consortium

Caveat: Population data for insertions/deletions may be poorly called by next-generation sequencing
PM3 For recessive disorders, detected in trans with a pathogenic variant
Note: This requires testing of parents (or offspring) to determine phase
PM4 Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants
PM5 Novel missense change at an amino acid residue where a different missense change determined to be 

pathogenic has been seen before
Example: Arg156His is pathogenic; now you observe Arg156Cys
Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level
PM6 Assumed de novo, but without confirmation of paternity and maternity

Supporting PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease
Note: May be used as stronger evidence with increasing segregation data
PP2 Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a 

common mechanism of disease
PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, 

evolutionary, splicing impact, etc.)
Caveat: Because many in silico algorithms use the same or very similar input for their predictions, each algorithm 

should not be counted as an independent criterion. PP3 can be used only once in any evaluation of a variant
PP4 Patient's phenotype or family history is highly specific for a disease with a single genetic etiology
PP5 Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to 

perform an independent evaluation
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Medicine of Children's Hospital of Shanxi and Women 
Health Center of Shanxi. Intracytoplasmic sperm in-
jection (ICSI) was performed to detect genetic traits 
in embryo biopsies, allowing the selection and trans-
fer of embryos without carrying the genetic disease. 
Embryos were cultured in vitro to the blastocyst stage 
(Day 5 or Day 6), following by biopsying 5–10 trophec-
toderm (TE) cells from each blastocyst for analysis. 
Biopsied TE cells were placed in EP tubes containing 
cell lysis buffer and then adapted MALBAC (multiple 
annealing and looping-based amplification cycles) 
for whole-genome amplification (WGA). WGA and 
sequencing process was done at laboratory of Yikon 
Genomics. Finally, we selected a euploidy embryo 
without carrying the mutation (c.2149 G>A) to im-
plant into the uterus. The amniocentesis of this cou-
ple of proband was performed at 20 weeks of gestation 
and the PGT-M results have been confirmed by the 
CDK13 gene mutation detection of gDNA in amnion 
cells (Figure 5).

2   |   DISCUSSION AND 
CONCLUSION

CHDFIDD syndrome is an autosomal dominant inheritance 
demonstrated by the identification of heterozygous variants 
of CDK13 (Bostwick et al., 2017). To date, 19 variants have 
been verified to be associated with the CHDFIDD syndrome, 
with the missense variant of c.2525 A>G (p.Asn842Ser) 
being the most common one (Hamilton & Suri, 2019; Turner 
et al., 2019; Yakubov et al., 2019). Most variants occur in the 
highly conserved protein kinase domain (PKD), and molecu-
lar modeling predicted that the variants would damage ATP 
binding, and binding of the magnesium ion is necessary for 
interactions with cyclin K and enzyme activity. The catalytic 
PKD of CDK13 extends from amino acids 705 to 998. The 
nucleotide-binding site of the lysine residue extends from po-
sitions 711 to 719 in the polypeptide chain, and the activation 
loop of PKD extends from amino acids 854 to 878 (Bartkowiak 
et al., 2010; Deciphering Developmental Disorders, 2017; 
Dong et al., 2018; Even et al., 2016; Greenleaf, 2019; Liu et al., 
2020). Homozygous or heterozygous variants of the CDK13 
gene can cause CHDFIDD.

All the patients in the previous study were newborns of 
a single individual, and the vast majority had congenital 
heart defects. Here, we reported two patients in a Chinese 
family with a heterozygous constitutional CDK13 vari-
ant (c.2149 (exon 4) G>A. p. Gly717Arg), exhibiting the 
classical features of CHDFIDD without congenital heart 
defects. We speculated that congenital cardiac defects 
are not essential phenotypic features of constitutional 
CDK13 variants. Distinctive facial features, consisting of 
a depressed nasal ridge with a wide nasal bridge, widely 
spaced and peg-shaped teeth, and a short and broad colu-
mella may be linked to the diagnosis of this newly discov-
ered syndrome that has not been taken seriously before. 
In conclusion, our study reports two patients in a Chinese 
family with a heterozygous constitutional CDK13 variant. 
To the best of our knowledge, this is the first reported case 
of an adult patient with a CDK13 variant that gave birth to 

F I G U R E  4   Local structure of CDK13 in wild type (a) and 
G717P variant type (b). The Gly717Arg substitution results in 
altered topology of the glycine-rich loop at the upper surface of the 
ligand-binding pocket, leading to altered hydrogen bonding within 
this region

(a) (b)

F I G U R E  5   CDK13 gene mutation detection of gDNA in amnion cells.
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the next generation without the same variant by PGT-M to 
screen a normal embryo.
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