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• Traces of SARS-CoV-2 RNA were detected
in Latvian municipal WW.

• Population size control measurements en-
abled interpretation on acquisition of the
COVID-19 prevalence estimation.

• Habits of citizen movement must be con-
sidered using WBE in small/medium-
sized towns.
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Wastewater-based epidemiology (WBE) has regained global importance during the COVID-19 pandemic. Themobility
of people and other factors, such as precipitation and irregular inflow of industrial wastewater, are complicating the
estimation of the disease prevalence through WBE, which is crucial for proper crisis management. These estimations
are particularly challenging in urban areas with moderate or low numbers of inhabitants in situations where move-
ment restrictions are not adopted (as in the case of Latvia) because residents of smaller municipalities tend to be
more mobile and less strict in following the rules and measures of disease containment. Thus, population movement
can influence the outcome ofWBEmeasurements significantly andmay not reflect the actual epidemiological situation
in the respective area. Here, we demonstrate that by combining the data of detected SARS-CoV-2 RNA copy number, 5-
hydroxyindoleacetic acid (5-HIAA) analyses in wastewater and mobile call detail records it was possible to provide an
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accurate assessment of the COVID-19 epidemiological situation in towns that are small (COVID-19 28-day cumulative
incidence r=0.609 and 35-day cumulative incidence r=0.89, p< 0.05) andmedium-sized towns (COVID-19 21-day
cumulative incidence r= 0.997, 28-day cumulative incidence r= 0.98 and 35-day cumulative incidence r= 0.997,
p < 0.05). This is the first study demonstrating WBE for monitoring COVID-19 outbreaks in Latvia. We demonstrate
that the application of population size estimation measurements such as total 5-HIAA and call detail record data im-
prove the accuracy of the WBE approach.
Wastewater
ddPCR
5-HIAA
Mobile phone data
1. Introduction

The COVID-19 pandemic caused by the SARS-CoV-2 virus reached
Latvia in March 2020, with an average of 7.4 new cases daily and a
mean 14-day cumulative incidence of 3.1 ± 4.5 until late September
2020. During this period several outbreaks of SARS-CoV-2 were de-
tected and successfully contained due to extensive testing and contact
tracing led by the Disease Prevention and Control Centre. However,
the incidence increased rapidly starting from October, reaching its max-
imum on January 10th, 2021, with a 14-day cumulative incidence of
693.9. Since then, the number of COVID-19 cases has remained consis-
tently high (>200 until June 7th, 2021), with only periodical small-
scale fluctuations (Centre for Disease Prevention and Control, 2021a),
which was associated partially with the spread of emerging SARS-
CoV-2 variants. At the moment of manuscript preparation, on December
9th, 2021, 259,215 confirmed infection cases and 4325 deaths have
been reported in Latvia (Centre for Disease Prevention and Control,
2021b).

Several studies have analysed the continuous data of the SARS-CoV-
2 presence in the wastewater (WW) from different countries: France
(Trottier et al., 2020), the USA (Gerrity et al., 2021; Gonzalez et al.,
2020), Qatar (Saththasivam et al., 2021), Finland (Hokajärvi et al.,
2021), Spain (Randazzo et al., 2020), Germany (Westhaus et al.,
2021), the UK (Hillary et al., 2021), Sweden (Saguti et al., 2021) and
others; concluding that tracing the viruses that are present in raw WW
has proved to be a quick and timely method to track the dynamics of
the infection within a community (Ahmed et al., 2020a; Peccia et al.,
2020). Nevertheless, an estimation of the approximate number of in-
fected individuals remains a worldwide challenge for several reasons.
These reasons include, but are not limited to, diverse viral shedding
rates in a population, high dilution of viral RNA and their concentration
fluctuations by rain and industrial WWs, the presence of compounds or
particles that may either degrade or physically protect the virus and loss
of viral RNA during the transit time through the WW network (Hillary
et al., 2021; Polo et al., 2020). While some of the above-mentioned rea-
sons might have a low impact on large cities with a high population den-
sity for the detection and quantification of WW viral RNA, smaller size
populations contributing to a particular WW catchment are affected to
a much greater extent.

Common methods for the detection of SARS-CoV-2 RNA in WW are
real-time quantitative polymerase chain reaction (RT-qPCR) or droplet dig-
ital PCR (ddPCR), which can provide strain-level resolution and quantifica-
tion (Farkas et al., 2020). At present RT-qPCR is considered conventional,
because of its wide use and reliable performance in molecular diagnostics.
However, the recent emergence of ddPCR offers greater precision and re-
producibility of measurements even at low level concentrations of target
nucleic acid (Taylor et al., 2017). Currently, various WW-based SARS-
CoV-2 identification strategies have been established and introduced into
routine monitoring (Donde et al., 2021; Gonzalez et al., 2020; Kumar
et al., 2020; Tiwari et al., 2021; Zhao et al., 2022). However, the detection
and estimation of SARS-CoV-2 in theWW encounters problems such as low
abundances of the viral RNA and poor sample stability because enveloped
ssRNA viruses are more fragile to water treatment processes and environ-
mental conditions than nonenveloped viruses (Ahmed et al., 2022;
Corpuz et al., 2020; Kumar et al., 2021; Sbaoui et al., 2021). To ensure a
comparison between cities, sewage parameters are normalized by the num-
ber of people that are served by the treatment plants. The ideal scenario
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would be the application of a ubiquitous biomarker that has no other source
than human excretion, is stable during the time spent in sewers and is con-
sistent between different populations. Several human faecal presence indi-
cators have been proposed for this role, such as cross-assembly phage (Ai
et al., 2021; Crank et al., 2020; Green et al., 2020; Wilder et al., 2021)
and pepper mild mottle virus (Ai et al., 2021; D'Aoust et al., 2021;
Jafferali et al., 2021). However, these indicators might not be appropriate
for the assessment of population size due to the abundant differences in dif-
ferent individuals and cultural differences in cuisine preferences between
different populations and no improvement was observedwith their applica-
tion toWW signal correlation in new case numbers (Ai et al., 2021). On the
contrary, it has been proposed that an improved estimation of COVID-19
positive cases can be achieved by an appropriate viral concentration choice
and the designated biomarker should be correlated with other human viral
pathogens (Crank et al., 2020). Apart from biological biomarkers, many
chemical population biomarkers have been suggested (caffeine, creatinine,
cholesterol, coprostanol, cotinine, cortisol, androstenedione and 5-
hydroxyindoleacetic acid (5-HIAA), etc.). Several authors have studied
the applicability of these candidate compounds by considering the content
in WW, stability in WW, as well as the consistency of inter-day excretion
and correlation between excretion and population figures. Most of the stud-
ies resulted in the proposals to use ammonium, caffeine, cotinine, and 5-
HIAA, which were quantifiable and stable in the WW, thus demonstrating
a sufficient correlation with population size (O'Brien et al., 2014; Rico
et al., 2017; Thai et al., 2019).

Based on literature research, an HPLC-MS/MS-based assay of neuro-
transmitter metabolite 5-HIAA has been selected in our study since it is
an endogenous compound that is not lifestyle or habit dependent. In ad-
dition to biological and chemical biomarkers, the use of mobile data as a
real-time data source for population size measurements has become in-
creasingly relevant (Arhipova et al., 2020), and allows an assessment of
the trends of regional economic development or to determine the
change in population mobility patterns (Chen et al., 2018; Wu et al.,
2021). This can be achieved through the use of call detail record
(CDR) data, which are collected by mobile network operators and con-
tain information about when, where and how a mobile network user
generates voice calls and text messages (Chen et al., 2018). A limited
number of studies have estimated population size using CDR and
wastewater-based epidemiology (WBE) tools (Thomas et al., 2017),
however, further insight into correlation estimation between CDR and
WBE data with different population sizes and wastewater treatment
plant (WWTP) catchments are needed.

Therefore, the objectives of this study were (i) to demonstrate the
applicability of WBE in small and medium-sized municipalities of
Latvia and (ii) to test whether the combination of data from biomark-
ers (5-HIAA) and mobile CDR can increase the accuracy of a relation-
ship assessment between the amount of detected SARS-CoV-2 RNA
copies in WW and confirmed COVID-19 cases. To reach the objectives,
24-hour WW composite samples of two municipalities were collected
and analysed for the presence and quantity of SARS-CoV-2 viral RNA
by ddPCR. To further investigate if the viral data obtained can be asso-
ciated with the publicly available information on the confirmed
COVID-19 cases, additional quantitative measurements for the 5-
HIAA in the same WW composite samples were performed using
mass-spectrometry based methods. In addition, we evaluated whether
5-HIAA measurements from the WW can be supported by the CDR
data.
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2. Methods

2.1. Sample collection

Twomunicipalities of Latviawere selected for continuousmonitoring of
SARS-CoV-2 inWW: Jelgava (~55,000 inhabitants) and Kuldiga (~11,000
inhabitants). The daily composites of 24-hourly raw WW samples
(7.2 l) were collected at the WWTP (after grit removal) using a portable
autosampler P6 MINI MAXX (MAXX Mess und Probenahmetechnik
GmbH, Rangendingen, Germany), which was operating in a time-
dependent mode (meaning 300 ml of WW were automatically collected
after every hour, regardless of the WW flow fluctuations at the
WWTP). In the design of the sampling procedure, we used the experi-
ence of European studies (Gawlik et al., 2021) in which 24 h compos-
ite samples were preferred. Collected samples were immediately
transferred to the laboratory, stored at 4 °C and further processed
within 24 h. Samples at each municipality were collected once or
twice per week. Samples from Jelgava WWTP were collected from
17th August 2020 until 30th November 2020, resulting in the acquisi-
tion of 16 samples; samples from Kuldiga WWTP started from 7th
October 2020 until 29th November 2020, resulting in a collection of
17 samples (Supplementary Table 2). To account for factors that
could exert a substantial impact on the stability of SARS-CoV-2 RNA
and fluctuations in population size, several physical and chemical
measurements were carried out following the sample collection,
these included pH, temperature, electrical conductivity and 5-HIAA
concentration measurements. To estimate the total volume of WW
that flowed through the site during sample collection time we also
copied the appropriate water meter reading records. However, be-
cause of access restrictions, the meter reading times did not match
those of sample collection start and end times, therefore for this
study the total volume of municipality WW that flowed into the
WWTP during sample collection was estimated through the calcula-
tion of average WW volume per hour during the period between
two-meter records and multiplied by the amount of time the sample
collection was carried out. If the sample collection spanned several
meter record time periods, then the calculation was carried out for
each period individually and subsequently summed.

2.2. WW treatment and RNA extraction

TheWW sample (180 ml, 4× 45 ml) was centrifuged at 8000×g for
30 min at 4 °C to remove larger particles, such as bacterial cells and de-
bris. The supernatant was transferred to new tubes and virus particles
were precipitated using polyethylene glycol (PEG) 8000 as described
elsewhere (Fuqing et al., 2021). Briefly, 24 g of PEG 8000 (8% w/v,
Sigma-Aldrich, St. Louis, MO, USA) and 5.4 g of NaCl (PanReac
AppliChem, Darmstadt, Germany) were added to the supernatant. The
mixtures were incubated for 2 h at room temperature with gentle agita-
tion. The precipitated virus particles were recovered by centrifugation
at 12000 ×g for 10 min (Balke et al., 2018). Total RNA was isolated
with Tri reagent (Sigma-Aldrich, cat. No. 93289) according to the man-
ufacturer's instructions and eluted in 30 μl molecular grade water. RNA
samples were stored at −80 °C and subjected to RT-qPCR analysis
within 24 h after the RNA extraction. RNA concentration was estimated
using the Qubit RNA HS Assay kit and Qubit 2.0 fluorometer (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer's
instructions. To assess the efficiency of the extraction procedure and es-
timate the viral recovery rate, each sample was supplemented with 5 μl
of surrogate - recombinant, replication-defective and GFP gene contain-
ing Semliki Forest Virus (SFV) particles (constructed and cultivated at
Latvian Biomedical Research and Study Centre). The concentration of
the surrogate particles was 2.27 × 107 per 1 ml as estimated by the de-
termination of infectious particle titre. The number of GFP copies per
1 μl of the surrogate was 100,700 as determined by ddPCR. The proce-
dure of copy number determination is described in subsequent sections.
3

2.3. ddPCR

As ddPCR is superior to qPCR in terms of cDNA detection sensitivity and
precision of quantification (Taylor et al., 2017), in this study a ddPCR ap-
proach was used for the accurate quantification of SARS-CoV-2 RNA copies
withinWW samples and assessment of surrogate recovery rate. For this pur-
pose, analyses were carried out on two regions of the SARS-CoV-2 nucleo-
capsid (N) gene (N1 and N2), a single region of SARS-CoV-2 envelope
small membrane protein (E) gene and a single region of the surrogate, the
recombinant SFV (rSVF) GFP gene (Supplementary Table 1). All reactions
were carried out in a single plex using a One-Step RT-ddPCR Advanced
Kit for Probes (Bio-Rad, Hercules, CA, USA). For each reaction, negative
and positive controls targeting the SARS-CoV-2 N gene were added. The re-
actionmixture contained 5 μl of Supermix, 2 μl of reverse transcriptase, 1 μl
of 300 mM dithiothreitol, appropriate primers (forward and reverse) and
probes (Metabion, Planegg, Germany) to a final concentration of 1.21 μM
each, 2 μl of extracted WW RNA and RNase free water to a total volume
of 22 μl. The following steps included droplet generation with a QX200
Droplet Generator (Bio-Rad), amplification in a T100 Thermal Cycler
(Bio-Rad) (under following conditions: Ramp Rate setting 1; 50 °C for
60 min; 95 °C for 60 min; 40 cycles of 94 °C for 30 s and 60 °C for 2 min;
98 °C for 10 min), 4 h equilibration and droplet stabilization at room tem-
perature and positive/negative droplet quantification in a QX200 Droplet
Reader (Bio-Rad). Acquired data were analysed using QuantaSoft software
(Bio-Rad) and calculated to the number of copies per ml of WW. The aver-
age from three SARS-CoV-2 analyses was used in all further viral concentra-
tion assessments. The recovery of surrogate SFV was calculated as the
percentage of recovered GFP RNA coding copies.

2.4. Measurements of 5-HIAA within WW

All the solvents were of HPLC grade and were purchased from Fluka
(Buchs, Switzerland) or Sigma-Aldrich. Deionised water was generated
with a Milli-Q water purification system (Millipore, Billerica, MA, USA).
All the analytical standards used in this study were obtained from Sigma-
Aldrich. Solid-phase extraction was performed on Phenomenex (Torrance,
CA, USA) Strata-X cartridges (200 mg/3 ml). Cartridges were conditioned
with 3 ml of methanol and 3 ml of deionised water. The samples were fil-
tered through glass fibre filters using a vacuum. After acidification with
100 μl of formic acid, the samples were loaded on columns at the approxi-
mate flow rate of 5 ml min−1. Columns were rinsed with 3 ml of 5%meth-
anol solution inwater and then dried for 60min under vacuum, followed by
elution with 2 × 3 ml of methanol. The eluates were then evaporated to
dryness under a gentle nitrogen stream in a 40 °C water bath. The samples
were reconstituted in 200 μl of water/methanol (80/20, v/v) containing
the internal standard of salbutamol-d3 at a concentration of 0.05 ng μl−1.
Extracts were filtered through Phenomenex PVDF 0.22 μm centrifugal fil-
ters. For the analysis of 5-HIAA, final extracts were diluted ten-fold with
water/methanol (80/20, v/v).

Instrumental analysis was performed on theUHPLC-Orbitrap-HRMS sys-
tem (Thermo Fisher Scientific). Chromatographic separation was achieved
on a Thermo Hypersil Gold C18 analytical column (100 × 2.1 mm, 1.9
μm) column using mobile phases of 0.01% acetic acid in water (A) and ace-
tonitrile (B) at aflow rate of 0.3mlmin−1. A gradient programmewas used:
5% of the mobile phase (B) was used from 0 to 1.0 min, 5% (B) to 95%
(B) from 1.0 to 5.0 min, maintained at 95% (B) from 5.0 to 9.0 min, then
decreased back to 5% (B) from 9.0 to 10.0 min and finally, the column
was re-equilibrated with 5% (B) from 10.0 to 15 min. A 10 μl aliquot of
the extract was injected. The column and autosampler were maintained at
30 °C and 15 °C, respectively.

An Orbitrap-HRMS was equipped with a heated electrospray ionisation
probe (HESI II) operating in the positive ionisation mode. The 5-HIAA was
detected in full-scan mode by measuring two characteristic ions, 192.0655
m/z (quantitative) and 146.0606 m/z (qualitative), using a mass tolerance
of 10 ppm. Quantification was performed by external calibration using a
five-point calibration curve obtained by spiking pooled WW samples at
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the concentration range of 2.5 to 50 μg l−1. Multiple fortifiedWW samples
were analysed in each batch for quality control purposes, the obtained re-
coveries were in the range of 83% to 104%. Since no blank WW samples
were available, surface water was used as a blank sample. Limit of quanti-
fication (LOQ) was determined by analysing fortified surface water
samples. The determined LOQ value was 1 μg l−1. Quantification was per-
formed by external calibration using a five-point calibration curve obtained
by spiking pooled WW sample at a concentration range of 2.5 to 50 μg l−1.
A linear calibration curve with a correlation coefficient r2 > 0.99 was
obtained.

2.5. Estimation of population size through the use of mobile activity data (CDR)

The unique mobile phone user dataset consisted of the aggregated CDR
collected from October 2020 to November 2020 from all base stations in
the Kuldiga municipality cellular network (outgoing or incoming calls,
SMS). No personal data was collected and used; hence we complied with
General Data Protection Regulation and ethical norms. The average activity
per hour was calculated for each day and multiplied by the amount of time
the sample collection was carried out during that day to acquire compara-
ble datasets (Supplementary Table 2). Consequently, the details of the mo-
bile data applied in the evaluation are lost (daily instead of hourly data is
applied), however, the simplified data leads to a statistically correct com-
parison of datasets.

2.6. Data visualization and statistics

Relative normalization of viral load in WW against population size was
performed through the use of population size marker 5-HIAA by dividing
the total copies of detected viral RNA with the total amount of 24 h 5-
HIAA. Datasets of confirmed SARS-CoV-2 cases for each municipality
were acquired from the Centre for Disease and Prevention and Control
and can be downloaded from https://data.gov.lv/dati/lv/dataset/covid-
19-pa-adm-terit. Cumulative incidence for 14, 21, 28 and 35 days was cal-
culated for each municipality; and the time series obtained were smoothed
by locally weighted regression LOWESS (Cleveland, 1979) using the
statsmodels (Seabold and Perktold, 2010) package within the Python envi-
ronment. The fraction of the data points that were considered tofit a regres-
sion model was set to 0.3. The same locally weighted regression was
performed to the time series measurements of the total detected viral
RNA copies and 5-HIAA normalized SARS-CoV-2 RNA copies. In the case
of the Kuldiga time series, locally weighted regression with the same
parameters was performed separately on the full dataset, workday and
weekend dataset. Spearman's rank correlation coefficient with the associ-
ated p-value of total viral copies in millions and millions of copies per mg
of 5-HIAA versus the cumulative incidence of respective periods was car-
ried out using the scipy.stats package (Virtanen et al., 2020) within the Py-
thon environment. Spearman's correlation analysis was also performed to
evaluate the association between the total amount of 5-HIAA and the aver-
age number of phone calls in Kuldiga. Next, the two-tailed Mann-Whitney
test (Mann and Whitney, 1947) was used to compare (i) 5-HIAA measure-
ments between different sampling days of the week, (ii) between total
viral copies, 5-HIAA normalized viral copies and cumulative incidence;
(iii) normalized viral load measurements between different sampling days
of the week within a municipality, and (iv) the average number of phone
calls between weekends and weekdays. All figures were created using
matplotlib (Hunter, 2007) and seaborn (Waskom, 2021) libraries within
the Python environment.

3. Results

3.1. Physicochemical analysis of WW samples

The analysis of parameters that were measured on-site revealed that to
some extent they were municipality-specific, but otherwise rather stable
over the whole study time (Supplementary Table 2). Thus, the average
4

WW pH value in Jelgava was 7.77 (standard deviation (SD) = 0.14) and
the average electrical conductivity was 2015.38 μS/cm (SD = 99.75),
while in Kuldiga they were 7.67 (SD = 0.15) and 1215.11 μS/cm (SD =
111.70), respectively. Greater variations were observed in WW tempera-
ture, which in Jelgava on average was 15.01 °C (SD = 4.64), whereas in
Kuldiga it was 11.78 °C (SD = 1.65), but these variations correlated with
the temperature of the surrounding environment and were appropriate
for Latvian seasonal changes.

Since it is a well-known fact that industrial WW, as well as rainwater,
can significantly affect the concentration of specific analytes through the di-
lution effect, we decided to work with loads and not the concentration
values. In the case of 5-HIAA, this strategy is also supported by “European
Neuroendocrine Tumor Society Consensus Guidelines” where 24 h total
5-HIAAmeasurements are recommended for the diagnostics of neuroendo-
crine tumours (Oberg et al., 2017) and the normal excretion range of this
metabolite is 3 to 15 mg/24 h per person (Lenchner and Santos, 2021).
Thus, the multiplication of results from 5-HIAA concentration measure-
mentswith the total amount ofWW from specific collection events revealed
that there is considerable day-to-day variability in the loads of this metab-
olite (Supplementary Table 2). We observed that on average inhabitants
of Jelgava produced 103,080.70 mg of 5-HIAA per day, the SD was
14,489.43 mg, which corresponds to a 14.06% deviation from the average,
while the relative range was 52.34% points of the average. Although the
cause of these fluctuations has not been investigated in this study, we be-
lieve that it might be due to combinatorial effects such as the metabolite
degradation rate in WW, metabolite secretion rate and most prominently,
population movement. In comparison to Jelgava, the average of the total
5-HIAA load in WW of Kuldiga was 6.02 times lower (17,136.14 mg),
which fits well with the differences in population size of both locations,
but unlike in the former, here we also observed greater SD 3686.6 mg
(21.51%) and greater relative range of the measurements (82.54% points
of the average). Due to the fluctuations of total 5-HIAA loads, we divided
datasets of both populations according to the day of theweek of sample col-
lection start date (Mon, Tue and Thu for Jelgava and Mon, Tue, Thu and
Sun for Kuldiga) and where there were enough data points (at least three)
all were compared in pairs using two-tailedMann-Whitney test. As a result,
the differences between Mon and Thu datasets from Jelgava were not sig-
nificant (p = 0.3710) while differences between Thu and Sun datasets
from Kuldiga were significant (p = 0.0080). Considering that daytime ac-
tivities of the general population during weekdays differ from those of
weekends, we decided to perform a comparison of weekdays (Mon, Tue,
Thu) and weekend data (Sun) using the Kuldiga dataset. Acquired results
revealed that both 5-HIAA measurement datasets differed significantly
(p = 0.0237). The average of the total 5-HIAA load in WW collected on
weekdays was 18,751.69 mg (SD = 2987.32 mg or 15.93%), whereas in
WW that was collected on weekends it was 14,174.30 mg (SD =
3061.76 mg or 21.60%), but the relative range of measurements was
54.91% points and 48.31% points of the average, respectively, which in
both cases is closer to that of Jelgava. Since the use of 5-HIAA as a popula-
tion size marker is considered experimental and difference was significant,
we decided that an additional verification of this observation using an ap-
proach unrelated to WW was necessary.

3.2. Validation of observed differences between weekday and weekend total
5-HIAA measurements by CDR

The use of mobile phones has become prevalent in many European
countries and since these devices are always located in the proximity of
their owners their territorial density reflects the density of the population
within a specific area. Therefore, we speculated that if the observed differ-
ences in the total load of 5-HIAA in Kuldiga between weekdays and week-
ends were true then these should also be reflected in mobile phone usage
data, andweperformed an evaluation ofmobile phone call activities in con-
junction with 5-HIAA measurements.

To evaluate if there is a correlation between the loads of 5-HIAA and
unique mobile phone usage activity we carried out a Spearman correlation

https://data.gov.lv/dati/lv/dataset/covid-19-pa-adm-terit
https://data.gov.lv/dati/lv/dataset/covid-19-pa-adm-terit
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analysis. The results we acquired revealed that there is a moderate (r =
0.5907) yet significant (observed significance p = 0.0125) correlation be-
tween the two datasets. The analysis related scatter plot (Fig. 1) also uncov-
ered that all values were grouped in two clusters, which correspond to
weekdays and weekends. Further comparison of unique mobile phone ac-
tivities betweenweekdays andweekends revealed that the two datasets dif-
fered significantly (p = 0.0011, two-tailed Mann-Whitney test).

Since our initial assumption that population size, which contributed to
the formation of WW, differed significantly between weekdays and week-
ends was confirmed, it was decided that all further Kuldiga related data
analyses shall be carried out separately for the whole Kuldiga dataset,
weekday dataset and weekend dataset.

3.3. Validation of SARS-CoV-2 RNA extraction procedure through the use of a
surrogate virus

We used the rSFV as a surrogate to monitor the efficiency and success
rate of the extraction procedures. Acquired results revealed that the
rSFV recovery ratio in Jelgava on average was 112% (median 100%)
and in Kuldiga it was 64% (median 58%). However, it varied greatly
from extraction to extraction and displayed no correlation with any of
the other measurements that were carried out. Plausible explanations
and recommendations are negotiated within the discussion section.

3.4. SARS-CoV-2 RNA copy number correlation with cumulative incidence

To assess whether the changes in acquired WW viral copy number cor-
related with the theoretical number of infected patients, we carried out a
Spearman correlation analysis. However, since several researchers have re-
ported that feces remain SARS-CoV-2 positive for up to 30 days after the di-
agnosis (Gupta et al., 2020), the correlation analysis between viral copy
number and 21, 28 and 35-day cumulative incidence of COVID-19 cases
Fig. 1. The scatter plot of 5-HIAA and unique CDR data in Kuldiga shows the effect of p
(e.g., weekday or weekend).

5

were also carried out. In addition to assessing whether the normalization
against population size marker would provide an improvement to acquired
results we also calculated the number of viral RNA copies per 1 mg of 5-
HIAA for all samples (Supplementary Table 2) and performed the same cor-
relation analyses. Acquired results revealed that in Jelgava the correlation
between both total and 5-HIAA normalized SARS-CoV-2 copy number
and the cumulative incidence of disease cases was high regardless of the
number of days that was used for calculation (r > 0.932, observed signifi-
cance p < 0.0001) (Fig. 2, Fig. 3A). In the case of Kuldiga, the correlation
between all RNA copy number values and cumulative incidences of cases
was weaker, the best were between total RNA copy number and 21-, 28-
and 35-day cumulative incidences of COVID-19 cases (r = 0.485, r =
0.64 and r = 0.62, respectively, observed significance p < 0.05). Similar
correlations were observed between 5-HIAA normalized copy numbers
and 21, 28 and 35-day cumulative incidences of COVID-19 cases (r =
0.498, r = 0.637 and r = 0.629, respectively, observed significance p <
0.05) when evaluating the full Kuldiga dataset. After separating the Kuldiga
dataset into the weekday and weekend measurements, a strong correlation
between total RNA copy number and 35-day cumulative incidence of SARS-
CoV-2 positive tests was observed (r = 0.9, p = 0.0002) for the weekday
dataset. Furthermore, a correlation between 5-HIAA normalized copy num-
ber and the 28 and 35-day cumulative incidence of COVID-19 cases was ob-
served (r = 0.609 and r = 0.89, with observed significance p < 0.05). By
contrast to the weekday dataset, the weekend copy number data displayed
a weak and insignificant correlation for all four cumulative incidences with
both total RNA copy number and 5-HIAA normalized SARS-CoV-2 RNA
copy numbers (Figs. 2, 3B).

4. Discussion

WW epidemiology has been used widely to study various aspects of
public health. Moreover, the application of WW epidemiology gained
opulation activity on 5-HIAA measurement data depending on the type of the day



Fig. 2. Changes in correlation coefficient between detected SARS-CoV-2 RNA copy number and a cumulative incidence of COVID-19 cases depending on the number of days
that was used for the calculation of cumulative incidence. In the case of Jelgava, highly similar correlations were observed for all cumulative incidences with the total SARS-
CoV-2 RNA copies and 5-HIAA normalized SARS-CoV-2 RNA copies therefore it is difficult to distinguish between TCM andMC values within the figure. Square designation
denotes significant correlation (p < 0.05) of a particular cumulative incidence with TCM of SARS-CoV-2 RNA, whereas triangular designation denotes significant correlation
of cumulative incidence with the MC of SARS-CoV-2 RNA per mg of 5-HIAA per respective municipality, as indicated by the colouring. Abbreviations: TCM - total copies in
millions, MC - millions of copies.
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worldwide interest during the COVID-19 pandemic. This approach played
an important role as an additional tool to analyse trends during disease sur-
veillance, particularly in urban areas. Most of the studies have focussed on
large cities where weekly variation in population size is relatively small.
The purpose of this study was to evaluate the applicability of SARS-CoV-2
monitoring in the WW for early detection of viral outbreaks and to assess
the overall epidemiological situation during an outbreak in small and
medium-sized municipalities of Latvia. To achieve this goal the strategy
of this study was based on longitudinal WW testing for the presence of
SARS-CoV-2 RNA. Considering that this was a pilot study and thus limited
in its scope and resources it was decided to perform the surveillance in only
two municipalities.
Fig. 3. 5-HIAA normalized quantity of SARS-CoV-2 RNAwithin thewastewater of two La
2 copies per 1 mg of 5-HIAA whereas line plots represent either 14-day or 35-day cu
municipality.
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Since Riga is the capital city of Latvia and accommodates approximately
30% of the Latvian population, it was not surprising that the outbreaks of
COVID-19 at this location were detected regularly (details of the testing
strategy can be found in Supplementary file 3). Although Riga is relevant
from an epidemiological point of view, it was not suitable for the early de-
tection of outbreaks. Therefore, we selected a municipality that was rela-
tively “free of SARS-CoV-2”, no more than a two-hour journey from Riga
that maintains a strong economic connection to the capital, ensuring daily
population movements between the locations. Furthermore, the municipal-
ity has an independent economy, signifying that there is a strong necessity
for communication between itself and Riga, thus providing a good opportu-
nity for the spread of the virus. Considering all of these factors we selected
tvian locations A - Jelgava and B - Kuldiga. Bars represent the quantity of SARS-CoV-
mulative incidence of the officially confirmed COVID-19 cases in the respective
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Jelgava,which is the fourth largest city in the country, amajor regional eco-
nomic centre and residence of ~55,000 inhabitants (approx. 89% are con-
nected to the municipal WW (ISMADE Ltd., 2020)). Additionally, it was
decided to closely monitor the epidemiological situation in all COVID-19
free Latvian towns with suitable sewage collection systems and initiate
the collection of WW samples in one of them upon the first news of an out-
break. Such an opportunity presented itself at the beginning of October
2020, when an outbreak was detected in Kuldiga, which is the 15th largest
town in Latvia and has a population of approximately 11,000 inhabitants
(approx. 88% are connected to themunicipalWWTP (ISMADE Ltd., 2020)).

An assessment of SARS-CoV-2 RNA presence in collected WW samples
was carried out through the ddPCR based quantification of three viral ge-
nome regions. The selection of primers and probes for the nucleocapsid
(N) gene detection was based on “US CDC” recommendations (National
Center for Immunization andRespiratoryDiseases andDivision of Viral Dis-
eases, 2020) whereas the envelope (E) gene detection was based on World
Health Organization (WHO) recommendations (Corman et al., 2020). Ac-
quired data yielded by all three probe/primer sets were comparable, but
on average the numbers generated by the N1 set were higher than those
generated by the other two sets and those generated by the N2 set were
higher than those of the E set. However, this rule was not universal and
since observed differences could be the result of a combinatorial effect
such as sample-specific RNA degradation, differences in probe/primer set
detection efficiencies and others, we decided that rather than focussing
on the results of one assay we shall use the average of three. A total number
of SARS-CoV-2 RNA copies within theWW from each collection event were
calculated to avoid the dilution effect.

Variation in the extraction of the rSVF surrogate, which might poten-
tially affect the SARS-CoV-2 viral RNA extraction efficiency, was observed.
According to previous studies (Ahmed et al., 2020c; Fuqing et al., 2021;
Kumar et al., 2020; La Rosa et al., 2020, 2021; Pulicharla et al., 2021;
Sharif et al., 2021; Zhang et al., 2020) and recommendations by the WHO
(World Health Organization, 2003), PEG-precipitation methods of viral
RNA from WW are known to be an efficient and cost-effective (Farkas
et al., 2021; Kumar et al., 2020) approach and can be applicable for
SARS-CoV-2 RNA extraction. SARS-CoV-2 remains viable in a wider range
of conditions than rSFVwhichmay explain the observed variance in the ex-
traction of the surrogate. Thus, the former can tolerate pH values in a range
from 4 to 11 (Chan et al., 2020; Chin et al., 2020), whereas the latter can be
inactivated at a pH below 6.0 (Svehag et al., 1966). In addition, WW is an
aggressive environment that contains detergents, proteolytic enzymes, RN-
ases and other compounds, and there are significant temperature and pH
fluctuations that may affect both viruses differentially (Amoah et al.,
2020). Furthermore, the viral particles of SARS-CoV-2 spend a considerably
longer period of time in this environment than those of rSFV, and sinceRNA
decay over time is sloped rather than linear, it is possible that at the mo-
ment of extraction SARS-CoV-2 RNA is deteriorating at a slower rate in
comparison to the surrogate (Ahmed et al., 2020b; Sala-Comorera et al.,
2021). Although it is essential to use some kind of surrogate for the plus-
minus test to assess whether the extraction was successful, the acquired
numbers should not be used for the correction of target virus quantification
results unless it has been determined that the stability of both target and
surrogate under various conditions is highly similar.

In this study, 5-HIAAmeasurementswere performed to account for fluc-
tuations in the size of the population that contributed to the formation of
WW and the choice of this metabolite as a population size marker was
based on earlier studies (Chen et al., 2014; Choi et al., 2018; Pandopulos
et al., 2020; Thai et al., 2019). Although the excretion of 5-HIAA might
be influenced by diet (Burks and Bao, 2016; Mashige et al., 1996), alcohol
consumption (Mackus et al., 2021; Voltaire et al., 1992) and neuroendo-
crine tumours (Ewang-Emukowhate et al., 2019; Zandee et al., 2016),
these individualised variations do not seem to influence the overall mea-
surements, as confirmed by the correlation analysis within the present
study between 5-HIAA normalized SARS-CoV-2 RNA copy number and cu-
mulative incidence of COVID-19 cases. CDR of the studied region was suc-
cessfully applied to validate the population further. Thus, we were able to
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show for the first time that CDR data along with the 5-HIAAmeasurements
can support the disease prevalence studies with an estimation of population
size that contributes to the WW. This might be especially important for cit-
ies with a population size below 100,000, as thisWWcould bemore heavily
influenced by rain drainage water, industrial WW, and population move-
ment, thus introducing the fluctuations of the detected SARS-CoV-2 genetic
material and human excreted biomarkers. However, further investigations
towards the estimation of the population size by CDR and 5-HIAA in small
size cities are necessary.

In this study, we observed a high level of fluctuation within detected
SARS-CoV-2 RNA between consecutive sample collections in Kuldiga. We
speculated that this might be due to weekly changes in population size,
which are characteristic for small-sized municipalities such as Kuldiga
when people leave the town during the weekend and return during the
weekdays. This hypothesis was supported by 5-HIAA measurements and
subsequently also confirmed by CDR data analysis. This, however, led to
the conclusion that although individuals with confirmed cases of infection
have been put in strict isolation, a considerable proportion of detected
SARS-CoV-2 RNA in the WW might arise from asymptomatic individuals,
who unknowingly continue to spread the virus. At the same time, recovered
individuals might still excrete the virus for a prolonged time. An additional
feature of small-sized municipalities is the proportion of people that are
travelling during the weekdays from the countryside to their workplace in
the town. Therefore, if they are COVID-19 positive, their virus genetic ma-
terial would be detectable only during the workdays. Furthermore, a pro-
portion of people, who reside in the town could travel abroad during the
weekend and introduce an additional bias towards the detection of SARS-
CoV-2 RNA in the WW. Another explanation for the observed fluctuations
might also be the rural nature of the town, whereWW for a significant num-
ber of households (in the case of Kuldiga approx. 12%) is collected in des-
ignated collection tanks and transportation of accumulated WW from
both infected and non-infected households to the WWTP is carried out ex-
clusively on weekdays, which might increase the concentration of viral
RNA. Hence, these results suggest that the collection of WW samples from
small-sized municipalities, such as Kuldiga, should be performed either
on a specific day of the week, preferably during the workdays, or daily to
either control the effect of population migration or provide sufficient data
to recognize the pattern.

The 14-day cumulative incidence is used for the assessment of the
COVID-19 incidence in different countries. The rationale behind the use
of this indicator is based on the observation that symptomatic disease
lasts approximately 14 days and after this period the viral load of the pa-
tient is not sufficient to infect others. However, our data showed that a
14-day cumulative incidence displayed a good correlation with detected
SARS-CoV-2 RNA copies only in the WW of Jelgava, where the incidence
of COVID-19 cases during the study period were either non-existent or on
a steep rise, which might have a significant impact on the outcome. In re-
sponse to the above-mentioned reasons, we evaluated the cumulative inci-
dence of different durations and concluded that the 35-day cumulative
incidencewas superior in explaining the variation of SARS-CoV-2 RNA cop-
ies in the WW. This correlation was not surprising as studies worldwide
have reported that the virus can be excreted via human body fluids up to
40 days from the onset of symptoms (Chen et al., 2020; Gupta et al.,
2020; Lo et al., 2020; Xing et al., 2020). Introducing the 35-day cumulative
incidence of confirmed COVID-19 cases might provide better resolution in
the prediction of the outbreak and possibly aid in developing a model to
predict the number of infected individuals in a community based on WW
testing.

An additional crucial aspect that should be considered during the con-
duction of WBE studies is the sample collection. Collection and viral RNA
extraction procedures that are presented in this study are efficient yet la-
bour intensive and difficult to apply in massive surveillance programmes.
In addition, the number of virus particles in the WW is relatively low,
which sets limits to the accuracy of detection methods. Thus, there is a
need to improve the sample collection and pre-treatment procedures
through a concentration of the samples without a significant increase in
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labour and costs. Several approaches are proposed including the addition of
sorbent materials in the WW (Freda, 2021). However, it would be simpler
to concentrate samples through the multi-step membrane ultrafiltration
that has been used in surface water analyses (Ferguson et al., 2004;
Rusiñol et al., 2020). Moreover, sample collection coupled with WW flow
rate measurements and adjusted by this data would improve the overall
representativity of the collected sample and increase the accuracy of viral
RNA and population size estimation even further.

The use of mobile data as a real-time data source has become increas-
ingly relevant. For instance, it allows an assessment of regional eco-
nomic development or the change in population mobility patterns. In
this study, the analysis of aggregate data frommobile network operators
was successfully integrated to confirm 5-HIAA measurement observa-
tions and to evaluate whether the highest activity of the population is
related to changes in SARS-CoV-2 RNA abundance in WW. However,
in our study the correlation between these two datasets was weak
most likely due to an insufficient number of measurements and further
studies are required to account for various WW collection systems and
mobile phone usage related parameters that could influence the
correlation.

Many countries have recently adopted WBE as a cost-effective ap-
proach for the wide-scale screening of SARS-CoV-2 RNA. Along with
the clinical data, it could provide information on potential virus trans-
mission within the community, thus aiding the decision-making pro-
cess for authorities in the public health sector. However, several
issues must be considered when using WBE as an epidemiological
tool. First, with WBE, there is a gap of knowledge that prohibits precise
estimation of the number of COVID-19 affected individuals. Second, we
suggest that for smaller and medium-sized municipalities, the popula-
tion movement should be considered while evaluating the presence of
the SARS-CoV-2 RNA in the WW. Third, there is a necessity to develop
and implement time-effective, cost-effective and reliable methods to
detect emerging SARS-CoV-2 variants within the population through
WBE surveillance.

In summary, this study validates the application of WBE as a reli-
able tool to investigate the prevalence of infection within a commu-
nity. We confirmed that WBE based SARS-CoV-2 RNA monitoring
could be performed in small and middle-size municipalities in Latvia
and acquired viral RNA data correlate with a 35-day cumulative inci-
dence of SARS-CoV-2 infection cases. In addition, results of this study
suggest that in small size municipalities due to the high influence of
population migration, the collection day of the WW samples should
be selected carefully and the continuation of monitoring should be per-
formed only on that particular weekday or carried out daily to facilitate
pattern recognition.

5. Conclusion

● This is the first study showing that data frommobile calls could be used
effectively to better understand and improve the accuracy ofWBE. It not
only allows an estimate of the population but also themobility of people
in COVID-19 affected areas.

● It is essential to performmeasurements that enable population size con-
trol because weekly population movement and/or differences of popu-
lation daytime activities on different days of the week significantly
affect the WBE results in smaller municipalities, thus samples should
be collected either daily or weekly on a specific day of the week.

● There is a moderate to strong correlation between 5-HIAA and mobile
phone calls, hence both methods could be used to assess population
size and movement in WBE studies.

● A 35-day cumulative incidence was superior to that of 14 days in
explaining the variation of SARS-CoV-2 RNA copies in WW.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.153775.
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