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Human Gut Microbes Associated with Systolic Blood Pressure
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Emerging studies have revealed a strong link between the gut microbiome and several human diseases. Since human gut
microbiome mirrors variations in lifestyle and environment, whether associations between disease conditions and gut micro-
biome are consistent across populations—particularly in communities practicing traditional subsistence strategies whose
microbiomes differ markedly from industrialists—remains unknown. Cardiovascular diseases are the leading cause of mortality in
India affecting 55 million people, and high blood pressure is one of the primary risk factors for cardiovascular diseases. We
examined associations between gut microbiome and blood pressure along with 14 other variables associated with lifestyle, dietary
habits, disease conditions, and clinical blood markers in the three Assamese populations. Our analysis reveals a robust link
between the gut microbiome diversity and composition and systolic blood pressure. Moreover, several genera previously as-
sociated with hypertension in non-Indian populations were also associated with systolic blood pressure in this cohort and these
genera were predictors of elevated blood pressure in these populations.&ese findings confer opportunities to design personalized,
preventative, and targeted interventions harnessing the gut microbiome to tackle the burden of cardiovascular diseases in India.

1. Introduction

&e human gut comprises diverse microbial community
collectively known as the gut microbiome (GM), which plays
a crucial role in human health and diseases [1]. GM is shaped
by various factors, including diet, lifestyle, medication,
environment, and genetics [2, 3], and influences human
physiology, metabolism, and immune responses [4, 5].
Studies have shown a link between GM and etiology of
several chronic diseases [1, 6, 7], and identifying the fecal
microbial markers specific to diseases is an emerging and
powerful tool for developing preventative approaches as well
as early diagnosis and treatment [8, 9].

Hypertension is a major risk factor for cardiovascular,
cerebrovascular, and kidney diseases [10, 11].&e etiology of
hypertension depends on the complex interplay of genetic,

environmental, and dietary factors [12, 13]. Diet strongly
influences the GM, which makes it likely that alterations in
GM and its functions might contribute to the development
of hypertension. Indeed, several studies have shown asso-
ciations between blood pressure and GM in humans
[1, 8, 14–17]. Compared to individuals with normal blood
pressure, the GM in hypertensive patients has decreased
microbial diversity and increased Firmicutes-to-Bacter-
oidetes ratio. Some of the observations linking GM to hy-
pertension have also been replicated in animal models
[14–16, 18]. However, most of the studies investigating the
role of GM on the etiology of hypertension and other
chronic diseases have focused on industrialized populations
such as Americans [1, 17], Europeans [1, 16], and Chinese
living in modern cities [8]. Given the differences in the GM
across human populations, whether these results are
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applicable to non-Western or traditional communities re-
mains unexplored. For example, consumption of milk fer-
mented with Lactobacilli has been reported to lower blood
pressure in certain human populations [8, 15, 19]. However,
despite frequent consumption of dahi/doi (yogurt), which
contains high dosages of Lactobacilli [20], hypertension has
historically remained a major problem in India. At present,
45% of the Indian adults, which amounts to a staggering 1.3
billion individuals, are estimated to have elevated blood
pressure [21] and are at risk of developing cardiovascular
diseases. Recent statistics suggest that 1 in 4 deaths in India
are due to cardiovascular diseases [22]. &erefore, identi-
fying gut microbial features associated with high blood
pressure can lead to novel preventative and therapeutic
approaches that are urgently needed to address the high
burden of cardiovascular disease in India.

Here, we evaluated the relationship between the gut
microbiome and 22 host factors, including blood pressure in
71 healthy Assamese individuals from three rural villages in
Assam, a Northeastern Indian state with high prevalence of
hypertension [23, 24]. Two of the study sites, Aanthmile and
Jagiroad, were home to Nepali speakers who have histori-
cally resided in Assam for generations, exhibit an agro-
pastoralist lifestyle typical of Assam, and are major dairy
producers in Assam. &e third location, Kamalabari
(Majuli), was home to the Satra, a group of native Assamese
males who practice animal herding and follow a spiritual
lifestyle governed by the Neo-Vaishnavite code of conduct
[25]. We found subtle differences in dietary and lifestyle
practices in these geographically cohabiting populations,
which explained a relatively small fraction of gut microbial
diversity and composition between these populations. After
accounting for lifestyle, we were able to identify a robust
association between different measures of gut microbiome
and systolic blood pressure in these individuals. Further-
more, using a machine learning approach, we were able to
identify several bacterial taxa that are predictive of elevated
blood pressure in this Indian population.

2. Materials and Methods

2.1. Study Sites, Participating Individuals, and Sample
Collection. Fecal and blood samples were collected with
written informed consent from a total of 71 individuals
within Assam, India. Participants were from three geo-
graphic locations, namely, Aanthmile (N� 24), Jagiroad
(N� 24), and Kamalabari, Majuli (N� 23). Fresh fecal
samples were collected in sterile stool collection tubes
containing RNAlater™ (Cat. No. 76104, Qiagen, Germany)
solution to maintain the integrity of DNA. &e tubes were
shaken hard in a back and forth motions until the samples
were homogenized. Blood samples were collected using K3
EDTA (tripotassium ethylenediaminetetraacetic acid) vials,
and serum was separated immediately by centrifugation at
3000 rpm for 5min at room temperature. Additionally,
anthropometric measures including height, weight, body
mass index, and blood pressure measures were also deter-
mined from each participant, while sample collection on-site
participants also filled out a basic survey questionnaire that

assessed their age, gender, diet (the primary source of
carbohydrates, proteins, and vegetables), consumption of
dairy products, alcohol, health status, and use of medication.

2.2. DNA Extractions and 16S rDNA Gene Amplicon
Sequencing. Microbial DNA was extracted from 200 μL
homogenized fecal samples using Qiagen DNA Stool Mini-
Kit (Qiagen, Hilden, Germany) according to the manufac-
turer’s protocol. &is extraction protocol involved chemical
lysis followed by heating at 95°C for 15mins for recovery of
Gram-positive bacteria as well. Quantification of double-
stranded DNA was determined using the QuantiFluor
dsDNA System (Promega, Wisconsin, USA), and an esti-
mate of sample purity was determined via spectropho-
tometry by measuring the A260/A280 absorbance ratio. &e
V3+V4 region of the 16S rDNA gene was PCR amplified and
sequenced atMacrogen Inc. (Seoul, Republic of Korea) using
the 341F-805R primer pairs following the standard Illumina
protocols. &e amplified DNA fragments were subjected to
paired-end (2× 300 bp) sequencing using the MiSeq plat-
form (Illumina). Gut microbiome sequencing data were
obtained in the form of FASTQ files.

2.3. 16S rRNA Data Analysis. Read counts for amplicon
sequence variants (ASVs) were calculated using the phyloseq
pipeline [26] and the Silva 138 database training set, [27].
FASTQ files were used to assess the quality of the sequence
reads [28]. High-quality sequences were retained after
trimming reads to 265 bases (removing 10 bp from the start
of each read and trimming at the 275th base) from both the
forward and reverse reads, respectively. Filtering and
trimming were performed allowing maximum of 2 expected
errors {maxN� 0, truncLen� c (290,280), maxEE� c(2,2),
truncQ� 2}. Paired-end reads were merged together to
create a table containing amplicon sequence variant counts.
Taxonomy was assigned using a näıve Bayesian classifier
method [29] implemented in the DADA2 algorithm [28].
Multiple alignment was performed using the DECIPHER
package [30], and phangorn was used to construct maxi-
mum likelihood phylogenetic tree. Finally, a phyloseq object
was constructed by merging tables containing ASV counts,
taxonomic hierarchy, sample data, and phylogenetic tree.
After removing singletons and lowly abundant (present in
less than 5% of individuals) ASVs, a total of 1935 ASVs
remained and were used for subsequent analysis.

2.4. Blood Biochemical Tests. Serum samples were analyzed
using standard biochemical assay kits from Coral Clinical
Systems (Salcete, Goa) following the manufacturer’s pro-
tocol. &e tests included 6 blood parameters, namely, al-
bumin, globulin, total protein, glucose, cholesterol, and
triglycerides levels.

2.5. Statistical Analysis. All statistical analyses were con-
ducted using R version 3.5.1 [31]. &e survey data and the
blood parameters were collectively assessed using principal
component analysis (PCA). Phylogenetic diversity was
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assessed using two measures of alpha diversity, namely,
species richness and Shannon’s H, computed by rarefying
the samples to various depths starting from 2,500–30,000
sequences per sample. &e maximum depth of 30 k allowed
for the inclusion of all samples. Alpha diversity was com-
pared using species richness and Shannon’s H at the rare-
faction depth of 30,000 using Kruskal–Wallis tests followed
by Dunn’s post hoc test to assess pairwise differences. Beta
diversity was assessed using Bray–Curtis as well as un-
weighted and weighted UniFrac distances. PERMANOVA
was performed using the vegan package [32], and 10,000
randomizations were performed to assess the statistical
significance. &e differences in taxa abundance (counts)
were assessed using the DESeq2 package [33].

&ree separate generalized linear mixed models were used
to evaluate associations between the blood parameters, dietary
factors, location, and different features of the gut microbiome,
namely, species richness, Shannon’s diversity index, and PCo1
(using Bray–Curtis distance). In all the three models, the gut
microbiome features were treated as the response variable,
variables linked to diet, lifestyle, and blood were treated as fixed
effects, and samples were treated as random effects. A total of
15 factors were treated as explanatory variables with fixed
effects, and they were as follows: location, age, sex, milk
drinking pattern, gastric condition, medicinal use, systolic
blood pressure, diastolic blood pressure, hypertension, BMI,
albumin, globulin, triglycerides, cholesterol, and RBS glucose.
All statistical tests with P< 0.05 after multiple testing cor-
rections using the Benjamini–Hochberg false discovery rate
adjustment were considered statistically significant.

2.6. Machine Learning Predictive Models. Individuals were
binned into two groups based on their systolic blood pressure.
Individuals with systolic blood pressure <120mmHg
and≥ 120mmHg were considered normal and elevated, re-
spectively. All of the 1,935 ASVs were used, and the
microbiome of each sample was represented via the feature
vector of their relative abundances. As a preprocessing step,
the hierarchical feature engineering (HFE) method [34] was
used. HFE exploits the intrinsic hierarchical structure of the
feature space to generate a small set of informative features
that can be used for classification. Following the identification
of the final informative feature set, we used Waikato Envi-
ronment for Knowledge Analysis (WEKA) [35] for classifi-
cation. &ree ML approaches—random forest, naive Bayes,
and decision trees algorithms—were used for classification by
partitioning the individuals into a training (70%) and test
(30%) sets and using 10-fold crossvalidation in order to avoid
model overfitting.

3. Results

3.1. Lifestyle andDietary Characteristics of Study Participants.
Located in the foothills of the Himalaya, Assam is home to
various indigenous ethnic groups that continue to practice
traditional subsistence strategies.We collected samples from 71
individuals from three rural villages on the banks of the
Brahmaputra River, namely, Aanthmile, Jagiroad, and

Kamalabari (Figure 1(a)). &e residents of Aanthmile and
Jagiroad are representative of Indians of Indo-European de-
scent spread across India. &ey practice agropastoralism and
are themajor dairy producers in Assam. Kamalabari is home to
Satra, a community of native Assamese animal herders that are
known for their practice of Neo-Vaishnavite lifestyle.

We assessed the impact of lifestyle and dietary habits on
these populations using a survey questionnaire that included 22
questions pertaining to current dietary practices such as pri-
mary carbohydrate and protein source, consumption of animal
products (frequency of meat and dairy products), medicinal
usage, and medical conditions such as presence or absence of
gastritis. Participants included 20 females (28.2%) with average
age of 35.4± 11.6 years and an average BMI of 24.5± 6.1 kg/m2.
&e 51males (71.8%) were 35.9± 11.4 years old with an average
BMI of 19.00± 7.9 kg/m2 (Table 1). Participants had an average
systolic blood pressure of 122.32± 16.47mmHg. Mean systolic
blood pressure in females and males was 122.3± 13.26mmHg
and 122.3± 17.69mmHg, respectively. Similarly, mean dia-
stolic blood pressure in females and males was
73.6± 10.18mmHg and 70.52±12.44mmHg, respectively.
Analysis of the survey data revealed subtle variations in diet
among the participants from the three sampling locations
(Figures 1(b) and 1(c)). For all participants, rice was the major
source of carbohydrates, whilemilk products and dal (legumes)
were the primary sources of protein. All participants consumed
fiber-rich greens, vegetables, and fruits daily. Consumption of
meat was rare, but participants of Aanthmile and Jagiroad
consumed meat occasionally and those of Kamalabari con-
sumed fish but not meat. Most participants consumed doi
(yogurt) on a daily basis, although the residents of Aanthmile
and Jagiroad consumed doi made by propagating cultures of
boiled cow milk, whereas the residents of Kamalabari con-
sumed doi prepared by natural fermentation of raw cow milk.
Few phenotypes and biochemical parameters, including BMI,
blood albumin, globulin, and total protein, varied between
locations. Albumin and total protein serve as markers of
nutrition, while the higher concentration of globulin is in-
dicative of higher pathogen load [36, 37]. Furthermore, BMI
was positively correlated with age (Spearman’s rho� 0.486,
P � 1.708e − 05) and it was significantly associated with
clinical blood markers including globulin (Spearman’s
rho� 0.32, P � 0.007), albumin (Spearman’s rho� −0.686,
P � 3.744e − 11), total protein (Spearman’s rho� −0.74,
P � 1.639e − 13), and triglyceride (Spearman’s rho� −0.35,
P � 0.00249, Supplementary Figure 1). Systolic blood pressure
was correlatedwith diastolic blood pressure and age (Spearman
correlations, rho� 0.5567, 0.298, and P � 4.629e − 07, 0.0114,
respectively). We did not find correlation between systolic
blood pressure and BMI in this cohort.

3.2. Comparison of Gut Microbiomes across Locations. To
evaluate the effect of subtle dietary and lifestyle differences
between the three populations on their GM, we compared
their gut microbiome diversity and composition (Figure 2).
Rarefaction curves ranging from sequencing depth of
1,000–30,000 revealed that the sequencing depth was suf-
ficient to evaluate alpha diversity in these individuals
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(Supplementary Figure 2). We compared alpha diversity
between populations using two standard measures, species
richness and Shannon diversity index at the rarefaction
depth of 30,000. Slight variations in species richness and
Shannon’s diversity were observed across the three locations
(P � 0.0074 and 0.017, respectively, Kruskal–Wallis test,
Figure 2(a)). However, pairwise comparisons revealed that
the species richness was significantly lower in participants
from Kamalabari relative to Jagiroad only. On the other hand,
Shannon’s diversity index was significantly lower in partic-
ipants fromKamalabari relative to those from Jagiroad as well
as Aanthmile (FDR adjusted P< 0.05; Dunn’s post hoc test).

Gut microbiome composition assessed using a principal
coordinate analysis (PCoA) at the ASV level using

Bray–Curtis also showed variations in gut microbiome
composition between the three locations (P � 1e − 04,
PERMANOVA). Visualization of the principal coordinates
(PCos) revealed subtle shifts in GM composition in
Kamalabari participants. However, no difference was de-
tectable between individuals from Aanthmile and Jagiroad
(Figure 2(b)). Similar results were obtained using weighted
and unweighted UniFRAC distances (Supplementary Fig-
ure 3). We also observed differences in the gut microbiomes
between the individuals from the three locations at the genus
level (Figure 2(c)).

Despite the statistical significance, the magnitude of
gut microbiome differences between these populations
was small. For instance, the effect size of location on alpha
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Figure 1: Lifestyle, dietary, and clinical blood markers differ between Assamese populations. (a) Map showing the three different sampling
locations in Assam. Aanthmile (red) and Jagiroad (gold) are home to Nepali speakers who practice agropastoralism. Kamalabari, Majuli
(blue), is home to the native Assamese known to practice traditional animal herding and meditation. (b) A heatmap showing differences in
diet as well as blood phenotypes between these populations. (c) A principal component analysis (PCA) differentiates populations based on
their diet and clinical blood markers. PC1 separates individuals by lifestyle/diet and body mass index (BMI). PC2 is associated with several
risk factors for chronic diseases, including age, systolic blood pressure as well as disease conditions, e.g., diabetes and gastric condition
(presence or absence of gastritis) that do not differ between the two lifestyles.

Table 1: Systolic and diastolic blood pressure in male vs. female.

Attributes Overall Male Female
Total participants 71 51 20
Systolic 122.32± 16.47 122.3± 17.69 122.3± 13.26
Diastolic 71.39± 11.86 70.52± 12.44 73.6± 10.18
Sex 100 71.80% 28.20%
Age 35.9± 11.4 34.9± 10.4 38.4± 12.4
BMI 19± 6.1 19.00± 7.93 24.56± 6.05
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diversity measured using species richness and Shannon’s
diversity index was 11.9% and 12.4%, respectively, and it
explained only ∼5% of variance in gut microbial com-
position. To further demonstrate this point, a random
forest classifier was used to assess whether individuals can
be classified into their respective populations based on
their GM (ASVs). &e overall accuracy of the classifier was
low (46%), and classification error rates were 37.5%,
58.8%, and 41.2% for Kamalabari, Jagiroad, and Aanth-
mile, respectively (Supplementary Table 1). &ese results
collectively indicated that there are detectable differences
in the gut microbiome between these locations, but such
differences are minute.

3.3.GutMicrobiome IsAssociatedwithSystolicBloodPressure.
&e aforementioned analyses revealed that geographical
location explained only a small fraction of the GM variation
in this cohort. &erefore, we sought to identify additional
factors that may be associated with gut microbiome. Few
factors including consumption of rice, pulses, and vegetables
were similar across the three locations, and alcohol

consumption was rare. A total of 7 variables that were either
invariable or redundant were removed from the dataset, and
we assessed association between three measures of GM and
15 remaining host factors. &ese factors included location,
age, sex, milk drinking pattern, gastric condition, medicinal
use, systolic and diastolic blood pressure, hypertension (a
categorical variable defined as systolic≥ 140 and dia-
stolic≥ 90), BMI, as well as levels of albumin, globulin,
triglycerides, cholesterol, and glucose in the blood. &ree
multivariate generalized linear mixed models were con-
structed for three GM measures—species richness, Shan-
non’s diversity index, and PCo1 calculated using
Bray–Curtis—where each of these 15 variables was con-
sidered to have fixed effects and random effect was assigned
to each individual. In these multivariate analyses, the lo-
cation was no longer significantly associated with alpha
diversity (P> 0.05, GLMM, for species richness and Shan-
non’s diversity both). Of the 15 factors, systolic blood
pressure was the only variable that was significantly asso-
ciated with bothmeasures of alpha diversity, species richness
(P � 0.02, GLMM, Figure 3(a)) as well as Shannon’s di-
versity (P � 0.04, GLMM, Figure 3(b)). However, PCo1
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Figure 2: Gut microbial differences between populations. (a) Species richness and Shannon’s diversity varied slightly between the three
populations (P � 0.007453 and 0.017, respectively, Kruskal–Wallis test). Species richness was significantly different between Kamalabari
(KB) and Jagiroad. Shannon’s differed significantly in Kamalabari population relative to the other two populations. (b) Visualization of
PCoA using Bray–Curtis distance revealed that Kamalabari was significantly different from both the Nepali populations. Aanthmile (AM)
and Jagiroad (JR) populations did not differ significantly. (c) A total of 44 amplicon sequence variant (ASV) level differences between the
populations (compared to Kamalabari) were obtained using differential expression analysis for sequence count data version 2 (DESeq2)
(∗∗<0.05).
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showed significant difference between Kamalabari and
Jagiroad populations (P � 0.04, GLMM), but no differences
were observed between Kamalabari and Aanthmile or
Jagiroad and Aanthmile (P> 0.05, GLMM). After ac-
counting for GM variation explained by location, systolic
blood pressure was the only other variable associated with
PCo1 (P � 0.01, GLMM, Figure 3(c)). &ese analyses re-
peated for PCo2 revealed associations between GM and
blood triglyceride levels and medicinal use (P< 0.05,
GLMM, Supplementary Figure 4).

3.4. Bacterial Taxa Predictive of Blood Pressure. Of the 71
individuals, 37 and 34 had normal and elevated blood
pressure, respectively. To identify the gut bacteria (ASVs)
that distinguish individuals with normal blood pressure
(systolic <120mmHg) from those elevated (high) blood
pressure (systolic≥ 120mmHg), three machine learning
(ML)-based classifiers were tested. Hierarchical feature
engineering (HFE) [34] was implemented to exploit the
intrinsic hierarchical structure of the taxonomical feature of
the 1935 ASVs, which resulted in 19 informative ASVs
(Figure 4(a)). Twelve of these 19 ASVs had higher relative
abundance in individuals with elevated blood pressure.
&ese bacteria associated with high blood pressure included
4 ASVs from genus Prevotella, 2 ASVs from Megasphaera,
and 1 ASV from Butyricicoccus, Prevotellaceae, Faecali-
bacterium, Lachnoclostridium, Howardella, and g-UCG04
(Figure 4(b)). &e 7 ASVs with higher relative abundance in
individual with normal blood pressure included 3 from
genus Prevotella, 2 from Alloprevotella, and 1 from Strep-
tococcus and g-UCG-05. Next, we tested whether these 19
ASVs could be used to accurately predict individuals with
elevated blood pressure using three machine learning
methods, namely, decision trees, random forests, and naive
Bayes (Figure 4(c)). Näıve Bayes algorithm generated the
best classifier that outperformed the two other algorithms in
terms of precision with 88%, recall with 87.3%, F1-score with
87.2%, and area under the curve (AUC) with 92.8%. As an
alternative approach, DESeq2 analysis performed using the
same dataset revealed a total of 9 differential ASVs between
the two groups (Supplementary Figure 5), 2 of which were
also identified by HFE.

3.5. Blood Pressure vs. Firmicutes-to-Bacteroidetes Ratio.
Previous studies have suggested that the relative abun-
dance of Firmicutes-to-Bacteroidetes ratio (F/B) is as-
sociated with different measures of health and diseases,
including hypertension [15]. Firmicutes and Bacteroidetes
were also the two most dominant phyla in this cohort
(Figure 5). &e relative abundance of Firmicutes ranged
from ∼2% to 40%, while abundance of Bacteroidetes
ranged from ∼75% to ∼25%. We found that F/B was
strongly negatively correlated with Shannon’s diversity
index (Spearman’s rho � −0.32, P � 0.008). However, a
multivariate model including the 15 variables showed that
F/B ratio was not significantly associated with systolic
blood pressure (P � 0.4797, GLMM).

4. Discussion

Human gut microbiome mirrors lifestyle [38, 39] and can
have profound influence on human health [40]. Although
several studies have investigated the link between the gut
microbiome and human diseases, those studies have pri-
marily focused onWestern or industrialized populations [1].
Given the gut microbiota of traditional populations differ
significantly, whether the findings in industrialized pop-
ulations can be extended to traditional populations remains
unknown. Here, we compare gut microbiomes from 71
individuals belonging to two different agropastoral ethnic-
ities that cohabit three small geographical areas in Assam,
Northeastern India. Our survey results showed that these
populations have subtle variation in lifestyle and dietary
habits. Although the primary sources of carbohydrates and
proteins as well as fiber intake via vegetable consumption are
similar between these populations, there are few subtle
variables linked to cultural practices that are strongly linked
to the two ethnicities. For example, all the participants
consumed doi (yogurt). While doi is prepared by natural
fermentation of rawmilk in the native Assamese community
in Kamalabari, it is prepared by propagation of cultures in
boiled milk in the Nepali-speaking villages in Aanthmile and
Jagiroad. Similarly, the consumption of milk was lower in
Kamalabari and their primary source of animal protein was
fish while meat was the primary source of animal protein in
the other two villages. We also observed differences in a few
blood biomarkers between the native Assamese and par-
ticipants from the other two locations. Serum albumin and
total protein levels were lower in the Nepali speakers relative
to the Assamese population, but serum globulin level was
lower in the Assamese. &ese findings are consistent with a
previous study [36]. Higher serum albumin and total protein
are biomarkers for poor nutritional status [41]. On the other
hand, higher globulin may indicate poor hygienic conditions
[36].&ese findings indicate that lifestyle guided by the Neo-
Vaishnavite principles, which emphasizes pescatarian diet,
good hygiene, and meditation, is reflected in the Satra’s
blood biochemistry.

Previous studies comparing populations with distinct
lifestyles have identified large differences in gut microbiomes
[2, 42], but whether subtle lifestyle variations manifest in
detectable gut microbiome differences in geographically
cohabiting populations remained unexplored. In this study, we
found that the subtle dietary differences between the partici-
pants reflected in small but detectable variations in their gut
microbiota. &e gut microbiome diversity and composition
were slightly but consistently different between the native
Assamese and the two Indo-European communities in
Aanthmile and Jagiroad. But neither diversity nor composition
differed significantly between the participants of Aanthmile
and Jagiroad, indicating that the gut microbiota variations
mirrored the lifestyle differences between these communities.

In addition to lifestyle, we found a robust link between
gut bacteria and blood pressure in these participants as both
measures of alpha diversity and beta diversity measured
using the primary axis in a principal coordinate analysis
(PCo1) were associated with systolic blood pressure.
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Figure 3: Gut microbial association with systolic blood pressure. A multivariate generalized linear mixed model (GLMM) was constructed
to identify the association of gut microbe composition (random effect) with 15 host factors (fixed effect). Strong association was observed
between systolic blood pressure and (a) species richness, (b) Shannon’s diversity, and (c) PCo1 using Bray–Curtis distance. &e line is fitted
linear model.
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Figure 4: Gut bacteria associated with blood pressure. (a) Identification of 19 bacterial taxa associated with systolic blood pressure using
HFE. ASVs were used as features. Systolic blood pressure was categorized into normal (<120mmHg) and elevated (>120mmHg), and the
binary categories were used to identify bacterial features. (b) Differential relative abundance of the 19 informative ASVs between the two
blood pressure groups. Red bars indicate ASVs with higher relative abundance in individuals with high systolic blood pressure, and blue bars
indicate ASVs with higher relative abundance in individual with normal blood pressure. (c) Area under curve (AUC) for decision tree,
random forest, and naive Bayes.
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Furthermore, integration of a machine learning approach
identified 19 ASVs that were predictive of elevated blood
pressure in this cohort. Importantly, many of these 19 ASVs
have been associated with hypertension in previous studies.
Also, the direction of change in relative abundance of these
ASVs in individuals with high blood pressure in this study is
consistent with hypertension patients. For example, four of
the ASVs elevated in individuals with high blood pressure
belonged to the genus Prevotella, which has also been shown
to be overrepresented in individuals with prehypertension
and hypertension in non-Indian populations [43]. Prevotella
may play an essential role in hypertension by triggering
inflammatory response [43]. Similarly, we observed 1 ASV
from genus Lachnoclostridium that had higher relative
abundance in individuals with elevated blood pressure,
which is consistent with previous findings where Lachno-
clostridium was reported to be positively associated with
systolic blood pressure [44]. Two Megasphaera ASVs were
elevated in the high blood pressure group. Megasphaera is a
common commensal found in the Indian gut [45], and it has
previously been reported to be significantly abundant in

hypertensive individuals [46]. Finally, initial studies sug-
gested increase in F/B ratio and decrease in microbial di-
versity as signatures of hypertension [18, 43], which was
contradicted by a recent study with large cohort of Western
individuals [1]. Consistent with the latter study, F/B ratio
was not significantly associated with systolic blood pressure
in our study as well. Although our results recapitulatedmany
observations corroborating previous links between gut
microbiome and hypertension, there was one contradiction.
A Faecalibacterium ASV was higher in individuals with
elevated systolic blood pressure. Faecalibacterium is an
important carbohydrate fermenting bacteria involved in
butyrate production via starch fermentation [6], and lower
relative abundance of this genus has been associated with
hypertension in previous findings [43, 47].

Our study has revealed that systolic blood pressure is
associated with gut microbiome in an Indian population.
&is finding is important for two reasons. First, it demon-
strates that gut bacteria can be linked to chronic diseases in
traditional populations. Traditional populations have been
historically underrepresented in genomics studies [48, 49],
and this trend is starting to extend to microbiome studies.
Several large cohorts consisting of thousand participants
from industrialized populations have successfully identified
factors associated with gut microbiome and health
[1, 41, 50]. Yet, very few studies have attempted to investigate
the link between microbiome and health in traditional
populations. Given both the lifestyle and gut bacteria of
traditional populations differ from industrialized pop-
ulations, lack of microbiome-disease connections in tradi-
tional populations has the potential to augment the already
existing health disparities in genomic medicine. Second, the
findings from this study are highly relevant to Indian
populations. Hypertension is highly prevalent in India, and
in Assam, it is the primary risk factor for cardiovascular
diseases. High blood pressure currently affects 1.3 billion
individuals in India—which is 45% of the entire Indian adult
population [21]—increasing their risk of developing car-
diovascular diseases. &e findings from this study pave way
for future investigations involving larger cohorts designed to
develop personalized, preventative, and targeted interven-
tions harnessing the gut microbiome to tackle the burden of
cardiovascular diseases.

5. Conclusion

Microbiome has become increasingly important biomarker
in framing novel strategies to address etiology of several
diseases. Lack of microbiome-disease connections in tra-
ditional populations has the potential to augment the already
existing health disparities in genomic medicine. In India,
Assam is home to several ethnic tribes who still practice
traditional subsistence while hypertension is the leading
cause of cardiovascular diseases in this region. &e result
presented herein is the first report to address the association
of systolic blood pressure with gut microbiome of two
different agropastoralist ethnic communities. Compositional
profiling revealed that gut microbiome of normal and ele-
vated hypertensive individuals has significantly different
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Figure 5: Gut microbiome composition among individuals. Rel-
ative abundances of each phylum across every individual repre-
sented by stacked bars. Four most significant phyla are shown in
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combined relative abundances are represented in grey. &e relative
abundance of Firmicutes ranged from ∼2% to 40%, while abun-
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amplicon sequence variants. &ese findings confer oppor-
tunities to design personalized, preventative, and targeted
interventions harnessing the gut microbiome to tackle the
burden of cardiovascular diseases.
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