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Abstract

Alzheimer’s disease (ad) adversely affects the health, quality of life and independence of patients. There is a critical need to
identify novel blood gene biomarkers for ad risk assessment. We performed a transcriptome-wide association study to
identify biomarker candidates for ad risk. We leveraged two sets of gene expression prediction models of blood developed
using different reference panels and modeling strategies. By applying the prediction models to a meta-GWAS including
71 880 (proxy) cases and 383 378 (proxy) controls, we identified significant associations of genetically determined expression
of 108 genes in blood with ad risk. Of these, 15 genes were differentially expressed between ad patients and controls with
concordant directions in measured expression data. With evidence from the analyses based on both genetic instruments
and directly measured expression levels, this study identifies 15 genes with strong support as biomarkers in blood for ad
risk, which may enhance ad risk assessment and mechanism-focused studies.
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Introduction
Alzheimer’s disease (ad) is the most common cause of dementia
in older adults (1), which starts with mild memory loss and
culminates in severe impairment of individual executive and
cognitive functions (2). It is estimated that 5.8 million people
have ad in the United States and ad has become the fifth
leading cause of mortality among Americans aged 65 or older
(3). ad is a slowly progressing neurodegenerative disorder that
is estimated to start 20–30 years before the appearance of the
first clinical symptoms (4). Effective strategies for risk assess-
ment of ad are critical to decrease the public health burden
of this common disease. Multiple approaches have been devel-
oped for ad risk assessment. For example, amyloid-β (Aβ) in
plasma was reported as a potential biomarker for ad risk, in
particular, Aβ40 and Aβ42 (5–7). However, other studies did not
support an association between baseline Aβ40 and Aβ42 levels
in plasma and the subsequent development of ad (8,9). Aβ and
tau levels in cerebrospinal fluid (CSF) have also been reported
as potential markers for ad (10,11). However, lumbar puncture
results in discomfort or pain for patients, and it is difficult
to repeatedly and routinely check patients’ CSF (12). Genetics-
informed biomarkers, such as APOE and TOMM40, have also been
reported to be associated with risk of ad, but their clinical utility
requires further evaluation (13). Newer proposed approaches,
such as screening plasma or urine lipid peroxidation biomarkers
for ad using the liquid chromatography or ultra-performance
liquid chromatography-tandem coupled to mass spectrometry
(LC–MS/MS) (14–16), are usually time consuming and cost pro-
hibitive (17). In addition to these approaches, the potential utility
of specific genes in blood as candidate biomarkers have been
explored (18). Multiple candidate genes have been reported to
show differential expression in the blood of ad patients versus
healthy controls (19–30). However, findings have been inconsis-
tent across studies. Most studies have assessed only a small
list of candidate genes, and those that have taken an agnos-
tic approach have included only a relatively small number of
subjects due to cost. Importantly, several limitations are com-
monly encountered in conventional epidemiologic studies, such
as selection bias, potential confounding and reverse causation.
These limitations may partially explain some of the inconsistent
findings.

One strategy to address these limitations is to use genetic
instruments to assess the relationship between gene expression
and ad risk. Transcriptome-wide association study (TWAS), a
design that integrates gene expression prediction models and
genomic datasets of disease cases and controls, has been applied
to identify multiple susceptibility genes for human diseases (31–
34). Several TWAS have been performed for ad. In an earlier
TWAS by Hao et al., which included 17 008 ad cases and 37 154
controls and leveraged gene expression prediction models
in brain (dorsolateral prefrontal cortex (DLPFC)), adipose and
blood tissues, 25 genes were identified (35). Raj et al., utilizing
gene expression prediction models for DLPFC tissue, identified
eight associated genes at novel loci by analyzing 25 580 cases
and 48 466 controls (36). Leveraging a newly developed TWAS
framework, namely, UTMOST, Hu et al. identified significant
associations for 69 genes by analyzing 17 008 cases and
37 154 controls (37). In the latest TWAS by Gerring et al.,
126 tissue-specific associations involving 50 unique genes
were identified (38). Despite these promising findings, these
studies primarily aimed at identifying ad susceptibility genes
and thus primarily relied on gene expression prediction
models developed in tissues beyond blood. Meanwhile, the
applications on earlier ad genome-wide association studies

(GWAS) with relatively small sample sizes may limit the
findings.

Herein, to identify candidate gene biomarkers in blood for
ad risk, we performed the most comprehensive TWAS of ad to
date to assess the associations between genetically predicted
gene expression in blood and ad risk. We leveraged gene expres-
sion prediction models using larger reference transcriptome
datasets in blood (up to 3344) with state-of-the-art and novel
modeling strategies, namely, a modified version of the UTMOST
(37) and LASSO (39) methods. To have high statistical power,
we analyzed data from the largest ad GWAS available to date
involving 71 880 (proxy) cases and 383 378 (proxy) controls of
European ancestry from three consortia (Alzheimer’s disease
working group of the Psychiatric Genomics Consortium (PGC-
ALZ), the International Genomics of Alzheimer’s Project (IGAP)
and the Alzheimer’s disease sequencing project (adSP)) and
the UK Biobank data (40,41). For identified genes, we further
compared their measured expression levels (in blood) between
AD cases and controls from an independent dataset. Focusing
on significantly associated genes identified in this work, we
then conducted pathway gene-set analysis to elucidate enriched
pathways.

Results
Blood tissue gene expression genetic prediction models

The overall study flow is presented in Figure 1. Two sets of
gene expression prediction models for blood tissue built using
different modeling strategies namely, the modified UTMOST and
LASSO were leveraged in this TWAS. The number of imputable
genes with a performance (R2) of at least 0.01 (≥10% correlation
between predicted expression and actual expression) ranged
from 7799 to 10 838 (Supplementary Material, Table S1).

Associations of predicted expression in blood tissue
with ad risk

Considering that a different modeling strategy may be more
appropriate for the specific genetic regulatory architecture of
different genes, we used two sets of prediction models for
the association analyses with ad risk. As co-expression is
widely prevalent especially among local genes, the stringent
Bonferroni correction might result in overadjustment for
multiple comparisons. Thus, we used the false discovery rate
(FDR) correction in this study (42). Of the 18 603 models tested,
we detected 143 significant associations at FDR < 0.05 for 113
genes (Fig. 2). Six genes, namely HLA-DRB1, HLA-DQA2, HLA-DOB,
TAP2, DUP160 and CCNT2-AS1, were excluded due to the fact that
these genes are located in linkage disequilibrium (LD)-extensive
regions. The remaining 137 significant associations, involving
108 unique genes, were listed in Table 1 and Supplementary
Material, Table S2. Positive associations between predicted
expression level and ad risk were identified for 53 genes, and
negative associations were identified for 55 genes. These genes
are located in 55 genomic loci. Of the 108 associated genes,
29 genes were identified by both the UTMOST and LASSO
prediction models, 37 by only the UTMOST models and 42 by
only the LASSO models. Of the 37 genes identified using the
UTMOST models, 20 also showed reasonable prediction quality
(R2 ≥ 0.01) using the LASSO models. Reassuringly, most of the
20 genes (19/20) showed concordant directions of associations
with ad risk in comparison with the LASSO models and the
UTMOST models (Supplementary Material, Table S3). Of the
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Figure 1. Study design flow chart.

42 genes identified using the LASSO models, for 17, their
prediction models with R2 ≥ 0.01 were also established using
the UTMOST method. Of these, all except for one showed
concordant directions of associations with ad risk in comparison
of the UTMOST models and the LASSO models (Supplementary
Material, Table S4).

GWAS-identified ad risk SNPs and their distances to the
identified associated genes are shown in Supplementary
Material, Table S5. Of these associated genes, 42 are located
at least 500 kb away from any GWAS-identified ad risk
variants (Table 1). The genetically determined expression of 15
genes, namely, HP1BP3 (1p36.12), CARF (2q33.2), LY86 (6p25.1),
TMEM170B (6p24.2), SLC29A4 (7p22.1), NRF1 (7q32.2), LINC01506
(9q21.11), CTSW (11q13.1), TRAV35 (14q11.2), CTSH (15q25.1),
INO80E (16p11.2), AC099524.1 (16p11.2), C17orf97 (17p13.3), LSM12
(17q21.31) and EPG5 (18q12.3-q21.1), were found to be positively
associated with ad risk. On the other hand, a lower predicted
expression was found to be associated with increased ad
risk for the remaining 27 genes, namely, CEBPZOS (2p22.2),
TMEM177 (2q14.2), PLCH1 (3q25.31), FAM241A (4q25), UST (6q25.1),
TMEM106B (7p21.3), AC058791.1 (7q32.3), AC087752.3 (8q22.1),
TP53INP1 (8q22.1), CCDC6 (10q21.2), SNX32 (11q13.1), GRAMD1B
(11q24.1), PRMT5 (14q11.2), RP3-414A15.2 (14q24.3), RP11-120 K9.2
(15q21.2), CYP11A1 (15q24.1), AC012645.1 (16p11.2), YPEL3
(16p11.2), XYLT1 (16p12.3), ACE (17q23.3), KCNN4 (19q13.31),
LILRA5 (19q13.42), AC008984.7 (19q13.42), AC008984.2 (19q13.42),
LILRA6 (19q13.42), STK4 (20q13.12) and TOMM34 (20q13.12). One
of them, KCNN4 (19q13.31), was identified as an ad susceptibility
gene in a previous TWAS (38) (Supplementary Material, Table
S4).

Of the remaining 66 genes, 25 had been identified as ad
susceptibility genes in previous TWAS (Supplementary Mate-
rial, Table S6). The associations for 25 identified in the cur-
rent analyses were consistent with those in previous TWAS,
which were largely based on non-blood tissues (Supplementary
Material, Table S6). Eight of the genes, namely, BIN1, TAS2R60,

PTK2B, MS4A4A, MS4A6A, PICALM, CEACAM19 and PVR, had been
identified in previous TWAS using blood prediction models.

Directly measured expression levels of TWAS identified
genes in the blood of ad cases versus controls

We compared the directly measured expression of the TWAS
identified genes in nine advanced ad cases and ten controls,
leveraging an NCBI Gene Expression Omnibus (NCBI-GEO, acces-
sion GSE97760) dataset. For 15 of the TWAS identified genes,
we observed differential expression in the blood of ad patients
and healthy controls (FDR < 0.05) that was consistent with the
direction of effect identified in the TWAS analyses (Table 2).
For eight of these, namely, HP1BP3 (1p36.12), CD2AP (6p12.3),
TMEM170B (6p24.2), NRF1 (7q32.2), PICALM (11q14.2), VKORC1
(16p11.2), EPG5 (18q12.3-q21.1) and BLOC1S3 (19q13.32), higher
expression levels were observed in ad cases compared with con-
trols. In contrast, for the remaining seven genes, namely, CCDC6
(10q21.2), CYP11A1 (15q24.1), KAT8 (16p11.2), RNF40 (16p11.2),
YPEL3 (16p11.2), ACE (17q23.3) and KLC3 (19q13.32), the expres-
sion levels were lower in ad cases.

Ingenuity pathway analysis (IPA)

We performed ‘Core Analysis’ function of IPA (Ingenuity
System Inc, USA), including ‘Canonical Pathway’, ‘Disease and
Functions’, ‘Network’ and ‘Molecules’ analyses. Overall, 17
canonical pathways including 22 of the TWAS identified genes
showed significant enrichments at P < 0.05 (Supplementary
Material, Table S7). These include the neuroprotective role
of THOP1 in Alzheimer’s disease (P = 9.12 × 10−3). One tight
junction signaling pathway, four immune-related pathways (Fcγ

receptor-mediated phagocytosis in macrophages and mono-
cytes, natural killer cell signaling, Fc epsilon RI signaling and
phagosome maturation) and multiple biosynthesis pathways,
such as chondroitin sulfate biosynthesis and dermatan sulfate
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Figure 2. Manhattan plot of association results from the Alzheimer’s disease transcriptome-wide association study using blood tissue gene expression prediction

models. The x-axis represents the genomic position of each tested gene, and the y-axis represents −log10-tansformed P-value of the associations. Each dot represents

the genetically predicted expression of one specific gene. The red line at P = 3.68 × 10−4 represents the false discovery rate significance threshold.

biosynthesis, were also significantly enriched (Supplementary
Material, Table S7).

Based on the ‘Disease and Functions’ analysis, 37 neuro-
logical disease functional categories were implicated, which
involved 52 genes (Supplementary Material, Table S8). Interest-
ingly, the top three neurological disease functional categories
were related to ad or dementia. Thirteen associated genes:
BIN1 (2q14.3), CD2AP (6p12.3), EPHA1 (7q34-q35), TMEM106B
(7p21.3), CHRNA2 (8p21.2), MS4A4A (11q12.2), MS4A6A (11q12.2),
MS4A6E (11q12.2), PICALM (11q14.2), CYP11A1 (15q24.1), CHRNE
(17p13.2), ACE (17q23.3) and CD33 (19q13.41), contributed to
the significant enrichment in neurological disease functional
categories related to dementia (14 genes; P = 5.95 × 10−5), ad
(13 genes; P = 8.51 × 10−5) and late-onset ad (seven genes;
P = 1.21 × 10−11).

A total of nine networks were identified based on the Net-
work Analysis (Supplementary Material, Table S9; Fig. 3 and
Supplementary Material, Fig. S1). The top network (Score = 59)
containing 25 TWAS identified genes was related to neurological
disease (Supplementary Material, Table S9 and Fig. 3). Interest-
ingly, some associated genes that were known risk genes for ad,
such as BIN1 (2q14.3), PICALM (11q14.2) and ACE (17q23.3) (43–45),
were in nodes of the network, suggesting that these genes could
possibly regulate ad development.

Except for AC008984.2 (19q13.42), which is not available in the
IPA database, the location, type and biomarker application(s)
of the identified associated genes for ad risk were annotated
through ‘Molecules’ analysis (Supplementary Material, Table
S10). In regards to the cellular location of the products of
these genes, 34 were in the cytoplasm, 20 in the plasma
membrane, 15 in the nucleus and 1 in extracellular space.
Of these molecules, twelve were annotated as enzymes, five
transmembrane receptors, six peptidases, four transporters, five
transcription regulators, four kinases, two ion channels, one
phosphatase and one G-protein coupled receptor. Six genes,
VKORC1 (16p11.2), ACE (17q23.3), BLOC1S3 (19q13.32), ERCC2
(19q13.32), VASP (19q13.32) and CD33 (19q13.41), and/or their
encoded proteins, have been identified to have potential utility
in diagnosis, prognosis, disease progression, efficacy or response

Figure 3. The top molecular networks identified by Ingenuity Pathway Anal-

ysis (IPA). Molecule fill color: the white fill color shows molecules from

the Knowledge Base—not part of our TWAS identified gene for ad risk;

the gray fill color shows molecules of our TWAS identified genes for ad

risk. Shape: Other, Complex/Group/Other, Enzyme, Kinase,

Peptidase, Transcription regulator. Relationship line:

direct interaction, indirect interaction. More information

of PIA legend can be found in: https://qiagen.secure.force.com/KnowledgeBase/

?id=kA41i000000L5rTCAS.

to therapy for some diseases (Supplementary Material, Table
S10).

Discussion
We have performed the most comprehensive study to date to
systematically search for blood gene biomarkers for ad risk using
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https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab229#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab229#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab229#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab229#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab229#supplementary-data
https://qiagen.secure.force.com/KnowledgeBase/?id$=$kA41i000000L5rTCAS
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab229#supplementary-data


Human Molecular Genetics, 2022, Vol. 31, No. 2 293

Table 1. Forty-two gene expression-trait associations for genes at genomic loci at least 500 kb away from any GWAS-identified Alzheimer’s
disease risk variants

Region Gene Typea Model R 2 b Number
of SNPs
in model

OR (95% CI) P-valuec P-value
after FDRc

Closest risk
SNPd

Distance to
the risk SNP
(kb)

1p36.12 HP1BP3 protein UTMOST 0.18 5 1.29 (1.13–1.47) 1.31 × 10−4 2.28 × 10−2 rs4575098 140 042
2p22.2 CEBPZOS protein LASSO 0.09 31 0.97 (0.96–0.99) 3.68 × 10−4 4.78 × 10−2 rs4663105 90 448
2q14.2 TMEM177 protein LASSO 0.03 39 0.94 (0.92–0.96) 8.10 × 10 −7 3.68 × 10−4 rs4663105 7447
2q33.2 CARF protein UTMOST 0.01 35 1.10 (1.06–1.15) 5.63 × 10−6 1.69 × 10−3 rs10933431 30 129
3q25.31 PLCH1 protein LASSO 0.02 12 0.92 (0.89–0.96) 1.44 × 10−5 3.43 × 10−3 rs184384746 97 867
4q25 FAM241A protein UTMOST 0.06 23 0.96 (0.95–0.98) 2.59 × 10 −6 8.96 × 10−4 rs6448451 102 042

LASSO 0.10 8 0.96 (0.94–0.98) 1.07 × 10−5 2.65 × 10−3 rs6448451 102 042
6p25.1 LY86 protein LASSO 0.19 14 1.02 (1.01–1.03) 3.09 × 10−4 4.10 × 10−2 rs9271192 25 923

UST protein LASSO 0.08 32 0.96 (0.95–0.98) 1.66 × 10−4 2.76 × 10−2 rs10948363 101 580
6p24.2 TMEM170B protein UTMOST 0.15 28 1.02 (1.01–1.04) 2.27 × 10−4 3.37 × 10−2 rs9271192 20 995
7p22.1 SLC29A4 protein LASSO 0.03 34 1.05 (1.02–1.07) 1.78 × 10−4 2.93 × 10−2 rs2718058 32 495
7p21.3 TMEM106B protein UTMOST 0.15 24 0.95 (0.93–0.97) 6.73 × 10−5 1.32 × 10−2 rs2718058 25 559
7q32.2 NRF1 protein UTMOST 0.02 13 1.13 (1.08–1.19) 1.19 × 10 −6 5.03 × 10−4 rs7810606 13 711
7q32.3 AC058791.1 lncRNA UTMOST 0.02 1 0.80 (0.72–0.90) 1.83 × 10−4 2.95 × 10−2 rs7810606 12 484
8q22.1 TP53INP1 protein UTMOST 0.08 8 0.94 (0.92–0.97) 2.08 × 10−4 3.23 × 10−2 rs9331896 68 471

AC087752.3 lncRNA UTMOST 0.02 11 0.83 (0.76–0.91) 5.24 × 10−5 1.05 × 10−2 rs9331896 68 495
9q21.11 LINC01506 lncRNA UTMOST 0.15 32 1.11 (1.05–1.18) 2.58 × 10−4 3.63 × 10−2 – –
10q21.2 CCDC6 protein LASSO 0.01 8 0.87 (0.82–0.92) 2.80 × 10−6 9.30 × 10−4 rs11257238 49 831
11q13.1 SNX32 protein UTMOST 0.16 15 0.98 (0.97–0.99) 8.45 × 10−6 2.28 × 10−3 rs983392 5678

LASSO 0.30 13 0.98 (0.98–0.99) 2.19 × 10−4 3.31 × 10−2 rs983392 5678
CTSW protein LASSO 0.27 26 1.02 (1.01–1.03) 7.82 × 10−6 2.17 × 10−3 rs983392 5724

UTMOST 0.32 25 1.02 (1.01–1.02) 1.07 × 10−5 2.65 × 10−3 rs983392 5724
11q24.1 GRAMD1B protein LASSO 0.08 43 0.94 (0.91–0.97) 7.60 × 10−5 1.43 × 10−2 rs11218343 1794
14q11.2 TRAV35 other LASSO 0.13 44 1.02 (1.01–1.04) 2.23 × 10−4 3.35 × 10−2 rs17125944 30 710

PRMT5 protein LASSO 0.20 36 0.98 (0.97–0.99) 3.59 × 10−4 4.71 × 10−2 rs17125944 30 002
14q24.3 RP3-

414A15.2
lncRNA LASSO 0.17 40 0.97 (0.96–0.99) 3.25 × 10−5 6.95 × 10−3 rs10498633 18 930

15q21.2 RP11-
120 K9.2

lncRNA LASSO 0.03 16 0.95 (0.92–0.97) 2.01 × 10−4 3.17 × 10−2 rs442495 8170

15q24.1 CYP11A1 protein LASSO 0.02 14 0.94 (0.91–0.97) 3.00 × 10−4 4.08 × 10−2 rs117618017 11 060
15q25.1 CTSH protein UTMOST 0.39 47 1.02 (1.01–1.02) 5.79 × 10−6 1.71 × 10−3 rs117618017 15 643
16p12.3 XYLT1 protein UTMOST 0.05 3 0.69 (0.56–0.84) 3.16 × 10−4 4.17 × 10−2 rs59735493 13 568
16p11.2 INO80E protein UTMOST 0.08 29 1.02 (1.01–1.03) 3.94 × 10−5 8.05 × 10−3 rs59735493 1116

LASSO 0.08 12 1.04 (1.02–1.06) 7.87 × 10−5 1.45 × 10−2 rs59735493 1116
YPEL3 protein UTMOST 0.11 14 0.98 (0.97–0.99) 7.48 × 10−5 1.43 × 10−2 rs59735493 1025

LASSO 0.10 3 0.97 (0.95–0.98) 2.10 × 10−4 3.23 × 10−2 rs59735493 1025
AC012645.1 lncRNA LASSO 0.05 8 0.95 (0.92–0.97) 8.88 × 10−5 1.60 × 10−2 rs59735493 1018

UTMOST 0.08 10 0.94 (0.91–0.97) 1.41 × 10−4 2.41 × 10−2 rs59735493 1018
AC099524.1 lncRNA UTMOST 0.15 1 1.06 (1.03–1.09) 1.33 × 10−4 2.30 × 10−2 rs59735493 50 639

17p13.3 C17orf97 protein LASSO 0.33 44 1.01 (1.01–1.02) 3.03 × 10−4 4.08 × 10−2 rs9916042 4704
17q21.31 LSM12 protein UTMOST 0.02 18 1.22 (1.10–1.36) 3.03 × 10−4 4.08 × 10−2 rs28394864 5306
17q23.3 ACE protein LASSO 0.02 11 0.95 (0.93–0.98) 2.37 × 10−4 3.48 × 10−2 rs28394864 14 104
18q12.3-
q21.1

EPG5 protein UTMOST 0.07 35 1.08 (1.04–1.12) 3.71 × 10−5 7.84 × 10−3 rs76726049 12 642

19q13.31 KCNN4 protein UTMOST 0.31 18 0.98 (0.97–0.99) 1.03 × 10−4 1.84 × 10−2 rs75627662 1128
LASSO 0.24 73 0.98 (0.97–0.99) 3.05 × 10−4 4.08 × 10−2 rs75627662 1128

19q13.42 LILRA6 protein LASSO 0.09 38 0.99 (0.98–0.99) 2.54 × 10−4 3.63 × 10−2 rs3865444 2993
AC008984.7 other LASSO 0.08 7 0.95 (0.93–0.97) 2.01 × 10 −6 7.79 × 10−4 rs3865444 3085
LILRA5 protein LASSO 0.14 17 0.97 (0.95–0.98) 7.56 × 10−6 2.13 × 10−3 rs3865444 3090

UTMOST 0.13 6 0.86 (0.81–0.92) 9.32 × 10−6 2.44 × 10−3 rs3865444 3090
AC008984.2 other LASSO 0.07 23 0.96 (0.94–0.98) 2.63 × 10−5 5.97 × 10−3 rs3865444 3092

20q13.12 TOMM34 protein LASSO 0.25 51 0.98 (0.97–0.99) 2.84 × 10−4 3.91 × 10−2 rs6014724 11 410
STK4 protein LASSO 0.02 4 0.93 (0.89–0.96) 1.99 × 10−4 3.17 × 10−2 rs6014724 11 290

aProtein: protein coding genes; lncRNA: long noncoding RNAs; other: processed transcripts, immunoglobulin genes, or T cell receptor genes.
bR 2: prediction performance.
cAssociations with FDR-corrected P-value ≤0.05 considered significant.
dThe closest risk SNPs identified in previous GWAS or fine-mapping studies (41,70).
A full list of all risk SNPs and their distances to the genes are presented in Supplementary Material, Table S5.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab229#supplementary-data
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Table 2. Fifteen genes with differential expression in ad cases and controls for directly measured levels consistent with association direction
in TWAS

Region Gene Type TWAS DEGs

Model OR (95% CI) P-value after FDR log2FC P-value after FDR

1p36.12 HP1BP3 Protein UTMOST 1.29 (1.13–1.47) 2.28 × 10−2 1.02 9.47 × 10−5

6p12.3 CD2AP Protein UTMOST 1.13 (1.07–1.20) 7.86 × 10−3 2.12 5.82 × 10−5

6p24.2 TMEM170B Protein UTMOST 1.02 (1.01–1.04) 3.37 × 10−2 2.83 2.14 × 10−4

7q32.2 NRF1 Protein UTMOST 1.13 (1.08–1.19) 5.03 × 10−4 0.77 1.17 × 10−2

10q21.2 CCDC6 Protein LASSO 0.87 (0.82–0.92) 9.30 × 10−4 −1.15 2.65 × 10−2

11q14.2 PICALM Protein UTMOST 1.11 (1.05–1.17) 3.28 × 10−2 1.38 9.02 × 10−3

15q24.1 CYP11A1 Protein LASSO 0.94 (0.91–0.97) 4.08 × 10−2 −0.99 9.33 × 10−3

16p11.2 KAT8 Protein UTMOST 0.95 (0.94–0.97) 9.34 × 10−7 −0.77 8.20 × 10−4

LASSO 0.92 (0.89–0.95) 3.35 × 10−4

RNF40 Protein UTMOST 0.96 (0.94–0.98) 4.77 × 10−3 −0.93 2.63 × 10−3

VKORC1 Protein UTMOST 1.05 (1.03–1.07) 8.87 × 10−5 1.30 6.98 × 10−5

YPEL3 Protein UTMOST 0.98 (0.97–0.99) 1.43 × 10−2 −1.00 6.87 × 10−3

LASSO 0.97 (0.95–0.98) 3.23 × 10−2

17q23.3 ACE Protein LASSO 1.22 (1.10–1.36) 4.08 × 10−2 −1.69 1.41 × 10−3

18q12.3-q21.1 EPG5 Protein UTMOST 1.08 (1.04–1.12) 7.84 × 10−3 0.94 8.72 × 10−3

19q13.32 BLOC1S3 Protein LASSO 1.06 (1.04–1.08) 2.59 × 10−9 0.87 2.04 × 10−2

UTMOST 1.09 (1.05–1.13) 5.56 × 10−3

KLC3 Protein UTMOST 0.92 (0.89–0.95) 6.20 × 10−4 −3.83 4.53 × 10−6

a study design that combines evidence from genetically
predicted expression and from directly measured expression.
State-of-the-art methods were used to develop blood gene
expression prediction models (37,46). Previous work in this
area has demonstrated the performance of such methods
in establishing prediction models that can well capture the
genetically regulated component of gene expression (37,46,47).
A total of 108 genes were identified to be associated with ad risk
for their genetically predicted expression in blood, including 42
at novel loci. Our study provides substantial novel information
to improve our understanding of the genetics and etiology of ad.
Notably, 15 of the genes further showed significant differential
expression with a consistent direction of effect in the blood
of ad patients and controls, suggesting their potential utility
for ad risk assessment and warranting further validation. To
our knowledge, this study represents the first study of its kind
validating disease-associated genetically determined expression
changes from GWAS with directly measured expression of genes
from a transcriptome study in disease cases and controls to
assess the concordance. The evidence from analyses using
genetic instruments in TWAS provides additional assurance
that such genes could serve as promising markers for improving
risk prediction of disease outcome.

Twelve novel genes we identified have been shown to poten-
tially play important roles in ad pathogenesis. CARF (2q33.2)
encodes a calcium responsive transcription factor, which regu-
lates the neuronal activity-dependent expression of BDNF (48).
CARF was down-expressed in ad brain frontal cortex (49). PLCH1
(3q25.31) encodes phospholipase C eta 1, which is a member of
the PLC-eta family of the phosphoinositide-specific phospholi-
pase C (PLC) superfamily of enzymes. The activity of platelet PLC
has been reported to be reduced in patients with ad (50). Previ-
ous work reported that the expression of LY86 (6p25.1), which
encodes lymphocyte antigen 86, was increased in human ad
temporal and App NL-G-F/NL-G-F cortex (51). In an ad mouse model,
the LY86 protein was reported to be differentially expressed
in urinary exosomes (52). TMEM106B (7p21.3) encodes a trans-
membrane glycoprotein, transmembrane protein 106B, whose

risk variant was implicated in the pathologic presentation of
ad (53). It was further reported that its mRNA and protein lev-
els were significantly reduced in the frontal cortex and hip-
pocampus tissues of subjects with sporadic ad (54). TP53INP1
(8q22.1) encodes tumor protein p53-inducible nuclear protein
1 and was reported to be associated with ad risk based on
the gene-wide analytical approach (55). LINC01506 (9q21.11) is
a long non-coding RNA, whose high expression was found to
be associated with low risk of ad (56). PRMT5 (14q11.2) encodes
protein arginine methyltransferase 5 that belongs to the methyl-
transferase family. The PRMT5 protein can catalyze the transfer
of methyl groups to the amino acid arginine, which is involved in
cell growth and apoptosis. In human cells and C. elegans models
of ad, PRMT5 had an important role in regulating Aβ-induced
toxicity (57). CTSH (15q25.1) encodes cathepsin H, a lysosomal
cysteine proteinase. A recent study found that the genetically
regulated protein abundance of this gene in brain was asso-
ciated with ad risk (58). ACE (17q23.3) encodes angiotensin I
converting enzyme that is a known risk gene for ad (45). EPG5
(18q12.3-q21.1) encodes ectopic P-granules autophagy protein
5 homolog, a large coiled coil domain-containing protein. Pre-
vious work has shown that genetic variants in EPG5 influence
the age at onset of ad (59). KCNN4 (19q13.31), also known as
KCa3.1, encodes potassium calcium-activated channel subfam-
ily N member 4. The existing evidence supports that KCa3.1
in microglia inhibition can block microglial neurotoxicity and
the anti-inflammatory and neuroprotective effects of KCa3.1
blockade could act as a potential therapeutic target for ad (60).
TOMM34 (20q13.12) encodes translocase of outer mitochondrial
membrane 34, which is involved in granulovacuolar degenera-
tion in ad (61). Besides the above-mentioned known genes (ACE
and EPG5), six novel genes (HP1BP3, TMEM170B, NRF1, CCDC6,
CYP11A1 and YPEL3) were differentially expressed in the blood
of ad cases versus controls for their directly measured levels
(Table 2).

The regulatory architecture of gene expression can vary
substantially across genes. In the current study, to fully capture
the potential diversity of the regulatory architecture, genetic
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prediction models developed using two different modeling
strategies, namely, revised UTMOST and LASSO, were leveraged.
By borrowing information across tissues, the UTMOST frame-
work provides a higher prediction accuracy compared with
single-tissue approaches (37). As a comparison, we leveraged
the LASSO method to establish models when analyzing the BIOS
data, which collects transcriptome data in blood. The design that
leverages complementary models can maximize the possibility
to identify disease-associated genes. It is worth noting, however,
that this may also induce false positives. In the current work,
of the 108 identified associated genes, 29 were identified by
both the UTMOST and LASSO prediction models, 37 only by the
UTMOST models and 42 only by the LASSO models. As shown
in the Results section, highly concordant association results
were found between the two prediction approaches. Additional
work is warranted for further validations. For the differential
gene expression analysis, we analyzed an independent dataset
of nine advanced ad cases and ten matched controls. As the
sample size of this dataset is small, future work involving larger
datasets is needed to further validate the potential utility of
these 15 validated genes for ad risk assessment.

Recent work has reported that plasma P-tau181 is a noninva-
sive diagnostic and prognostic biomarker of ad (62,63). Plasma
P-tau181 was found to be increased in preclinical ad and further
increased at the MCI and dementia stages. It also differentiated
ad dementia from non-ad neurodegenerative diseases with an
accuracy similar to that of Tau PET and CSF P-tau181 (AUC = 0.94–
0.98). The purpose of the current study was to identify candi-
date biomarkers for ad risk assessment. Besides such research,
additional work focusing on related traits is also important. For
example, it is critical to identify biomarkers that can predict the
rate of cognitive decline. This knowledge is critical for planning
clinical trials, as a more rapid rate of decline increases the possi-
bility of shorter clinical trials with fewer subjects and thus lower
costs. Also, it is important to identify biomarkers for predicting
the presence of comorbidities with ad that may interfere with
clinical trial success. Further investigation on these questions is
needed.

In conclusion, in this large-scale study, we leveraged compre-
hensive gene expression prediction models in blood to assess
the associations between genetically predicted gene expression
and ad risk. We identified 108 ad-associated genes, of which
the directly measured expression of 15 also showed the same
direction of effect. These 15 genes can be further investigated
for their potential utility in improving ad risk assessment.

Materials and Methods
Blood tissue gene expression prediction model building

Two different modeling strategies, modified UTMOST and
LASSO, were used to build blood tissue gene expression genetic
models.

The modified UTMOST models

Transcriptome and genome data from the GTEx v8 were used
to develop genetic imputation models for genes expressed in
670 whole blood samples. Details of the GTEx v8 dataset have
been described elsewhere (https://gtexportal.org/home/docume
ntationPage). Briefly, genomic information of the subjects was
collected using the whole-genome sequencing (WGS), as per-
formed by the Broad Institute’s Genomics Platform. Details of
RNA sequencing experiments, quality control (QC) of the gene

expression data and genomic data have been described else-
where (64,65).

The UTMOST framework was used to build gene expression
prediction models (37). It has been shown that compared with
conventional model building methods such as elastic net or
LASSO, such a cross-tissue expression imputation method can
substantially improve the accuracy of imputation. Considering
the abundance of transcriptome data in GTEx, this framework
would provide more accurate prediction by joint-tissue model
training. Here the model training approach was modified to
obtain a reliable estimate of the prediction performance. SNPs
within 1 Mb upstream and downstream of the gene were con-
sidered as predictors in the model. It has been shown that
there is no significant difference in prediction quality from
applying LD pruning (47). Therefore, LD pruning (r2 = 0.9) was
performed before model training to reduce the computational
burden. In the joint-tissue prediction model, the effect sizes
were estimated by minimizing the loss function with a LASSO
penalty on the columns (within-tissue effects) and a group-
LASSO penalty on the rows (cross-tissue effects). The group
penalty term implemented sharing of the information from SNP
selection across all the tissues. The optimization problem uses
two hyperparameters, λ1 and λ2, for the within-tissue and cross-
tissue penalization. Five-fold cross-validation was performed for
hyperparameter tuning.

We modified the original model training step by unifying the
hyperparameter pairs (λ1 and λ2) to avoid the inflation in the
prediction performance. In brief, λ1 and λ2 were initialized using
the range of pre-trained lambdas from single-tissue elastic net
models. For each gene, 25 lambda pairs were generated. In the
modified version, the 25 lambda pairs were consistent across
the 5-fold cross-validation, while the original UTMOST assigned
different lambdas for each fold. The unified hyperparameter
pairs made the different folds directly comparable, thus avoid-
ing the performance overestimation in a retrained model. The
optimization of the joint model was initialized by single-tissue
weights generated in each fold and the optimization stopped
if the training error in each training set or the related tuning
error was higher than the previous step. After the 5-fold training,
one of the 25 lambda pairs was selected as the best lambda
pair according to the average tuning error across the 5-folds.
The prediction performance was evaluated by the correlation
between the predicted and observed expression in the combined
tuning set. Genes with good prediction performance (Pearson’s
correlation r > 0.1 and P < 0.05) were included in the subsequent
analyses.

LASSO models

Leveraging a reference transcriptome dataset involving 3344
blood samples, we generated prediction models using the LASSO
regression method. The detailed information for this set of mod-
els has been described elsewhere (39). Briefly, RNA-seq data of
these whole-blood samples from the BIOS Consortium were gen-
erated using Illumina’s Hiseq2000. The genetic data consisted of
881 977 unambiguous HapMap SNPs with MAF > 5%, minor allele
count >10 and imputation info score >0.8. For the 13 870 genes
with a significant expression quantitative trait locus (eQTL), a
LASSO model was fitted in R with glmnet, to assess the potential
predictive value of SNPs within 250 kb of the gene. We derived
the unstandardized prediction models leveraging the original
standardized models and standard deviation of variants in Euro-
peans of the 1000 Genomes Project data. Notably, blood is the
only available tissue/cell type for the BIOS Consortium study.

https://gtexportal.org/home/documentationPage
https://gtexportal.org/home/documentationPage
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Thus, the cross-tissue imputation method is equivalent to the
LASSO method.

Associations between genetically predicted gene
expression in blood and ad risk

We investigated the associations of genetically predicted gene
expression in blood tissue with ad risk using the summary
statistics generated from 71 880 (proxy) cases and 383 378 (proxy)
controls of European ancestry. Instead of using the conventional
approach of including clinically diagnosed ad alone, this study
included both clinically confirmed and parental diagnoses based
by-proxy phenotypes, the latter of which has been demonstrated
to confer great value in substantially increasing statistical power.
This study included 71 880 cases (24 087 clinically diagnosed late-
onset ad and 47 793 proxy ad) and 383 378 controls of Euro-
pean ancestry. It has been found that ad-by-proxy, based on
parental diagnoses, shows quite strong genetic correlation with
ad (rg = 0.81) (41). The data are generated from three consortia
(Alzheimer’s disease working group of the PGC-ALZ, the IGAP
and the adSP) and the UK Biobank data (40,41). Detailed informa-
tion on study participants, genotyping and imputation methods
have been included in the original paper. The brief information
of ad diagnosis methods used in these studies is summarized in
the Supplementary Material, File.

Risk estimates for the single variant association analyses
were adjusted for sex, batch (if applicable) as well as the top
principal components (PCs) for the adSP and PGC-ALZ cohorts.
For the PGC-ALZ cohorts, age was also included as a covari-
ate. For the UK Biobank dataset, 12 PCs, age, sex, genotyping
array and assessment center were included as covariates. The
associations of predicted gene expression with ad risk were
further estimated based on gene expression prediction weights,
summary statistics of SNP-ad risk associations and an SNP-
correlation (LD) matrix, using the S-PrediXcan framework (66).
In brief, the formula:

Zg ≈
∑

l∈Modelg

wlg
σ̂l

σ̂g

β̂l

se
(
β̂l

)

was used to estimate the Z-score of the association between
predicted gene expression and ad risk. Here wlg represents the
weight of SNP l for predicting the expression of gene g, β̂l and

se
(
β̂l

)
represent the GWAS association regression coefficient

and its standard error for SNP l, and σ̂l and σ̂g denote the square
root of the estimated variances of SNP l and the square root
of the predicted expression of gene g, respectively. The false
discovery rate (FDR) corrected P-value threshold of ≤0.05 was
used to determine significant associations between genetically
predicted gene expression and ad risk.

Directly measured expression levels of TWAS identified
genes in the blood of ad cases versus controls

The detailed information of the dataset we used to assess
directly measured expression of the identified genes in ad
cases and controls was described elsewhere (67). Briefly,
nine advanced female AD cases and ten age-matched female
controls (independent of the GWAS samples) were included.
Peripheral blood samples were processed to isolate RNA. The
transcriptome was assayed using the SurePrint G3 Human Gene
Expression 8x60k v2 microarrays (Agilent Technologies, CA).

The gene expression data were processed with log transfor-
mation followed by quantile normalization using the linear
models for microarray data (LIMMA) package in the bioconductor
environment in R (68) implemented in the RStudio to identify
differentially expressed genes (DEGs). The DEGs were selected
based on FDR adjusted P-value < 0.05.

‘Core analysis’ in ingenuity pathway analysis (IPA)

For the genes associated with AD risk, we performed the ‘Core
Analysis’ in IPA (69) to determine enriched pathways, diseases
and networks. For enriched ‘Canonical Pathway’, the signifi-
cance of P-value was calculated using the right-tailed Fisher’s
Exact Test. ‘Function and Disease’ displayed the annotated bio-
logical function and/or linked diseases of the genes. Networks
were obtained based on the connectivity of the genes. The
network score was based on the hypergeometric distribution
and was calculated with the right-tailed Fisher’s Exact Test. We
also assessed the ‘Molecule’ function, which encodes knowledge
about the molecule from the Ingenuity Knowledge Base.

Supplementary Material
Supplementary material is available at HMGJ online.
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