Skip to main content
. Author manuscript; available in PMC: 2023 Mar 1.
Published in final edited form as: Trends Biotechnol. 2021 Sep 1;40(3):354–369. doi: 10.1016/j.tibtech.2021.08.002

Table 1.

Omics Strategies for Discovering Novel LBP Design Elements.

Omics Science Characterizes/Quantifies Organisms investigated Application to LBPs Refs
Genomics DNA Bifidobacterium bifidum, 36 Bifidobacterium spp, Bacillus coagulans, Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides uniformis, Bacteroides vulgatus, Blautia hydrogenotrophica, Collinsella aerofaciens, Clostridium hiranonis, Desulfovibrio piger, Eggerthella lenta, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella copri Colonization factors and in vivo adaptation mechanisms via comparative genomics [15, 18]
Inter-microbe interactions via profiling compositional changes in native and synthetic communities [21, 22]
Transcriptomics RNA Saccharomyces cerevisiae, Lactobacillus plantarum, Lactococcus lactis, Lactobacillus rhamnosus GG, Lactobacillus crispatus, Bacteroides fragilis, Akkermansia mucinipila, Ruminococcus gnavus, Bacteroides thetaiotaomicron Inter-microbe interactions via differential expression analysis in synthetic communities [34, 35]
In vivo adaptation mechanisms by differential expression analysis in gut-like conditions [30, 33, 105, 106]
Genetic parts for engineered LBP design via differential expression analysis in response to defined gut cues [31, 37, 38]
Colonization factors via spatially-resolved differential expression analysis [107]
Proteomics Proteins Lactobacillus acidophilus, Lactobacillus salivarius In vivo adaptation mechanisms via differential proteome analysis in gut-like conditions [4043, 108]
Genetic parts for engineered LBP design via proteomics of engineered strains [109, 110]
Metabolomics Metabolites (Excluding DNA, RNA, or protein) Lactobacillus acidophilus, Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides uniformis, Bacteroides vulgatus, Blautia hydrogenotrophica, Collinsella aerofaciens, Clostridium hiranonis, Desulfovibrio piger, Eggerthella lenta, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella copri, Ruminococcus gnavus, Ruminococcus bromii In vivo adaptation mechanisms via metabolomics of gut-adapted strains [48, 49, 51]
Inter-microbe interactions via metabolic profiling of synthetic communities [22, 29]
Functional genomics Engineered gene function Escherichia coli Nissle, Bacteroides thetaiotaomicron, Saccharomyces cerevisiae, Saccharomyces boulardii, Bacteroides fragilis Promoter design [34, 55, 59]
Pathway optimization [56, 57]
In situ genetic tractability [53, 54]
In vivo adaptation mechanisms [62, 63]