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Despite strenuous efforts to reduce cardiovascular disease (CVD) risk by improving cardiometabolic risk factors, such as glucose 
and cholesterol levels, and blood pressure, there is still residual risk even in patients reaching treatment targets. Recently, re-
searchers have begun to focus on the variability of metabolic variables to remove residual risks. Several clinical trials and cohort 
studies have reported a relationship between the variability of metabolic parameters and CVDs. Herein, we review the literature 
regarding the effect of metabolic factor variability and CVD risk, and describe possible mechanisms and potential treatment per-
spectives for reducing cardiometabolic risk factor variability. 
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INTRODUCTION 

Despite efforts to lower metabolic risk factors for atheroscle-
rotic cardiovascular disease (ASCVD) defined by the Framing-
ham Heart Study, such as dyslipidemia, hypertension (HTN), 
and diabetes mellitus (DM) [1], residual cardiovascular risk 
has been reported even in those achieving target goals of risk 
factors [2-4]. Suspicion regarding the adverse effects of these 
metabolic risk variabilities has been brought up several de-
cades ago [5-7], but researchers have given attention to it re-
cently, and accumulating evidence has been reported to sup-
port it. Not only lowering the mean levels of cardiometabolic 
risk variables but also preventing fluctuation have become new 
target treatment goals, and the effect of lowering variability as 
a treatment option has been actively investigated. In this paper, 
we review the literature on the effects of metabolic factor vari-
ability on cardiovascular disease (CVD) and mortality. 

GLUCOSE VARIABILITY

Mechanism of adverse effect of glucose variability 
Several in vivo and in vitro studies have demonstrated the ef-
fect of glucose variability (GV) on adverse cardiovascular 
events (Fig. 1). The primary mechanism is suggested to be the 
activation of oxidative stress and production of inflammatory 
cytokines that induce endothelial damage and dysfunction. 
Research on human coronary artery endothelial cells under 
fluctuating glucose levels has shown an increase in tumor ne-
crosis factor-α, intercellular adhesion molecule-1, and inter-
leukin-6 [8,9]. Oxidative stress produced by GV leads to apop-
tosis through the nuclear factor-erythroid 2-related factor 2 
(Nrf2)/heme oxygenase-1 (HO-1) pathway [10]. Overproduc-
tion of reactive oxygen species (ROS) in mitochondria by GV 
induces vascular endothelial cell growth factor (VEGF) pro-
duction and triggers undesirable angiogenesis [11]. GV also 
induces dysfunction of endothelial nitric oxide (NO) synthase, 
leading to vasoconstriction from decreased NO levels [12]. 

Costantino et al. [12] reported that epigenetic modification 
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of p66Shc, the adaptor protein, causes inadequate angiogenesis 
and vascular damage in type 2 diabetes mellitus (T2DM). 
Some studies suggested microRNA (miRNA) produced in glu-
cose fluctuating condition influence endothelial dysfunction. 
Guo et al. [13] indicated miRNA-1273-3p is related to GV-in-
duced autophagy, attenuation of cell proliferation, endothelial 
dysfunction. La Sala et al. [14] revealed upregulated miR-
NA-185 in high glucose fluctuation inhibit elevation of gluta-
thione peroxidases-1 which normally suppress ROS damage. 
Furthermore, glucose fluctuation contributes to activated 
monocyte and macrophage recruitment, resulting in vascular 
smooth muscle cell proliferation and migration [15]. In addi-
tion, high GV may cause platelet activation, aggregation, and 
autonomic dysfunction in endothelial cells [16]. 

Glucose variability and cardiovascular disease risk
Since the time Monnier et al. [7] demonstrated that not only 
sustained hyperglycemia but also glucose swing cause oxida-
tive stress and accompanying microvascular and macrovascu-
lar complications, numerous studies have published reinforc-
ing evidence (Table 1) [3,17-31] and attempted to find an ap-
propriate index reflecting inter- and intra-day GV. In addition 
to the traditionally used standard deviation (SD) and coeffi-
cient of variation (CV) showing dispersion of data, various 

metrics have been reported and applied [32]. The mean of dai-
ly difference calculated using the glucose value of 2 consecutive 
days simultaneously reflects between-day glycemic variation, 
and Continuous Overlapping Net Glycemic Action (CONGA), 
measured by the SD of glucose value for the defined period of 
time, reveals within-day glycemic fluctuation. In addition, in-
dices indicating risk and patient prognosis (lability index) and 
assessing long-term diabetic complications (time in range) 
have been used in several studies [16,33]. 

Early studies were conducted on patients who underwent 
percutaneous coronary intervention (PCI) or coronary artery 
bypass graft and measured the periprocedural glucose level of 
participants [23-25,34-36]. Fluctuating glucose levels are asso-
ciated with major adverse cardiovascular events (MACEs), 
atrial fibrillation, and post-procedural complications. Howev-
er, most of the studies were conducted in an in-hospital setting 
and used short-term glycemic variability. Subsequent studies 
performed secondary analysis of randomized clinical trials in-
cluding T2DM patients, and reported an association between 
long-term GV and CVD risk [3,26-31]. Hirakawa et al. [3] re-
ported that increased glycosylated hemoglobin (HbA1c) vari-
ability was associated with vascular events (hazard ratio, 1.64; 
95% confidence interval [CI], 1.05 to 2.55); Zhou et al. [18] re-
ported that high fasting blood glucose (FBG) variability in-

Fig. 1. Potential pathogenesis of the adverse effects of glucose variability on cardiovascular risk. miRNA, microRNA; DM, diabe-
tes mellitus; TNF-α, tumor necrosis factor-α; ICAM-1, intercellular adhesion molecule-1; ROS, reactive oxygen species; VEGF, 
vascular endothelial cell growth factor.
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Table 1. Studies of the relationship between glycemic variability and cardiovascular outcome 

Study Study design Population 
characteristics GV index Follow-

up, mo Outcomes Results

Xia et al. [23] Prospective  
observational

864 ACS patients  
undergoing PCI or 
CABG

China

SD (during peri-
intervention 
hospitalization)

1 MACCE High GV (SD ≥2 mmol/L) increased incidence of 
MACCE (OR, 1.97; P=0.02) and incidence of 
AF during hospitalization (14.5% vs. 8.9%, 
P=0.02)

Zhang et al. 
[24]

Prospective  
observational

237 ACS patient  
undergoing PCI

China

MAGE (72 hours 
after PCI)

1 MACE High GV is related to MACE in DM patient (OR, 
2.86; P=0.025) but not in non-DM patients

Subramaniam 
et al. [17]

Prospective  
observational

1,461 Patients  
undergoing CABG

USA

CV (24 hours after 
surgery)

1 MAE Higher GV (per quartile) is related to risk for 
MAE (OR, 1.27; P=0.02)

Gerbaud et al. 
[25]

Prospective  
observational

327 ACS patient with 
DM

France

SD 17 MACE High GV (SD >2.70 mmol/L) in patients with  
diabetes and ACS is predictive factor of MACE 
(OR, 2.21; P<0.001)

Hirakawa  
et al. [3] 

Secondary analysis  
of prospective,  
randomized  
(ADVANCE trial)

4,399 T2DM 
UK

CV, SD, VIM, 
RSD, ARV

24 Vascular event,  
all-cause  
mortality

VVV of HbA1c is related to high vascular event 
(HR, 1.64; P=0.01) and mortality (HR, 3.31; 
P<0.001)

VVV of fasting glucose is associated with in-
creased vascular event (HR, 2.70; P<0.001)

Zinman et al. 
[26]

Secondary analysis  
of prospective,  
randomized (DE-
VOTE2 trial)

7,586 T2DM CV 24 MACE,  
hypoglycemia,  
all-cause  
mortality

Day-to-day fasting GV is associated with  
hypoglycemia (HR, 3.37; P<0.001) and  
all-cause mortality (HR, 1.33; P=0.04) but the 
association with MACE was not maintained  
after adjustment for baseline characteristics 
(P=0.08)

Zhou et al. 
[18]

Secondary analysis  
of prospective  
randomized 
(VADT trial)

1,791 T2DM 
USA

CV, ARV 84 MACCE Fasting GV is associated with CVD complication 
(OR, 1.16; P=0.003) and adverse effect is great-
est in patients given intensive glucose control

Sato et al. [19] Secondary analysis 
of prospective  
randomized  
(EMPATHY trial)

4,532 T2DM 
Japan

CV 38 MACE VVV of HbA1c is risk of CVD event (OR, 1.73; 
P=0.003) independent of mean-HbA1c 

Adverse effect of GV is important glycemic  
indicator especially in those with a mean HbA1c 
<7%

Segar et al. 
[27]

Secondary analysis 
of prospective,  
randomized  
(ACCORD trial)

8,576 T2DM ARV, CV, SD 77 Incident heart  
failure (HF)

Higher long-term HbA1c variability is associated 
with higher risk of HF (HR, 1.34; 95% CI, 1.17–
1.54) independent of baseline risk factor

Wan et al. [28] Population-based 
prospective cohort 
study from  
electronic health  
records

147,811 T2DM 
Hong Kong

SD 89 CVD, all-cause 
mortality

Greater variability of HbA1c is related to CVD 
(HR, 1.15) and all-cause mortality (HR, 1.32) in 
patient with DM across all age groups

Critchley et al. 
[29]

Retrospective 
matched cohort 
study

58,832 T2DM 
UK

CV 49 All-cause  
mortality, first 
emergency  
hospitalization

HbA1c variability is associated with overall  
mortality and emergency hospitalization and 
not explained by mean HbA1c and  
hypoglycemia event

Echouffo-
Tcheugui  
et al. [30]

Secondary analysis 
of prospective  
randomized  
(ALLHAT trial)

4,982 Population with 
or without DM

SD, CV, VIM, 
ARV

60 Incident CVD,  
all-cause  
mortality

VVV of fasting glucose is associated with  
increased mortality (HR, 2.22; 95% CI, 1.22–
4.04), but not with CVD when adjusting mean 
blood glucose

(Continued to the next page)
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creased CVD risk; and Wan et al. [37] demonstrated this rela-
tionship is applied to all age groups regardless of DM duration. 
The EMpagliflozin and daPAgliflozin in patients hospiTalized 
for acute decompensated Heart failure (EMPATHY) trial re-
cently conducted in Japanese T2DM patients identified that 
adverse effects of intermittent hyperglycemia were enhanced 
in patients with HbA1c levels below 7% [19]. These findings 
indicate the harmfulness of glycemic variation not only in 
metabolically high-risk patients but also in relatively well-con-
trolled T2DM patients or people whose metabolic risk is low.

Accumulating evidence suggests that glucose fluctuation in-
creases CVD risk in T2DM or patients who undergo coronary 
artery procedures; however, the possibility of a reverse causali-
ty effect must be addressed. Two studies [20,38] demonstrated 
the relationship between intermittent hyperglycemia and high 
CVD using data from people without DM and previous CVD 
from the Korean National Health Insurance. Analysis of data 
from a Denmark private clinic cohort with non-diabetics also 
showed that HbA1c variability is a predictor of MACE [21]. In 

addition, Kim et al. [39] illustrated that increased FBG vari-
ability is predictive of gestational DM. 

Glucose variability depending on medication
In selecting anti-diabetic agents, their effects on GV as well as 
improving hyperglycemia should be considered. Dipeptidyl 
peptidase-4 (DPP4) enzyme inhibitors, glucagon-like peptide 
1 (GLP1) receptor agonists, and sodium-glucose co-transport-
er 2 (SGLT2) inhibitors might be desirable oral hypoglycemic 
agents (OHAs) that reduce GV. Kim et al. [40] reported that si-
tagliptin reduced GV compared to glimepiride in T2DM pa-
tients who used metformin. Bae et al. [41] demonstrated a sig-
nificant reduction in MACE and SD of glucose in patients 
treated with teneligliptin compared with placebo. Although 
several clinical trials have also reported that DPP4 inhibitors 
blunted glucose fluctuation [42-44], other studies reported that 
DPP4 inhibitors were unsuccessful in reducing ASCVD risk 
[45,46]. The Variability of Glucose in Patients with Type 2 Dia-
betes Treated with Four Different Insulin Combination Regi-

Study Study design Population 
characteristics GV index Follow-

up, mo Outcomes Results

Wang et al. 
[31]

Prospective cohort 53,607 Population 
with or without 
DM, free of  
previous MI or 
stroke

China

CV 59 CVD, all-cause 
mortality

Elevated VVV of fasting glucose predicted the risk 
of CVD (HR, 1.26) and all-cause mortality (HR, 
1.46) independent of mean FPG

Kim et al. [22] Population-based 
retrospective  
cohort study from 
medical records

6,748,773 Population 
without DM,  
hypertension,  
dyslipidemia

Korea

CV, SD, VIM 66 MI, stroke, all-
cause mortality

High fasting GV is predictor of mortality (HR, 
1.20; 95% CI, 1.18–1.23), MI (HR, 1.16; 95% CI, 
1.12–1.21), and stroke (HR, 1.13; 95% CI, 1.09–
1.17)

Ghouse et al. 
[21]

Population-based 
retrospective  
cohort study

6,756 population 
without DM, CVD

Denmark

SD 76 MACE, all-cause 
mortality

High HbA1c variability is relate to MACE (HR, 
1.08; 95% CI, 1.03–1.15) and all-cause mortality 
(HR, 1.13; 95% CI, 1.07–1.20) independent of 
mean HbA1c and CV risk factors

Yu et al. [20] Population-based 
retrospective  
cohort study from 
medical records

3,211,319 Population 
without DM, CVD

Korea

SD 99 MI, stroke, all-
cause mortality

elevated fasting GV is associated with MI (HR, 
1.08; 95% CI, 1.04–1.11), stroke (HR, 1.09; 95% 
CI, 1.06–1.13), and mortality (HR, 1.12; 95% CI, 
1.10–1.15)

GV, glucose variability; ACS, acute coronary syndrome; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft; SD, 
standard deviation; MACCE, major adverse cardiovascular and cerebrovascular event; OR, odds ratio; AF, atrial fibrillation; MAGE, mean am-
plitude of glycemic excursion; MACE, major adverse cardiovascular event; DM, diabetes mellitus; CV, coefficient of variation; MAE, major ad-
verse event (in-hospital death, MI, reoperation, infection, stroke, renal failure, cardiac tamponade, pneumonia); ADVANCE, Action in Diabetes 
and Vascular Disease; T2DM, type 2 diabetes mellitus; VIM, variation independent of mean; RSD, residual standard deviation; ARV, average 
real variability; VVV, visit-to-visit variability; HbA1c, glycosylated hemoglobin; HR, hazard ratio; DEVOTE, Degludec vs Insulin Glargine in 
Patients with Type 2 Diabetes at High Risk of Cardiovascular Events; VADT, Veterans Affairs Diabetes Trial; CVD, cardiovascular disease; EM-
PATHY, EMpagliflozin and daPAgliflozin in patients hospiTalized for acute decompensated Heart failure; ACCORD, Action to Control Cardio-
vascular Risk in Diabetes; ALLTHAT, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial; MI, myocardial infarct.

Table 1. Continued
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mens (VARIATION) study illustrated that GLP1 receptor ago-
nists and basal insulin decreased GV and hypoglycemic events, 
compared to basal and bolus insulin or basal insulin plus 
OHAs [47]. The FLuctuATion reduction with inSUlin and 
GLP-1 Added together (FLAT SUGAR) trial also demonstrat-
ed that adding GLP1 receptor agonist to basal insulin and met-
formin is better than metformin plus basal/bolus regimen for 
GV improvement [48]. The superiority of DPP4 inhibitor and 
GLP1 receptor agonist on GV might be attributable to their in-
trinsic mechanism of action. While GV aggravation is induced 
by decline of endogenous insulin and insufficient glucagon 
suppression, DPP4 inhibitor and GLP1 receptor agonist, which 
keep incretin level, inhibit postprandial glucagon secretion as 
well as improve pancreatic-βcell function [49-51]. As for SGLT2 
inhibitors, despite limited evidence of the superiority of GV to 
other OHA, Nomoto et al. [52] showed similar GV between 
dapagliflozin plus glargine and DPP4 inhibitor plus glargine. 
In addition, adding dapagliflozin to long-acting insulin and 
other OHA ameliorated GV in a study including 36 subjects 
from a Chinese hospital [53]. However, a recently published 
placebo-controlled, randomized study with 84 Korean patients 
reported that adding dapagliflozin to basal insulin plus OHA 
did not show superiority to placebo in terms of GV [54]. Fu-
ture large-scale studies are needed to demonstrate the effects of 
SGLT2 inhibitors on GV. 

CHOLESTEROL VARIABILITY

Mechanism of adverse effects of cholesterol variability
Several theories explain the detrimental effects of lipid vari-
ability on CV risk. One hypothesis is that cholesterol variability 
causes transient hypercholesterolemia and fluctuation of cho-
lesterol plaque composite and structure, inducing endothelial 
dysfunction and cholesterol plaque instability [55]. Clark et al. 
[56] demonstrated that high variability of low-density lipopro-
tein (LDL), non-high-density lipoprotein (HDL) cholesterol, 
and total cholesterol/HDL (measured by SD) was correlated 
with percent atheroma volume progression by analyzing nine 
clinical studies that used intravascular ultrasonography to as-
sess coronary atheroma burden. Second, the existence of cho-
lesterol variability implies general frailty and epiphenomenon 
of systemic conditions [57]. Another theory is that the adverse 
effects of lipid variability are linked to statin non-adherence 
[58,59]. Mann et al. [60] reported that visit-to-visit lipid vari-
ability was associated with statin non-adherence after adjust-
ing for mean LDL, age, and sex using pharmacy data. Statin 
discontinuation induces a rebound phenomenon, and the fa-
vorable effect of statin is acutely lost when it is discontinued 
[58]. Patients who discontinued statin therapy after acute coro-
nary syndrome showed higher mortality than those who did 
not.

Fig. 2. Evidence that previous studies have demonstrated on lipid variability-mediated cardiovascular complications, limitations 
of previous studies, and suggested directions for future studies. CVD, cardiovascular disease; VIM, variation independent of 
mean; SD, standard deviation; CV, coefficient of variation; ARV, average real variability.
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Studies on cholesterol variability and cardiovascular risk
Since the importance of lipid variability in coronary disease 
was reported in an observational study on air force officers [5], 
it took >30 years to shed light on lipid variability. The Fram-
ingham study showed that high LDL variability in a population 
without cardiovascular risk was associated with future CVD 
risk [61]. In addition, the Treating New Target (TNT) study re-
ported that LDL variability in people with known CVD risk 
increases coronary and cardiovascular events by 16% and 11%, 
respectively, regardless of absolute LDL levels [62].

Factors that affect lipid variability have been investigated. The 
TNT study illustrated that 80 mg of atorvastatin lowered LDL 
variability than 10 mg of atorvastatin. In contrast, doses and 
types of statins showed no effect on lipid variability in several 
other studies [63,64]. Boey et al. [63] reported no significant 
differences in LDL variability among patients treated with sim-
vastatin (10, 20, and 40 mg). The VOYAGER (an indiVidual pa-
tient data meta-analysis Of statin therapY in At risk Groups: Ef-
fects of Rosuvastatin, atorvastatin and simvastatin) meta-analy-
sis [64] consists of 37 clinical studies using atorvastatin, simvas-
tatin, and rosuvastatin and reported low relevance between lip-
id variability and types of statins. Discordant results were 
shown regarding the influence of previous statin use on the 
harmful effects of lipid variability. Most studies focused on pa-
tients with coronary artery disease (CAD) or underwent PCI, 
and Kim et al. [22] and Zhu et al. [65] excluded people with 
previous CV events to leave out possible reverse causality. The 
outcomes were in line with those of previous studies showing 
the association between lipid variability and CV risk. Further-
more, Kim et al. [58] illustrated that the adverse effect of choles-
terol variability was magnified in patients without conventional 
risk factors and in patients who did not take lipid-lowering 
medication. However, a Korean nationwide population-based 
cohort study conducted with statin-naïve healthy young people 
[66] revealed no significant association between lipid variability 
and CV risk. Moreover, total cholesterol variability augments 
the risk of atrial fibrillation [67] and dementia [68] which in-
creases morbidity and mortality in the elderly population.

Limitations and expected direction of future studies
Future well-designed studies addressing improvements on sev-
eral points are required (Fig. 2). The intervals and numbers of 
blood lipid measurements must be standardized. Smith et al. 
[69] reported that lipid variability tends to increase with longer 
daily, weekly, and monthly measurement interval. The appro-

priate interval and frequency of cholesterol measurement for 
optimal variability estimation that reflects CVD risk should be 
investigated [55]. Controversies on proper statistical methods 
and variability indices must also be addressed. A large number 
of previous studies compared the highest quartile (Q4) to the 
lowest quartile (Q1) or high quartile (Q4) to low quartiles 
(Q1–3); such approaches might exaggerate the association 
[70]. In addition, Cox regression is adequate to compare be-
tween-group variability but not within-individual variability or 
correlation across repeated measurements. Multilevel or mixed 
linear regression models and joint modelling are suggested as 
proper tools for this type of analysis [70]. Blood lipid level vari-
ability was calculated using the following formulas: CV, average 
successive variability [ASV=∑(Xi–Xi+1)/n], SD, or variation 
independent of mean [VIM=100%×(SD/meanβ), where β is 
the regression coefficient]. Although VIM is less relevant to the 
mean than SD and CV, controversy over association with mean 
value and adequacy for variability estimation still exists [70]. 
The frequency of deviation outside the designated range or the 
greatest absolute change is suggested as an alternative index 
[55]. Future studies are also required to define the normal 
range of cholesterol variability so that clinicians can pursue an 
optimal approach to reduce lipid variability. Proprotein con-
vertase subtilisin/kexin type 9 (PCSK9) inhibitor which has a 
long half-life, is expected to maintain a stable cholesterol level. 
Lipid-lowering agents and treatment strategies that lower not 
only mean cholesterol levels but also variability are required 
[37]. 

BLOOD PRESSURE VARIABILITY

Mechanism of adverse effects of blood pressure variability 
Blood pressure (BP) fluctuation is necessary to maintain ho-
meostasis and to provide adequate organ perfusion, but con-
sistent blood pressure variability (BPV) reflects dysfunction of 
regulatory function, leading to pathological problems. Barore-
flex dysfunction [71], prolonged sympathetic activation, and 
increased arterial stiffness cause short-term BP variations 
[72,73]. Seasonal changes and behavioral factors, such as sleep 
disturbance or work-related stress, can cause long-term BPV 
[74,75]. Periodic high BP induced by these factors induces 
shear stress on the vessel wall and cardiovascular system, 
which consequently increases intima-media thickness, vascu-
lar dysfunction, and atherosclerosis progression [76]. Further-
more, patients’ poor adherence to drugs and inappropriate ti-
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tration of BP medication lead to visit-to-visit BPV [75]. In ad-
dition, Kim et al. [22] suggested that general frailty caused by 
systemic conditions might play a role in intermittent high BP. 

Studies on blood pressure variability and CVD risk
Parati et al. [75] suggested the classification of BPV according 
to time frame as very-short-term (beat-to-beat), short-term 
(day-to-night, hour-to-hour), mid-term (over various days), 
and long-term (over months, over seasons, over clinic visits). 
Short-term BP fluctuations from ambulatory BP monitoring is 
considered to cause target organ damage, particularly left ven-
tricular hypertrophy [77], and predict cardiovascular events 
and death [78]. Studies on home-monitored BP fluctuation 
(mid-term) were few, but they proved that BPV was associated 
with cardiovascular events and mortality [79-82]. Research 
over 19 years discovered the predictive value of home BPV on 
cardiovascular events over clinic-based BPV [83]. Several clin-
ical trials and cohort studies identified that visit-to-visit BP 
fluctuation was predictive of CADs, myocardial infarction 
(MI), and related mortality, and this association was confirmed 
in several meta-analyses [22,75,84-87]. Parati et al. [75] indi-
cated that long-term BPV is more strongly associated with 
CVD than short-term BPV, whereas Meng et al. [84] illustrated 
that within-visit systolic BPV was inappropriate for CVD pre-
diction. Kim et al. [22] and de Havenon et al. [85] reported that 
adverse effects of BPV on cardiovascular risk and all-cause 
mortality were maintained in a general healthy population. 
However, the predictive value of BPV on CV events was not 
significant in patients with end-stage renal disease [86]. 

Blood pressure variability depending on medications 
Several clinical trials have revealed that calcium-channel 
blockers (CCBs) and non-loop diuretics cause lower BPV than 
beta-blockers (BBs), angiotensin receptor blockers (ARBs), 
and angiotensin-converting-enzyme inhibitors (ACEi) [88-
90]. A meta-analysis including 398 trials [91] reported that the 
ratio of variance (VR) increased in the order of CCB, thiazide, 
ACEi, ARB, and BB (VR=0.81, 0.87, 1.08, 1.16, and 1.17, re-
spectively). The combination of antihypertensive medications 
has been researched in subsequent studies. Sato et al. [92] re-
ported that adding amlodipine was better than adding thiazide 
in patients with inadequate BP control with ARB monotherapy 
in terms of low BP fluctuation. Rakugi et al. [93] demonstrated 
that the combination of ARB and CCB decreased BPV com-
pared to a combination of ARB and diuretics. Nagai et al. [94] 

suggested that CCB plus diuretics are more favorable than 
ARB plus CCB, which is superior to ARB and diuretics in 
terms of lowering BPV. Although the mechanism of different 
effect on BPV among medications is uncertain, decrease of ar-
terial stiffness via vasodilation by CCB and non-loop diuretics 
is suggested as a possible explanation [88,91,95].

WEIGHT VARIABILITY

A large proportion of patients succeed in weight reduction but 
end up regaining lost weight, a phenomenon known as weight 
cycling. However, Hamm et al. [6] reported that individuals 
who gain and lose weight have a higher risk of coronary dis-
ease mortality compared to weight gain only or no weight 
change groups. The Framingham cohort study also verified 
that body weight variability (BWV) increases all-cause mortal-
ity and coronary heart disease using biannual body weight data 
for a mean of 32 years [96]. The association between BWV and 
all-cause mortality was shown in subsequent cohort studies 
and meta-analyses [97,98], although few studies reported con-
tradictory results [99]. The adverse effects of weight cycling 
was independent of traditional CVD risk factors [100] and ap-
peared to be enhanced in the obese population [100,101]. Kim 
et al. [102] demonstrated that not only BWV, but also waist cir-
cumference variability increased all-cause mortality and stroke 
risk based on a nationwide cohort study in Korea. Two main 
mechanisms are suggested to explain the harmful effects of 
weight variability: the repeated overshoot theory and increased 
visceral energy partitioning theory. The repeated overshoot 
theory indicates that weight cycling causes fluctuations in renal 
and cardiovascular risk factors, such as glomerular pressure, 
glucose, lipids, heart rate, and BP, which place extra burden on 
the kidneys and heart and lead to vascular injury [103]. Be-
cause the fluctuations are not always symmetrical; that is, the 
period of weight gain overrides that of weight loss, the net ef-
fect on the individual is unfavorable. Weight cycling also 
causes weight loss related to body adaptation in resting energy 
expenditure, thus reducing basal metabolism even after weight 
regain [104]. Byrne et al. [105] discovered that the recovery 
rate of skeletal muscle mass was faster in extremities than in 
the body trunk, which gives rise to central fat deposition when 
individuals regain weight. In addition, the relationship be-
tween fasting hyperinsulinemia and weight cycling in Japanese 
subjects might explain this phenomenon [106].
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HEART RATE VARIABILITY

In contrast to other cardiometabolic risk factors, low heart rate 
variability (HRV) has been proven by Kleiger et al. [107] to in-
crease mortality. They examined patients who survived acute 
myocardial infarction (AMI) and measured HRV, which 
showed that the relative risk of mortality was 5.3 in those with 
HRV <50 ms compared to those with HRV >100 ms. This as-
sociation is supported by other cohort studies involving pa-
tients with recent AMI [108,109] with the predictive value of 
low HRV being preserved regardless of left ventricular ejection 
fraction or ventricular arrhythmia [109]. The adverse effect of 
low HRV is attributable to the reduced ability to antagonize 
sympathetic activation through the vagal mechanism in pa-
tients with AMI [109]. T2DM patients without previous CAD 
who have low heart rate fluctuation also show increased mor-
tality and sudden cardiac death [110,111]. Cardiac autonomic 
neuropathy, which is important for adaptation to a given envi-
ronmental change, might explain these results [110]. Subse-
quent studies consisting of the general population with or 
without previous cardiovascular heart disease also illustrated 
that low heart rate fluctuation increases all-cause mortality 
[112,113] and CV events [114]. Based on carotid intima-media 
thickness data, Pereira et al. [115] demonstrated that low HRV 
is related to subclinical atherosclerosis, and Tsuji et al. [114] 
suggested that low HRV implies enhanced subclinical cardiac 
disease risk in the general population. BBs, ACEi, and statins 
have been shown to increase HRV [116] and the additional use 
of ivabradine on BB increases HRV in patients with systolic 
heart failure or stable CAD [117,118].

GAMMA-GLUTAMYL TRANSFERASE 
VARIABILITY

The association between high gamma-glutamyl transferase 
(GGT) levels and cardiovascular events and mortality has been 
proven in a British prospective cohort study including 7,613 
patients [119]. Several cohort studies in different populations 
and meta-analyses have shown supporting evidence [120-122]. 
Recently, Chung et al. [123] demonstrated that not only mean 
GGT levels but also GGT variability predicted MI, stroke, and 
cardiovascular mortality in the general population from a Ko-
rean cohort. Lee et al. [124] illustrated the predictive value of 
GGT fluctuation on all-cause mortality in T2DM patients 
without previous CVD or liver disease, and this effect is mag-

nified in a young, male population consuming high alcohol 
and cigarettes. Subsequent studies showed that variability in 
GGT increased the hazard ratio of hospitalization for heart 
failure [125], risk of dementia, and development of end-stage 
renal disease [126] in the Korean population. The possible 
mechanism is that GGT has catabolic activity on the antioxi-
dant glutathione, causing a proportional increase in GGT lev-
els with oxidative stress and inflammation [127]. GGT fluctua-
tions reflect the oscillation of oxidative stress and possibly al-
ters the stability of atherosclerotic plaques, manifesting as LDL 
variability [124,128].

CONCLUSIONS

In this review, we examined the current literature on the vari-
ability of metabolic risk factors for cardiovascular events and 
mortality. Except for a few discrepancies over subgroups, the 
variability of glucose, BP, cholesterol, and GGT increased car-
diovascular morbidity and mortality, while reduced HRV 
yielded unfavorable outcomes. The mechanisms underlying 
the adverse effects of variability are being investigated, but in-
flammation and oxidative stress caused by metabolic factor 
variation cause organ damage. Based on the current findings, 
clinicians should recognize the variability of patients’ metabol-
ic factors and prescribe appropriate drugs to minimize this ef-
fect. The trend of values should be evaluated at proper intervals 
and using suitable methods, as well as measuring a single value 
at the patient’s visit. To offer ideal treatment to patients, select-
ing a treatment regimen that could reduce both the absolute 
values and variability of metabolic risk factors is important. 
Therefore, further research should be performed to find better 
medication regimens that decrease glucose, BP, and cholesterol 
variability and to find a desirable lifestyle modification method 
to address fluctuations in weight. In addition, checking wheth-
er patient variability arises from inappropriate regimens or in-
adequate compliance is important. Patients should be educated 
on the hazardous effects of variability on health outcomes to 
encourage drug adherence. 
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