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Abstract
Introduction: Cannabidiol (CBD) can be isolated from Can-
nabis sativa L. or synthetically produced. The aim of this 
study was to compare the in vitro effects of purified natural 
and synthetic CBD to establish any pharmacological differ-
ences or superiority between sources. Methods: Six purified 
samples of CBD were obtained, 4 of these were natural and 
2 synthetic. The anticancer effects of CBD were assessed in a 
human ovarian cancer cell line (SKOV-3 cells). The neuropro-
tective effects of CBD were assessed in human pericytes in a 
model of stroke (oxygen glucose deprivation [OGD]). The 
ability of CBD to restore inflammation-induced intestinal 
permeability was assessed in differentiated human Caco-2 
cells (a model of enterocytes). Results: (1) In proliferating 
and confluent SKOV-3 cells, all CBD samples similarly re-
duced resazurin metabolism as a marker of cell viability in a 
concentration-dependent manner (p < 0.001). (2) In peri-
cytes exposed to OGD, all CBD samples similarly reduced cel-
lular damage (measured by lactate dehydrogenase) at 24 h 

by 31–48% and reduced inflammation (measured by IL-6 se-
cretion) by 30–53%. Attenuation of IL-6 was inhibited by 
5HT1A receptor antagonism for all CBD sources. (3) In differ-
entiated Caco-2 cells exposed to inflammation (TNFα and 
IFNγ, 10 ng/mL for 24 h), each CBD sample increased the 
speed of recovery of epithelial permeability compared to 
control (p < 0.05–0.001), which was inhibited by a CB1 recep-
tor antagonist. Conclusion: Our results suggest that there is 
no pharmacological difference in vitro in the antiprolifera-
tive, anti-inflammatory, or permeability effects of purified 
natural versus synthetic CBD. The purity and reliability of 
CBD samples, as well as the ultimate pharmaceutical prepa-
ration, should all be considered above the starting source of 
CBD in the development of new CBD medicines.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Preclinical and early clinical phase studies demon-
strate the potential of cannabidiol (CBD) in cancer, 
stroke, anxiety, and pain [1–8], and a purified form of 
CBD (98%, Epidiolex®) is already licensed to treat sei-
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zures associated with Dravet syndrome, Lennox-Gastaut 
syndrome, and tuberous sclerosis [9]. Around 65 molecu-
lar targets for CBD have been identified [10, 11] with dif-
ferent targets responsible for different therapeutic effects 
of CBD. For example, serotonin 1A receptor (5HT1A) ac-
tivation is associated with reductions in anxiety, nausea, 
and neuroprotective effects [12–14]. Transient receptor 
potential cation channel subfamily V member 1 (TRPV1) 
interactions have been implicated in the antinociceptive 
effects of CBD [15]. Peroxisome proliferator-activated re-
ceptor gamma (PPARγ), cyclooxygenase-2 (COX-2), and 
GPR55 have been linked to the anticancer effects of CBD 
[16]. Cannabinoid receptor 1 (CB1) interactions have 
been linked with CBD’s ability to reduce intestinal per-
meability [17, 18]. The polypharmacology of CBD may 
underpin its ability to affect many pathologies.

Over-the-counter CBD products are mainly produced 
from Cannabis sativa L. with a THC content below 0.2% 
(hemp). Epidiolex® is produced using C. sativa L. with a 
higher THC content. CBD can also be produced synthet-
ically through a series of chemical reactions, yielding a 
highly pure form of CBD [19]. Natural CBD products are 
either refined to get purified CBD (97–99%), or crude ex-
traction methods are used to yield CBD alongside other 
phytocannabinoids, terpenes, and flavonoids, which is 
known as a “CBD-rich extract.”

One complication that can arise in reviewing the ef-
fectiveness of CBD medicines is this range of products 
that include purified isolate forms or extracts containing 
other chemicals. Some suggest that CBD-rich extracts are 
therapeutically superior because of the “entourage” hy-
pothesis. Scientific evidence, however, is equivocal. Gal-
lily and colleagues [20] showed CBD-rich extracts were 
more effective than purified CBD in attenuating inflam-
mation and hyperalgesia in rats. Similarly, Pagano et al. 
[21] showed a CBD-rich extract was more beneficial in 
attenuating intestinal inflammation and hypermobility in 
mice. In contrast, Scott et al. [22] found purified CBD was 
more efficacious than a CBD-rich extract in glioblastoma 
cell lines. Ligresti and colleagues [23] also found purified 
CBD was more potent in reducing proliferation in some 
cancer cell lines, while in others, the CBD-rich extract was 
more potent. Similarly, Raup-Konsavage and colleagues 
[24] found that pure CBD was more efficacious than 3 
different CBD extracts in reducing cancer cell viability. 
Thus, it is not yet clear whether purified or CBD extracts 
are superior, or whether this is different depending on the 
pathological situation in which CBD is being tested. 
There are also no controlled clinical trial data to support 
either argument.

Because of the perception that CBD extracts are superior 
to purified CBD, synthetic CBD products are sometimes 
perceived as inferior. A recent study in Germany asked 153 
epileptic patients whether they worry about the origin of 
CBD. Seventy-three percent favored natural CBD [25]. The 
main reasons were a preference for a botanical origin, a per-
ceived lack of toxicity relative to synthetic forms, and an 
absence of chemical reactions in the manufacturing pro-
cess. Conversely, there is also a perception that contamina-
tions of natural CBD products (such as pesticides, heavy 
metals, microbial pathogens, and carcinogenic compounds) 
during cultivation, manufacturing, and packaging may lim-
it the pharmaceutical use of natural CBD [26]. There are no 
head-to-head clinical studies comparing plant versus syn-
thetic CBD. However, studies assessing the efficacy, safety, 
and pharmacokinetic parameters of synthetic CBD in drug-
resistant epilepsy [27, 28] found very similar characteristics 
relative to natural CBD [29–32].

In light of the lack of data directly comparing purified 
CBD of various origins, this study aimed to establish 
whether the CBD source affects its pharmacological ef-
fects in human cells. Our hypothesis was that there would 
be no difference in the effects produced between CBD 
samples of similar purity.

Methods

Materials
CBD derived from 2 different sources (4 natural and 2 synthet-

ic) were obtained from 6 companies (see Table 1). Only Logical 
confirmed to use a synthesis process selective for the naturally oc-
curring (−) enantiomer of CBD. For natural CBD, manufacturers’ 
analysis demonstrated Medropharm (Medropharm GmbH) was 
98.6% CBD, 0.2% CBD-C4 analog, 0.6% cannabidivarin (CBD-C3, 
CBDV), and 0.3% cannabigerol. Flora Fusion was 99.3% CBD and 
0.2% CBDV. CBDepot was 98.7% CBD, 0.3% CBD-C4, and 0.6% 
CBDV. Ai Lab was 99.4% CBD and had no data regarding any im-
purities. Of the synthetic CBD, Logical was 98.9% and THC Pharm 
was 99.8% pure. The presence of impurities was not assessed in 
either synthetic CBD sample. CBD was in ethanol at 10−1 mol/L. 
For each experimental repeat, a new stock solution was made.

Antagonists of receptors known to mediate CBD effects were 
used at relevant concentrations: CB1 receptor antagonist, AM251 
(100 nM); CB2 receptor antagonist, AM630 (100 nM); GPR18 an-
tagonist, O-1918 (1 μM); GPR55 antagonist, CID16200 (5 μM); 
PPARα antagonist, GW6471 (100 nM); PPARγ antagonist, 
GW9662 (100 nM); TRPV1 receptor antagonist, SB-36679 (1 μM); 
and 5HT1A antagonist, WAY-100635 (300 nM). All antagonists 
were from Tocris (Abingdon, UK). When used, antagonists were 
applied 20 min before CBD.

Cell Culture
Cells were maintained in a humidified cell culture incubator at 

37°C with 5% CO2 and cultured to 70–80% confluence in a T75 
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flask. SKOV-3 (The European Collection of Authenticated Cell 
Cultures [ECACC, Salisbury, UK], passages 24–31) cell lines were 
cultured to 70–80% confluence in Roswell Park Memorial Institute 
(RPMI) 1640 base medium containing L-glutamine and phenol red 
indicator (Gibco), supplemented with 10% heat-inactivated FBS 
and 1% penicillin-streptomycin (P/S). Human brain vascular peri-
cytes (ScienceCell, Carlsbad, CA, USA, passages 3–6) were cul-
tured in specialized pericyte medium (2% FBS, 1% pericyte growth 
supplement, and 1% P/S; ScienceCell, Carlsbad, CA, USA). Caco-2 
cells (ECACC, Salisbury, UK) (passages 37–49) were cultured in 
Minimum Essential Medium Eagle (1% P/S, 1% nonessential ami-
no acids, and 10% FBS).

Gas Chromatography/Mass Spectrometry
Test stock solutions of each CBD compound were made up at 

50 µg/mL by weight in methanol. Twenty microliters of 10 µg/mL 
D3-CBD (Sigma-Aldrich, Poole, UK) was added to 100 µL of stan-
dard and test stock solution, mixed, and evaporated until dry un-
der nitrogen at 30°C. Samples and standards were derivatized to 
their CBD-TMS esters by adding 70 µL of acetonitrile and 70 µL of 
BSTFA (Apollo Scientific, Manchester, UK) and incubating for 90 
min at 90°C. 0.5 µL of each sample and standard was injected into 
a Trace 1310-TSQ 8000 GC-MS/MS (Thermo Scientific, Hemel 
Hempstead, UK) in SRM mode monitoring m/z transitions 390–
319 for unlabeled CBD and 393–319 for D3-labeled CBD. Concen-
trations of test stock solutions were calculated from the standard 
curve of known CBD concentrations ranging from 20 to 80 µg/mL 
and % recovery calculated. Linearity of standard curves was as-
sessed for each assay and accepted if R2 > 0.97. CV for repeat sam-
ple injections was 1%.

Anticancer Effects of CBD in SKOV-3 Cells
To identify the concentration of CBD to use in studies with 

SKOV-3 cells, a concentration-response curve was constructed 
with CBD from THC Pharm (see online suppl. Fig. 1; for all online 
suppl. material, see www.karger.com/doi/10.1159/0005171203). 
SKOV-3 cells were seeded into 96-well plates at a density of 10,000 
cells/cm2 and left to adhere for 3 h. Media were replaced with fresh 
media containing either vehicle (ethanol) or CBD (10–50 µM). 
Plates were allocated into 2 time points: 24 and 48 h. At each time 
point, resazurin (Sigma-Aldrich, Poole, UK) dissolved in PBS 
(Thermo-Fisher, UK) was added to the wells to produce an in-well 
concentration of 100 µM and returned to the incubator for 2 h. 
Plates were read using a Fluoroskan Ascent microplate fluorome-
ter (Thermoelectron Corporation, Waltham, MA, USA) at 560 nm 
excitation and 590 nm emission. Ten and 50 µM were identified as 
subeffective and effective concentrations for similar experiments 
comparing the different CBD samples.

In separate experiments, the cytotoxic effect of CBD was inves-
tigated using confluent SKOV-3 cells. Cells were seeded into 96-
well plates and given 2 days to reach confluence. The media were 
aspirated and replaced with fresh media either containing ethanol 
(vehicle) or CBD (10 or 50 µM) for 24 or 48 h and resazurin me-
tabolism measured as before.

Oxygen Glucose Deprivation Experiments in Pericytes
Human pericytes were exposed to oxygen glucose deprivation/

reperfusion (OGD/R) as a model of stroke [33, 34]. Cells were 
seeded at 20,000 cells/cm2 in a 96-well plate. Once confluent, cells 
were incubated for 24 h to establish baseline samples. The media 

were replaced with RPMI glucose-free media (Invitrogen, Carls-
bad, CA, USA), containing either CBD (10 or 100 nM) or vehicle 
(ethanol) based on our unpublished work. Plates were sealed into 
GasPak EZ Anaerobe Pouches (Beckton Dickinson, Oxford, UK) 
and placed into the incubator, producing anoxic conditions with-
in 20 min [33]. After 4 h, media were collected and replaced with 
complete pericyte growth medium containing either CBD (10 or 
100 nM) or ethanol (vehicle) and returned to normoxic conditions 
for 20 h. Media concentrations of IL-6 (immediately after OGD 
and 24 h; R&D systems ELISA) and lactate dehydrogenase (LDH, 
24 h only; Abcam) were measured as per manufacturer’s instruc-
tions.

Inflammation and Permeability Experiments in Caco-2 Cells
Caco-2 cells (P32–45) were seeded onto the apical compart-

ments of polycarbonate transwell inserts (12-mm diameter, 0.4-
µm pore diameter; Transwell; Corning Inc., Corning, NY, USA) at 
a density of 20,000 cells/cm2 with complete medium. Cells were 
differentiated over 21 days into gut enterocyte-like cells. Transep-
ithelial electrical resistance (TEER, ohms, Ω) was used to quantify 
barrier integrity using STX2 chopstick electrodes attached to an 
Ohm meter (World Precision Instruments, Hitchin, UK) [35]. 
Wells with a resistance of over 999 Ω were used for experiments. 
The basolateral compartments of each well were treated with 10 
ng/mL IFNγ, and 8 h later, with 10 ng/mL TNFα. Sixteen hours 
later, TEER was measured and the wells washed once with PBS. 
Fresh media containing CBD (10 µM) were applied to the apical 
membrane and TEER measured up to 72 h.

Data Analysis
Statistical analyses were performed using GraphPad Prism 

8.2.0 and assessed for Gaussian distribution prior to analysis. Re-
sazurin, LDH, and IL-6 datasets were analyzed using one-way 
ANOVA alongside a Dunnett’s post hoc test comparing CBD sam-
ples against vehicle controls, as well as a multiple comparison com-
paring each CBD sample at the respective concentrations and time 
points. Caco-2 time course data were analyzed using area under 
the curve (AUC), quantified using the trapezoidal method, and 
compared to vehicle using an unpaired t test. AUC data were com-
pared by the CBD sample using a one-way ANOVA multiple com-
parison with a Dunnett’s post hoc test.

Results

Gas Chromatography/Mass Spectrometry
In general, the purity of each CBD was lower for our 

laboratory’s measurements than the manufacturers’ (Ta-
ble 1). This could be due to different measurement tech-
niques and/or degradation over time. Regardless, the pu-
rity of the CBD samples was independently confirmed in 
our lab using GC/MS. Logical CBD suffered from a poor 
percentage recovery in both runs, and unfortunately, the 
particular batch of Logical CBD used in the cellular ex-
periments had been exhausted following these runs, so we 
were unable to obtain purity data with this sample.
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Anticancer Effects of Natural and Synthetic CBD in 
SKOV-3 Cell Line
In proliferating SKOV-3 cells, at 24 h (Fig. 1a), 10 µM 

Medropharm (−53% ± 6), Flora Fusion (−55% ± 6), and 
CBDepot (−59% ± 6) reduced resazurin metabolism rela-
tive to vehicle control (p < 0.0001). Logical CBD also re-
duced resazurin metabolism, albeit to a lesser extent 
(−33% ± 9, p < 0.05; Fig. 1a). At 24 or 48 h, 50 µM of all 
CBD sources produced similar reductions in resazurin 
metabolism compared to vehicle (p < 0.0001; Fig. 1a, b). 
No statistically significant differences existed between 
CBD samples.

In fully confluent SKOV-3 cells, after 24 h, only 50 µM 
CBD reduced resazurin metabolism relative to vehicle 
(−55 to −74%, p < 0.0001; Fig. 1c). Similarly, after 48 h, 
only 50 µM CBD reduced resazurin metabolism relative 

to vehicle (−85 to −95%, p < 0.0001; Fig. 1d). No signifi-
cant differences were observed at either concentration or 
time point between CBD samples. None of the selected 
antagonists (to 5HT1A, CB1, CB2, GPR18, GPR55, PPARα, 
PPARγ, and TRPV1 receptors) inhibited the reduction in 
metabolism associated with CBD (Fig. 2).

The Effects of CBD in Pericytes Exposed to OGD
IL-6 content immediately after OGD was 225% ± 63  

(p < 0.05; Fig. 3a) higher than in normoxic control cells 
and at 24 h was 184% ± 26 higher (p < 0.01; Fig. 3b). At 
24 h, LDH activity in media was 118% ± 18 higher than 
normoxic control cells (p < 0.01; Fig. 3c).

IL-6 secretion immediately after OGD was not signifi-
cantly raised in the presence any of the CBDs at 10 or 100 
nM (Fig. 3a). IL-6 secretion at 24 h following OGD was 
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Fig. 1. Effects of various CBD samples on SKOV-3 cellular me-
tabolism using resazurin assays. CBD (10 or 50 µM) was applied to 
proliferating SKOV-3 cells for 24 (a) and 48 h (b) (n = 15 from 3 
separate experiments). Effects of CBD (10 and 50 µM) on confluent 
SKOV-3 cells applied for 24 (c) and 48 h (d) (n = 10 from 2 sepa-

rate experiments). Data are displayed as mean ± SEM % change 
from vehicle and were compared for statistical significance against 
vehicle using a one-way ANOVA. *p ≤ 0.05; ****p ≤ 0.0001. CBD, 
cannabidiol.
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Fig. 3. Effects of CBD in pericytes (p4–6) exposed to 4-h OGD.  
a Effect of CBD (10 or 100 nM) on LDH concentrations 24 h fol-
lowing initiation of OGD (n = 6, from 2 separate experiments). 
Effect of various CBD samples (10 or 100 nM) on media IL-6 con-
centrations immediately after OGD (b), or 24 h following the ini-
tiation of OGD (c) (n = 6, from 2 separate experiments). Data are 

displayed as mean ± SEM % change from normoxic control and 
were compared for statistical significance against the normoxic 
control (#) or OGD vehicle (*) using a one-way ANOVA. *p ≤ 0.05, 
**p ≤ 0.01, and ***p ≤ 0.001. CBD, cannabidiol; OGD, oxygen glu-
cose deprivation.



Maguire/Wilkinson/England/O’SullivanMed Cannabis Cannabinoids 2021;4:86–9692
DOI: 10.1159/000517120

also not significantly raised relative to the normoxic con-
trol in the presence of CBD (100 nM). No statistical dif-
ferences were present between CBD samples at their 
equivalent concentrations and time points.

LDH activity was also not significantly raised above 
normoxic control in the presence of CBD (24 h; Fig. 3c). 
At 100 nM, Medropharm (−91% ± 18, p < 0.05), Flora Fu-
sion (−96% ± 9, p < 0.01), CBDepot (−104% ± 19, p < 
0.05), and THC Pharm (−73% ± 18, p < 0.05) also signif-
icantly reduced LDH activity relative to the OGD vehicle.

CBD 100 nM was coapplied with the 5HT1A antagonist 
WAY-100635 [33]. As before, IL-6 secretion was blunted 
by CBD (Fig. 4a, 50–63% relative to vehicle). However, in 
the presence of WAY-100635, this effect was reduced 
such that an increase in IL-6 secretion was observed 
(Fig. 4a). There was no obvious effect of WAY-100635 on 
LDH activity (Fig. 4b).

CBD Effects on Caco-2 Barrier Integrity following 
Inflammation
Following an inflammatory protocol, barrier resis-

tance was reduced by ∼30%, indicating increased perme-
ability [36]. When analyzed as the total effect over time 
(AUC) (%·min−1), all CBD samples increased TEER fol-

lowing inflammation relative to their vehicle control 
(Fig. 5b–f; Table 1 for pooled data). No statistical differ-
ences were present between CBD samples in their ability 
to restore intestinal permeability. As before (Fig. 5), when 
CBD was administered alone, it successfully increased the 
recovery of TEER values following a 24-h inflammatory 
protocol. However, when CBD was coadministered with 
AM251 (1 µM), this effect was inhibited (Fig. 6).

Discussion

The aim of this study was to investigate whether CBD 
derived from different sources (natural or synthetic) 
would behave similarly in 3 human cell models of disease. 
Across all experiments, all CBD samples at their respec-
tive concentrations and time points produced very simi-
lar effects. Whilst some minor variability existed in the 
magnitude of effect and percentage purity of CBD sam-
ples, none of these differences manifested in one particu-
lar sample of CBD being superior. These data support our 
hypothesis that there is no pharmacological difference 
between purified natural and synthetic CBD in vitro.
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Fig. 4. Effects of natural and synthetic CBD (100 nM) on LDH and 
IL-6 concentrations in pericytes exposed to 4-h OGD in the pres-
ence or absence of the 5HT-1A antagonist WAY-100635 (300 nM). 
a IL-6 concentrations 24 h following the initiation of OGD (n = 
11–13, from 3 separate experiments). b LDH concentrations in 
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CBD has antiproliferative [37, 38] and apoptotic fea-
tures [39] in multiple cancer cell lines. We explored the 
effects of CBD in the ovarian cancer cell line SKOV-3 and 
whether the CBD origin influenced results. Ten micro-
molar CBD reduced cell viability in proliferating cells, 
and 50 µM CBD was cytotoxic in proliferating and conflu-
ent cells. The effects of CBD were greater at 48 h. None of 
the purified CBD samples differed in their efficacy across 
concentrations or time points, suggesting regardless of 
how CBD is produced, its antiproliferative/cytotoxic ef-

fects remain the same, at least in the SKOV-3 cell line. 
Since the effects of CBD were not attenuated by the range 
of antagonists used and the high concentration of CBD 
required, it is likely this is a nonreceptor-mediated mech-
anism, for example, on mitochondria membrane poten-
tial and/or ROS generation [40], which should be inves-
tigated in future experiments.

CBD possesses several properties that could be useful 
in treating ischemia and reperfusion injuries including 
modulation of intracellular calcium [41], attenuating 
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Fig. 5. Effects of natural (a–d) and synthetic CBD (e, f) on intesti-
nal permeability following a 24-h inflammatory protocol (IFNγ 
and TNFα, shown as the solid bar) in differentiated Caco-2 cells. 
Data are displayed as mean ± SEM % change from baseline inserts 
(n = 5–6, from 3 separate experiments). Time course data are dis-

played as AUC and analyzed using a one-way ANOVA. CBD sam-
ples were compared to vehicle or each other using a multiple com-
parison *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001. AUC, area under 
the curve; CBD, cannabidiol.
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BBB permeability [33], improving glucose metabolism, 
and optimizing energy production [42] and as an anti-
oxidant molecule [43]. The aim of the present experi-
ments was to investigate the effects of different natural 
and synthetic CBD samples on cell damage in pericytes 
exposed to OGD and reperfusion. All CBD samples were 
able to prevent OGD-induced increases in IL-6 and LDH, 
and the anti-inflammatory effect of CBD was partially re-
duced by 5HT1A antagonism, as previously observed [33, 
44]. This suggests both synthetic and natural CBDs can 

activate 5HT1A, which is the molecular target underpin-
ning many therapeutic effects including stroke, anxiety, 
and pain. As far as we are aware, this is the first study 
showing the protective properties of CBD in pericytes ex-
posed to OGD/R injury.

As we have previously shown [36], Caco-2 barrier in-
tegrity could be restored by administering CBD to the 
apical compartment of transwell inserts following a 24-h 
inflammatory protocol. Further work by our laboratory 
demonstrated these effects of CBD extend to human co-
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Fig. 6. Effects of natural (a–d) and synthetic (e, f) CBD on intesti-
nal permeability following a 24-h inflammatory protocol (IFNγ 
and TNFα, shown as the solid bar) in differentiated Caco-2 cells in 
the presence or absence of the CB1 receptor antagonist AM251 (---).  

Time course data are displayed as AUC and analyzed using a one-
way ANOVA. CBD samples were compared to vehicle or each oth-
er using a multiple comparison **p ≤ 0.01, ***p ≤ 0.001, and  
****p ≤ 0.0001. AUC, area under the curve; CBD, cannabidiol.
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lon explants exposed to inflammation [45]. In both stud-
ies, the ability of CBD to restore barrier integrity was in-
hibited by CB1 antagonism [36, 45]. Most recently, we 
showed that CBD (600 mg) was protective against aspi-
rin-induced permeability increases in healthy volunteers 
in vivo [45]. In this present set of experiments, all CBD 
samples restored barrier integrity of differentiated Caco-
2 cells following inflammation to a similar extent, and the 
effects on barrier integrity were reduced by antagonism 
of the CB1 receptor for all CBD samples. These results 
suggest natural and synthetic CBDs have similar pharma-
cological effects in a cellular model of acutely inflamed 
small intestine.

One caveat to consider is that natural CBD can contain 
other phytocannabinoids, albeit in small amounts (see 
Table 1). However, the concentration of these compounds 
would be moderate with high concentrations of CBD. For 
example, the most abundant contaminant was CBDV 
(0.6%). At 50 µM, the corresponding concentration of 
CBDV would be ∼300 nM. The CBDV pharmacology is 
not well characterized, but binding assays demonstrated 
a Ki of 14.7 µM at CB1 and 570 nM at CB2 [46]. We believe 
it is unlikely that the small concentrations of CBDV, or 
indeed other Cannabis constituents, influenced our re-
sults at a pharmacodynamic level. Whether there are 
pharmacokinetic interactions between these compounds 
in vivo remains to be tested.

This study demonstrates for the first time that the an-
ticancer, neuroprotective, and intestinal barrier protec-
tive properties of purified CBD are similar regardless of 
the source from which CBD is derived. From a pharma-
cological perspective, where a molecular target is impli-
cated (i.e., 5HT1A in stroke and CB1 in gut permeability), 
the effects of CBD were similar. This suggests that any 
beneficial effects that could be achieved in a clinical set-

ting for purified CBD are likely to be similar at a pharma-
codynamic level. Based on this analysis, the economic, 
environmental impact, purity, reliability, and consistency 
of CBD, either natural or synthetic, as well as the ultimate 
pharmaceutical preparation, should all be considered 
above the starting origin of the CBD in the development 
of new CBD medicines.
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