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Abstract
Background: McLeod syndrome (MLS) is an X-linked multi-
systemic progressive disorder caused by loss of function mu-
tations in the XK gene. The rare blood group phenotype of 
MLS patients with absent Kx antigen requires the support of 
specialized transfusion institutions because of the risk of 
transfusion complications. Acanthocytosis of red blood cells 
occurs in almost all patients. Nonhematological manifesta-
tions of MLS are very similar to those of VPS13A disease (cho-
rea-acanthocytosis), an autosomal-recessive condition. 
Their shared phenotype apart from acanthocytosis includes 
movement disorders such as chorea and dystonia, epilepsy, 
peripheral neuropathy, and muscle involvement, typically 
with creatine kinase (CK) elevation, cardiomyopathy includ-
ed. Summary: In this review, we describe the nonhemato-
logical manifestations of MLS in comparison with those of 
VPS13A disease. While there are many similarities, differenc-
es such as mode of inheritance, sex distribution, age at man-
ifestation, severity of heart involvement, frequency of feed-
ing dystonia or of involuntary head drops may help to distin-
guish these disorders in the clinic. Immunohematological 
demonstration of the McLeod-Kell phenotype or detection 
of pathogenic mutations of XK (or VPS13A, respectively) is 
the gold standard for distinction. “Neuroacanthocytosis” 
was often used as an overarching term, but is potentially 

misleading, as the term does not refer to a defined disease 
entity. Its use, if continued, must not prevent clinicians to 
seek a final diagnosis on the basis of molecular findings. The 
clinical similarity of MLS and VPS13A disease has long sug-
gested some shared pathophysiology. Evidence for molecu-
lar interaction between XK, the McLeod protein, and chorein, 
the VPS13A gene product, has recently been put forward: XK 
forms a complex with chorein/VPS13A, a bulk lipid transport-
er located at various membrane contact sites. The exact role 
of XK in this complex needs to be further elucidated. Impair-
ment of bulk lipid transport appears as the common denom-
inator of both MLS and VPS13A disease. A variety of further 
conditions may in time be added to the “bulk lipid transport 
diseases,” such as the recently recognized disorders caused 
by mutations in the VPS13B, VPS13C, and VPS13D genes. Key 
Messages: (1) Patients diagnosed with the rare red cell 
McLeod phenotype (McLeod syndrome, MLS) require inter-
disciplinary collaboration of transfusion medicine special-
ists, neurologists, and cardiologists for both their hemato-
logical and nonhematological disease manifestations. (2) 
The phenotypical similarity of MLS and VPS13A disease, of-
ten leading to either confusion or insufficient diagnostic 
depth (under the label of “neuroacanthocytosis”), is based 
on interaction of the respective proteins, XK and chorein, 
within the cellular machinery for bulk lipid transport. (3) 
Overall, the term “bulk lipid transport diseases” seems useful 
for further research on a group of conditions that may not 
only share pathophysiology, but may also share treatment 
approaches. © 2022 The Author(s).
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Introduction

McLeod syndrome (OMIM #300842) is an ultra-rare 
progressive multisystemic disorder due to pathogenic 
variants in the XK gene with X-chromosomal inheritance 
[1]. Delineation of the syndrome began in the early 1960s 
with the description of a hitherto unknown Kell antigen 
profile in an otherwise healthy 25-year-old male blood 
donor, then a Harvard dental student, who developed 
neurological symptoms much later in life [1–3]. The 
“McLeod blood group phenotype” that necessitates spe-
cific transfusion precautions was later found associated 
with degeneration within the central and peripheral ner-
vous system and with a wide spectrum of neurological 
signs and symptoms and led to naming of the multisys-
temic condition as McLeod syndrome (MLS) after the 
original propositus [1, 4, 5]. Because of the particular 
“neurohematological” coincidence, diagnosis and man-
agement of MLS patients clearly require efforts by multi-
disciplinary collaboration.

The “McLeod blood group phenotype” results from 
absence of the Kx antigen (located at an extracellular loop 
of the transmembrane protein XK) and an associated re-
duced expression of antigens of the Kell blood group sys-
tem [5, 6]. MLS therefore affects both the XK (ISBT 019) 
and KEL (ISBT 06) systems [4, 7]. Kx+ transfusions 
should be strictly avoided for all individuals carrying the 
McLeod blood phenotype: this implicates the need for 
support from specialized transfusion institutions with 
immunohematological expertise. Because of the rarity of 
compatible units of stored blood, autologous donation 
prior to an anticipated need or blood donation for long-
term cryopreservation, banking and interinstitutional, 
world-wide exchange of blood units are required. The im-
pact on blood banking and cryopreservation of the pres-
ence of acanthocytic red cells and of subsequent chronic-
compensated hemolysis in MLS [4] so far has not been 
systematically studied. Single case observations, however, 
indicate the absence of major issues with freezing and 
thawing of McLeod blood [8, 9].

Acanthocytosis of red blood cells occurs in almost all 
patients, but was first recognized as a feature of the 
McLeod propositus only years after the immunohemato-
logical definition [10]. Our recent chance observation of 
slowed erythrocyte sedimentation of acanthocytic blood 
was confirmed by systematic analysis that showed a clear 
inverse correlation of acanthocyte proportion and sedi-
mentation rate [11].

Compensated, usually clinically asymptomatic hemo-
lysis with decreased erythrocyte lifespan [12] probably 
underlies the hepatosplenomegaly seen in around half of 
the cases [1], and the commonly elevated levels of aspar-
tate and alanine transaminases and of lactate dehydroge-
nase in MLS may relate to such liver involvement [13].

MLS and the clinically similar, yet autosomal-recessive 
VPS13A disease (also known as chorea-acanthocytosis; 
OMIM #200150), with an estimated prevalence of 
1:10,000,000 and 1:1,000,000, respectively, may also be 
called “core neuroacanthocytosis syndromes” [14–16]. 
The term “neuroacanthocytosis,” however, is no longer 
recommended, as it blurs the distinction of genetically 
separate conditions [14]. In the past, the term was used in 
an even broader sense: neurological disorders associated 
with acanthocytosis comprise pantothenate kinase-asso-
ciated neurodegeneration (OMIM #606157) as well as 
disorders of lipid absorption, with peripheral neuropathy 
and cerebellar signs, such as abetalipoproteinemia (Bas-
sen-Kornzweig syndrome; OMIM #200100) or familial 
hypobetalipoproteinemia (FHBL1, OMIM #615558; 
FHBL2, OMIM #605019) [14].

In the present article, we review the nonhematological 
manifestations of MLS in comparison to VPS13A disease 
and point out the molecular evidence that may explain 
the similarity of the two conditions.

XK and VPS13A Genes, Mode of Inheritance
MLS is caused by pathogenic variants in the XK gene 

which is located at the p21.1 region of the X chromosome 
[17], in close proximity to the CYBB gene that codes for 
cytochrome b558, subunit β (also known as NADPH ox-
idase 2 and relevant for the microbicidal system of phago-
cytes). Deletions or partial deletions of the two genes thus 
lead to a contiguous gene deletion syndrome that com-
bines MLS with chronic granulomatous disease (OMIM 
#306400). As the latter often requires blood transfusion 
[18], MLS ought to be ruled out in chronic granuloma-
tous disease patients prior to allogenic transfusions in or-
der to avoid alloimmunization and subsequent posttrans-
fusion complications [19]. Larger deletions of the Xp21 
region may additionally involve genes associated with 
Duchenne muscular dystrophy (OMIM #310200), retini-
tis pigmentosa (OMIM #300029) and ornithine transcar-
bamylase deficiency (OMIM #311250), respectively [1]. 
Partial inclusion of the PRRG1 gene that codes for trans-
membrane γ-carboxyglutamic acid protein 1 has recently 
been found included in an MLS patient´s deletion, with-
out any as yet clinically tangible consequence [20]. Due 
to the X-chromosomal mode of inheritance, most indi-
viduals clinically affected by MLS are male. Exceptionally, 
heterozygous female gene carriers may develop symp-
toms, too [21–25], which is likely due to skewed X-chro-
mosome inactivation [26]. Commonly, however, females 
with a single XK mutation will not be affected. Females 
homozygous for XK gene mutations have not yet been 
recognized.

VPS13A disease, also known as chorea-acanthocytosis 
[14], is caused by pathogenic variants in the VPS13A 
gene, located at the q21.2 region of chromosome 9. Ini-
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tially, the gene was called CHAC and its product was 
called chorein [27, 28]. As expected with autosomal-re-
cessive inheritance, females and males likewise are affect-
ed by VPS13A disease without an as yet obvious geno-
type-phenotype correlation [29].

VPS13A is part of a mammalian gene family of 4 para-
logues [30]. Mutations in the other VPS13 family genes 
are also associated with neurodevelopmental or neurode-
generative diseases. VPS13B (COH1) variants underlie 
Cohen syndrome [31], and VPS13C variants have been 
observed in early-onset Parkinson’s [32, 33] and in Lewy 
body disease [34]. VPS13D disease may start with move-
ment disorders in early childhood and was diagnosed also 
in cases initially labeled as recessive spinocerebellar atax-
ia type 4 or spinocerebellar ataxia with saccadic intru-
sions [35].

Nonhematological Manifestations of MLS
Multiple systems are affected in MLS, mainly the 

blood, the central and peripheral nervous system, the 
skeletal muscle, and the heart [36]. The McLeod blood 
phenotype is present at birth in male XK mutation carri-
ers, while the time of first occurrence of red cell acantho-
cytosis is still a matter of speculation. In contrast, signs 
and symptoms from nonhematological involvement usu-
ally develop after the age of 30 years, with a broad range 
of variability [1, 4, 20, 23]. Overall, these manifestations 
of MLS often cause severe disability and may reduce or 
abolish independent living and shorten life expectancy 
[37].

Central nervous system manifestation of MLS is typi-
cally with “huntingtonism,” a progressive triple disorder 
of movement, behavior, and cognition. To which extent 
each domain is affected, varies among MLS individuals, 
but symptoms seem to correlate with progressive degen-
eration of the basal ganglia. There is progressive widening 
of the anterior horn of the lateral ventricles due to caudate 
nucleus atrophy [38] and MRI volumetry shows an in-
verse correlation of basal ganglia volumes with duration 
of disease and, in particular, a decrease in caudate volume 
with disease progression [39, 40]. FDG-PET reveals bilat-
erally reduced striatal glucose uptake [41, 42] and post 
mortem studies show the atrophy of the striatum more 
pronounced than that of the globus pallidus [43, 44]. In 
the exceptional “L family” female mutation carrier [26], 
the substantia nigra was felt unaffected, as was her brain-
stem, subthalamic nucleus, thalamus, cerebral cortex, 
cerebellum, and spinal cord [45, 46]. A recent male case 
confirmed the normal findings in subthalamic nucleus, 
thalamus, and substantia nigra, and displayed no neuro-
nal or glial inclusions with TDP 43, α-synuclein and p62 
immunohistochemistry. Only few τ-positive neuronal 
and glial inclusions, compatible with aging, were detected 
[47].

Disorders of movement often are the presenting man-
ifestations of MLS, most commonly hyperkinesia, i.e., 
chorea, which develops over time in 95% of the patients 
[36]. Chorea can affect all parts of the body [48]. Dystonia 
can also occur as can parkinsonism, the latter typically 
later into the disease [1, 36]. Involuntary facial and peri-
oral contractions as well as unintended vocalizations may 
be present [1, 48]. Dysarthria impacts communication 
and social participation. Dysphagia may impair caloric 
intake and lead to complications such as aspiration and 
recurrent pneumonia [37]. In addition to these well-es-
tablished features, less common manifestations occur in 
single MLS patients, such as involuntary tongue and 
cheek biting, feeding dystonia, and head drops [49, 50], 
findings that are much more typical in VPS13A disease.

Behavioral and cognitive manifestations of MLS, even 
if commonly observed, as yet await systematic prospec-
tive study. Both figurative and verbal memory is im-
paired, the latter with documented progression, and there 
is executive (“frontal”) dysfunction [51]. Changes of be-
havior and/or personality occur in about 80% of the pa-
tients [36], and depression, anxiety, psychosis, irritability, 
and obsessive-compulsive disorder have been reported 
[1, 39, 52, 53].

About 40% of patients are diagnosed with epilepsy, 
which in half of these is the very first presentation of MLS 
[36]. Seizures are commonly described as generalized, yet 
little is known about the exact semiology or pathogenesis.

Neuromuscular manifestations are obvious from the 
regular findings of diminished or absent deep tendon re-
flexes and of, even excessive, hyperCKemia [54, 55]. The 
high levels of transaminases (ALT/AST) and LDH, men-
tioned in relation to hepatomegaly, might alternatively 
originate from muscle affection. MLS may be considered 
a primary myopathy [56]. As sensory and motor axonal 
polyneuropathy is very common [1, 23, 39, 57], muscle 
atrophy and weakness have thus been interpreted pre-
dominantly due to motor neuropathy [3]. Muscle biop-
sies show both neurogenic and myopathic changes [1, 3, 
57, 58]. MLS thus seems to be a mixed neuromuscular 
condition with an individually variable proportion of the 
two components. Clinically relevant impairment occurs 
in about half of MLS individuals [1], such as pronounced 
bilateral foot drop, but also axially predominant weak-
ness [59]. Of interest are biopsy findings that suggest ad-
ditional inflammatory changes in muscle [57, 59, 60] and 
correspond to comparable observations in the heart [61].

Heart involvement in MLS is potentially life-threaten-
ing and comprises organ failure, dilated cardiomyopathy, 
and arrhythmias such as ventricular tachycardia [58, 61–
64]. Heart muscle fibrosis may be detected on histology 
[58, 63]. Its presence can also be inferred from cardiac 
MRI [64].
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MLS and VPS13A disease behave as phenocopies with 
respect to many nonhematological manifestations. Apart 
from their respective mode of inheritance, X-linked or 
autosomal-recessive (with resultant sex distribution), the 
only phenotypical feature to tell the two disorders apart 
with high certainty is the presence or absence of the 
McLeod-Kell phenotype, i.e., weak Kell antigen expres-
sion in combination with absent Kx antigen.

Some additional features may help in distinguishing 
MLS from VPS13A disease (Fig. 1). In MLS, nonhemato-
logical manifestations occur at a later age, and cardiac 
involvement is more severe. Episodes of sudden loss of 
muscle tone in the neck, trunk, or legs (leading to head 
drops, “clasping behavior,” or the peculiar “rubber-man-
like appearance/gait”) as well as tongue protrusion/feed-
ing dystonia seem more typical for VPS13A disease. Nev-
ertheless, proper distinction of the two disorders requires 
molecular characterization, preferably on both the levels 
of their genes and the corresponding proteins, XK and 
chorein.

It is not yet clear how to interpret the novel observa-
tion of a 67-year-old male with a suggestive neurological 
syndrome but normal Kell phenotype in spite of a possi-
bly pathogenic XK missense mutation [65]. This appears 
as the reverse of situations where the McLeod red cell 
phenotype is detected but nonhematological manifesta-
tions are not [66, 67]. For the latter cases one could argue 
that clinical follow-up was not sufficiently long to witness 
symptom development, yet both types of observations, if 
confirmed, would provide valuable insights into MLS dis-
ease mechanisms at the molecular level.

Diagnosis and Management
In adults presenting with the clinical triad of progres-

sive disorders of movement, cognition, and behavior 
(huntingtonism), genetic testing for mutations in the 
Huntington´s disease gene is mandatory. If negative, fur-
ther differential diagnosis is complex [68]. Low erythro-
cyte sedimentation rate, elevated levels of CK, ALT, AST, 
and LDH, as well as red cell acanthocytosis – that, how-
ever is difficult to determine and not even an obligatory 
finding under routine clinical conditions [69, 70] – may 
lead one to consider the two related conditions of MLS 
and VPS13A disease. While male sex, older age, and af-
fection also of a brother or maternal uncle support an as-
sumption of MLS, the two conditions cannot, however, 
be sufficiently distinguished on the basis of clinical phe-
notype alone. Several cases are on record where the diag-
nosis had to be changed to MLS after more extensive test-
ing (cases of, e.g., Gandhi et al. [71] and the case of Fail-
lace et al. [72] and Marsh [73]).

For an elderly male patient (>40 years of age) with clin-
ical and laboratory features as detailed above, we thus first 
recommend an immunohematological search for the 
“McLeod blood group phenotype” and/or genetic testing 
to identify a pathogenic variant or a deletion involving the 
XK gene. Patient blood samples are first evaluated sero-
logically for KEL and Kx antigen reactivity which is ex-
pected to be either negative or weakened (further details 
and flowchart in Frey et al. [74]). At the level of genetic 
analysis, a specific approach to overcome diagnostic dif-
ficulties with XK gene deletions has been proposed [75].

Fig. 1. McLeod syndrome (MLS) and VPS13A disease (chorea-acanthocytosis) are phenotypically very similar 
neurohematological disorders. Certain features, such as cardiomyopathy or involuntary movements that inter-
fere with chewing and swallowing (feeding dystonia), may be less common in one of the two, but presence of the 
Kell-McLeod phenotype (absence of Kx antigen) is the main distinguishing feature.
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Similar to the diagnosis of MLS that is based on the 
absence of the XK protein (carrier of the Kx antigen) and/
or presence of XK gene mutations, diagnosis of VPS13A 
disease should be based upon the absence of the chorein 
protein in erythrocyte membrane Western blot [76] and/
or the identification of mutations in the VPS13A gene. 
VPS13A disease is clinically more suspicious in younger 
patients of both sexes, in particular in siblings without 
cases in the parents´ generation who might, nevertheless, 
share a common family or regional background. Based on 
the literature [65–67] and on our own experience [77], we 
propose that only analyses on both the gene and the pro-
tein levels should be considered as sufficient for full diag-
nosis of the two clinical conditions of MLS and of VP-
S13A disease.

Treatment of both diseases is currently purely symp-
tomatic: a detailed review for the resultant manifestation-
specific approach is available, but treatment decisions are 
highly individual [8]. Chorea, for example, may be ad-
dressed by dopamine-depleting drugs such as tetrabena-
zine. For seizures, conventional anticonvulsants are usu-
ally effective, yet there is no evidence for superiority of 
any particular drug. Most important in the management 
of every single MLS patient, because of the risk of sudden 
cardiac death [37], is cardiological surveillance on a regu-
lar (yearly) basis with subsequent individual treatment 
decisions that may even include implantation of a cardio-
verter-defibrillator [61] or a heart transplant [63].

The other highly relevant management topic relates to 
the rarity of compatible blood units worldwide and the 
question of their availability in cases of urgent need. In 
spite of regional and national differences with respect to 
the procedures involved, the banking of autologous blood 
units in specialized transfusion institutions is highly rec-
ommended.

Family studies are helpful to detect additional, perhaps 
subclinically affected members (patients´ brothers and 
maternal uncles, but in particular their mothers and sis-
ters) and to offer genetic counseling [36] about risks for 
individuals (and their precautions, see above) and for 
family offspring (possibly including discussion of preim-
plantation genetic testing).

At the present date, no disease-modifying approach is 
known for MLS, even if first exploratory results are avail-
able for VPS13A disease [78–80]. There, inhibition of hy-
peractive Lyn kinase may have addressed a relevant dis-
ease mechanism, but so far this approach has not been 
extended to MLS where Lyn kinase may not even be a 
potential drug target.

XK and VPS13A Proteins, Localization and 
Interaction
XK and VPS13A are ubiquitously expressed proteins 

that interact with each other (as recently demonstrated by 
Park and Neiman [81]). Prior to this, the intriguing clin-
ical similarities of MLS and VPS13A disease had already 
suggested some sharing of pathways [82].

Fig. 2. Subcellular localization and putative functions of VPS13A and XK. a The VPS13A protein (chorein) local-
izes at membrane contact sites between the endoplasmic reticulum and mitochondria or lipid droplets, respec-
tively. b VPS13A seems to function as bulk lipid transporter between membranes. Putative partner proteins in-
clude scramblases (possibly XK among them) that translocate phospholipids between the two sheets of the mem-
branes tethered by VPS13A. Contains modified images from Servier Medical Art (https://smart.servier.com) 
licensed by a Creative Commons Attribution 3.0 Unported License.
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XK protein is an integral membrane protein [17] and 
in red blood cells forms a heterodimer with the Kell gly-
coprotein [83], as part of a larger membrane multiprotein 
complex important for red cell membrane cytoskeleton 
stability [84]. The exact localization of XK in nonery-
throid tissues remains elusive, but it was shown that it is 
not coexpressed with the Kell protein in brain tissue [85] 
and probably not in skeletal muscle either [86, 87].

As shown early in red blood cells, XK absence leads to 
a reduction of phosphatidylserine in the inner leaflet of 
the cell membrane [88]. In line with this, XK-related 
(Xkr) proteins were later found to translocate phosphati-
dylserine between the two membrane leaflets [89, 90]. 
This specific activity of a molecule is summarized by its 
designation as a “scramblase.” The structure of two hu-
man XKrs (Xkr8 and Xkr9) – with Xkr8 working in a 
complex with the chaperone basigin – was just success-
fully elucidated [91, 92]. For XK, foremost member of the 
Xkr family, however, the putative scramblase function re-
mains to be proven.

VPS13 proteins localize to membrane contact sites 
and, according to a rapidly growing body of evidence, 
seem responsible for bulk lipid transport between the 
membranes of various organelle types [for reviews, see 93, 
94]. Impaired interorganellar mobility of lipids impresses 
as the common denominator of this novel group of neu-
rodegenerative/neurodevelopmental VPS13 diseases. As 
illustrated here (Fig.  2a), VPS13A/chorein localizes to 
membrane contact sites of the endoplasmic reticulum 
and mitochondria and, respectively, lipid droplets in hu-
man cells [95, 96]. Tethering of mitochondria and endo-
somes was also described [97]. In yeast, organelle-specif-
ic adaptor proteins recruit Vps13 to the various interor-
ganellar contact sites that each mediates a distinct function 
[98].

Recent studies suggest that XK and VPS13A are part-
ner proteins: their coimmunoprecipitation was shown in 
HEK293 cells [99], and they form complexes in human 
cells [81]. It was also shown that XK is involved in the re-
localization of VPS13A from lipid droplets to endoplas-
mic reticulum subdomains when overexpressed [81]: XK 
seems to recruit VPS13A to probably the endoplasmic re-
ticulum. Thus, at the beginning or the end of a VPS13 
bulk lipid transport chain, Xkr family proteins may act as 
scramblases that exchange lipids between the leaflets of 
the membrane of origin or, respectively, destiny. This 
process would allow lipid equilibration within the mem-
branes that were temporarily tethered for the purpose of 
bulk lipid transport [81, 93, 94] (Fig. 2b).

Overall, conditions caused by dysfunction of VPS13 
proteins and of partners such as the McLeod protein XK 
might be lumped together under the common concept of 
“bulk lipid transport diseases.” This label stresses the 
presence of shared pathways, and, if investigated from 

such a more general point of view, therapeutic options 
that are focused on the commonalities of these diseases 
might become available faster than approaches that result 
from studying the single conditions in isolation.

A pressing question among the many that are still open 
is the question whether proteins of the VPS13 and of the 
Xkr families might, at least partially, compensate for defi-
ciency of a member within the specific protein family or 
even across protein families. Such mechanisms would pro-
vide an explanation for both the clinical heterogeneity as 
well as the late onset observed in MLS patients and in indi-
viduals affected by VPS13 disease. For VPS13A disease and 
MLS it is of particular interest whether the presence of both 
chorein and XK in membranes of mature red blood cells 
(that lack subcellular organelles and thus contact sites) in-
dicates interaction that is still ongoing or is just a trace of a 
pathway once shared, e.g., in erythropoiesis.

Conclusion

In this review, we focused on nonhematological man-
ifestations of the rare neurohematological disorder MLS. 
Because of the multisystemic nature of their condition, 
MLS patients necessarily deserve interdisciplinary collab-
oration, with participation of transfusion medicine spe-
cialists, neurologists, and cardiologists.

MLS strongly resembles VPS13A disease. The basis for 
the phenotypical commonalities most likely is the inter-
action of the two proteins affected, XK and VPS13A/
chorein. We propose the term “bulk lipid transport dis-
eases” to place special emphasis on the putative main 
function of VPS13 proteins that unfolds in interaction 
with a number of partner proteins.

Bulk lipid transport is essential for the rapid availabil-
ity of membrane constituents necessary for shrinkage or 
growth of organelles. Fission and fusion of mitochondria 
as well as the formation of autophagosomes are pertinent 
examples. XK appears to work as scramblase, equilibrat-
ing lipids within the bilayers tethered by the VPS13A mo-
lecular machinery. Consideration of this function and its 
involvement in a variety of processes at the subcellular 
level might be particularly relevant for a deeper under-
standing of McLeod syndrome pathophysiology.
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