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ABSTRACT: Methyl-substituted germanane is an emerging
material that has been proposed for novel applications in
optoelectronics, photoelectrocatalysis, and biosensors. It is a two-
dimensional semiconductor with a strong above-gap fluorescence
associated with water intercalation. Here, we use time-resolved
photoluminescence spectroscopy to understand the mechanism
causing this fluorescence. We show that it originates from two
distinct exciton populations. Both populations recombine
exponentially, accompanied by the thermally activated transfer of
exciton population from the shorter- to the longer-lived type. The
two exciton populations involve different electronic levels and
couple to different phonons. The longer-lived type of exciton
migrates within the disordered energy landscape of localized
recombination centers. These outcomes shed light on the fundamental optical and electronic properties of functionalized germanane,
enabling the groundwork for future applications in optoelectronics, light harvesting, and sensing.
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Two-dimensional (2D) materials are presently one of the
most actively explored platforms for the development of

nanoscaled (opto)electronic devices.1−3 Monoelemental 2D
materials (Xenes) and their substituted counterparts (Xanes,
e.g., GeH or GeCH3) are rapidly emerging alongside the much
more well-studied transition metal dichalcogenide semi-
conductors because of high electron mobility, a wide range
of band gaps, and the possible tuning of their morphology and
physical properties.4−10 Germanane has been proposed
recently as a novel active material for optoelectronics,
photoelectrocatalysis, antibacterial coating, and biosensors,
with the specific performances determined by the functional
groups.11−16

The photoluminescence (PL) of multilayer GeCH3,
conversely to its H-terminated counterpart, is tightly linked
to the presence of water in the van der Waals gap.17 Water
intercalation switches the PL spectrum reversibly between a
bright red peak centered around 1.97 eVsignificantly above
the 1.62 eV bandgapfor the hydrated material, and a broad
band-tail emission for the dry one. The PL excitation spectrum
of the 1.97 eV emission starts at 2.1 eV and has its maximum at
3.5 eV, hence demonstrating that this emission arises from
strong electronic transitions involving electronic levels above
the conduction band minimum and/or below the valence band
maximum. The strong above-gap PL and simultaneous

suppression of the band-tail emission suggest that the involved
above-gap levels have no allowed relaxation channel toward the
band edges. A deeper insight into the electronic nature of the
involved excited states, the interplay between them, and the
associated time scales18−20 is vital for rationalizing Xanes’
optoelectronic and light-harvesting functionalities.
In this work, we exploit time-resolved photoluminescence

(TRPL) to unveil the origin of the 1.97 eV above bandgap
emission in GeCH3. From the analysis of the emission peak
energy and intensity as a function of time and temperature, we
assign the observed fluorescence to the interplay of two
distinct exciton populations and discuss their electronic nature.
The polycrystalline powders of GeCH3 were synthesized

following previously established procedures.17

For the TRPL measurements, we used a Ti:sapphire
oscillator (Chameleon Ultra II Coherent) producing a train
of 140 fs pulses with a repetition rate of 80 MHz at 800 nm. A
β-barium borate (BBO) crystal was used to obtain the second
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harmonic at 400 nm. Spatial resolution was achieved through
the incorporation of a homemade microscope in the setup.21 A
long pass dichroic mirror at 530 nm was used to reflect the
excitation beam (400 nm) that was then coupled to a 20×
objective (Nikon) to focus onto the sample with a spot size of
about 6 μm. The emission signals were collected in

backscattering geometry using a 550 nm long-pass filter and
analyzed by a spectrograph (Princeton Instruments Acton
SP2300) coupled to a streak camera (Hamamatsu C5680,
Japan) equipped with a synchro-scan voltage sweep module. In
these measurements, the fluorescence intensity was obtained as
a function of both wavelength and time with spectral and

Figure 1. Atomic structure of GeCH3 (a) without water intercalation and (b) with water intercalation. Ge atoms are orange, Carbon atoms are
black, hydrogen atoms are white, and oxygen atoms are red. (c) Photoluminescence integrated over time for dry (under a vacuum, dash-dotted blue
curve) and hydrated (in air, turquoise solid curve) GeCH3 acquired with a mean excitation power of 15 μW; (d) normalized TRPL spectra of the
vacuum-treated “dry” sample at 77 K integrated into the 0 < t < 100 ps (dash-dotted curve), 200 ps < t < 300 ps (dashed curve) and 900 < t < 1000
ps (solid curve) temporal windows; (e) normalized spectrally integrated (1.65−2.25 eV) dynamics of the vacuum-treated “dry” sample at 77 K
upon mean excitation powers of 3 μW (dots), 10 μW (solid curve), 30 μW (dash-dotted curve), and 100 μW (dashed curve).

Figure 2. (a) Spectrally integrated dynamics acquired upon 10 μW excitation power at 77 K (circles), 150 K (squares), and 200 K (triangles)
together with the fit to eq 1 (continuous red curve). (b) Spectrally integrated dynamics acquired upon 10 μW excitation power at 225 K (circles),
273 K (squares), and 323 K (triangles) together with the fit to eq 1 (continuous red curve). The black arrows indicate increasing temperature; (c)
spectrally integrated dynamics acquired at 77 K (circles) upon 10 mW excitation power, fitted to eqs1 (continuous red curve), time-dependent
populations of long- and short-lived excitons (orange and blue dashed lines, respectively); (d−f) time constants τ1, τ2, and τtr extracted from the fit
to eq 1 as a function of temperature.
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temporal resolutions of ∼1 nm (∼3 meV in our spectral range)
and ∼20 ps (for 2 ns time window), respectively. Cryogenic
measurements were performed using a cryostat (Oxford
Instruments) cooled with liquid nitrogen under vacuum
conditions (10−6 mbar). From the synthesized powder, we
selected a bulk flake of a few hundred micrometer lateral size
and glued it with two thin slices of carbon tape onto a fused
silica substrate. The sample was then gently annealed at 150 °C
under a vacuum for 15−18 h before measurement to remove
most of the intercalated water and reach a water concentration
that remains stable during the measurements at varying
temperatures.
Panels a and b in Figure 1 show the ball-and-stick model of

dry and water intercalated bulk GeCH3. For the investigation
of the above bandgap emission, TRPL characterization was
performed as described above. Figure 1c shows the time-
integrated (0−2 ns) TRPL spectra for the dry (dash-dotted
blue curve) and the hydrated (solid turquoise curve) sample.
The fluorescence is largely quenched but still clearly detectable
when the sample is placed in 1 × 10−6 mbar, confirming that
the remaining H2O molecules are enough to induce the 1.9 eV
emission.17

The fluorescence of the vacuum-treated “dry” sample
integrated into different temporal windows (0 < t < 100 ps,
200 ps < t < 300 ps and 900 < t < 1000 ps), shown in Figure
1d, changes shape and peak position with time t after
excitation, indicating that the fluorescence originates from
more than just one population of recombining e−h pairs. In
this respect, previous TRPL measurements on GeCH3 flakes
revealed the presence of two emitting species, therein assigned
to midgap trap states and the band tail emission.22 The PL
traces integrated over the spectral range 1.65−2.25 eV, as
shown in Figure 1e, decay almost independently of the
excitation fluence over 2 orders of magnitude. We deduce that
the relevant relaxation processes are linear with the density of
photogenerated population n, i.e., follow an exponential decay
and do not involve any interaction between nongeminate

photoexcited species. Indeed, if free charge carriers were
photogenerated, we would expect a more noticeable change in
the recombination dynamics with increasing fluence, due to
the rate proportional to n2 of such dynamics.23 Therefore, our
observation is consistent with the prediction of excitons with
hundreds of meV binding energy as the primary photoexcited
species in germanane,24,25 as observed in other 2D semi-
conductors.26−29

To gain further insight into the electronic nature and the
recombination dynamics of the emitting states we explored the
temperature dependence of TRPL from 77 to 323 K. Figures
2a and 2b show the spectrally integrated PL traces.
Remarkably, the dynamics depend nonmonotonically on
temperature. In the range from 77 K to approximately 200
K, the dynamics become gradually slower with increasing
temperature, while at higher temperatures they quickly become
faster again.
We propose a simple model for the temporal evolution of

the fluorescence, sketched in the inset of Figure 2c and
formulated in terms of rate equations (eq 1). We assume two
distinct exciton populations n1 and n2, both localized at water-
induced recombination centers (RCs). Each population is
formed at a time scale shorter than our instrument response
function and decays exponentially with its own time constant
τ1 and τ2, which comprise both radiative and nonradiative
recombination. Additionally, we assume transfer from n2 to n1
with a simple, Arrhenius-like thermal activation with a
prefactor 1/τtr and activation energy Δε1:29
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The simple model fits the measured PL temporal evolution at
different temperatures remarkably well (Figures 2a−c). For all
temperatures, we obtained the best fit for initial populations of

Figure 3. (a−c) Fluorescence spectra of long- (orange curve) and short-lived (blue curve) excitons at 100, 200, and 323 K, respectively. (d)
Arrhenius plot of the integrated intensities B1 of long-lived centers (top panel, orange circles) together with the fit to eq 4 (solid orange curve) and
B2 of short-lived centers (bottom panel, blue circles) together with the fit to eq 3 (solid blue curve). (e, f) Shift as a function of the temperature of
long-lived centers (orange squares) together with the fit to eq 6 (dashed orange curve) and the short-lived centers (blue squares) together with the
fit to eq 5 (dashed blue curve), respectively.
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approximately 20% n1 and 80% n2. The exponential decay
times are shown in Figure 2d, e, around 650 ps for τ1 and
around 45 ps for τ2. These times vary by ±20% up to 300 K.
Each of them comprises the radiative and nonradiative
contributions τr and τnr. Hence, the small variations in τ1
and τ2, which both seem to peak around 200 K, may be due to
small opposite trends of τr and τnr with temperature, resulting
in weakly temperature-dependent PL quantum yields η1 = τnr1/
(τnr1 + τr1) and η2 = τnr2/(τnr2 + τr2). τtr shown in Figure 2f is a
prefactor to the Arrhenius term for the thermally activated
transfer of excitons from population n2 to n1. The almost
constant τtr around 80 ps confirms the assumed simple
Arrhenius behavior with a fitted activation energy of Δε1 = 52
meV. A possible back transfer of population from n1 to n2
cannot be distinguished in our data due to the short lifetime of
n2.
To deconvolve the spectral contribution of n1 and n2, we

fitted the time-dependent fluorescence intensity I(E, t) at each
wavelength as

I E T t T E
n t

t
T E

n t
t

( , , ) ( , )
d ( )

d
( , )

d ( )
d1

1
2

2β β= +
(2)

where β1(T,E) = αη1(T)A1(E) and β2(T,E) = αη2(T)A2(E).
Because all decay processes are exponential, the derivatives in
eq 2 are proportional to the respective populations. Each
recombining exciton emits a photon with a probability η1(T)
and η2(T), respectively, corresponding to the temperature-
dependent PL quantum yields of the two populations. Each
emitted photon triggers a count on the detector with a
probability α, which depends on the geometry of the sample
and the measuring instrument and is assumed constant
throughout all measurements. A1(E) and A2(E) are dimension-
less functions whose integral over the whole spectral range is
normalized to 1 and that reflects the shape of the PL spectra.
The fluorescence spectra of both populations η1(T)A1(E)

and η2(T)A2(E), shown in Figure 3a−c are similar to single
Gaussians with a width σ of around 100 meV. If we observed a
simple relaxation or exciton migration within an energy
distribution of recombination centers, this would always result
in a red shift for increasing time t. In such a situation, our
model would always yield A1(E) red-shifted relative to A2(E).
However, A1(E), which is the spectrum of the longer-lived
exciton species, is red-shifted relative to A2(E) at 100 and 323
K, whereas at 200 K it is blue-shifted. This confirms that we
indeed observe two distinct populations of emitters with
different temperature-dependent spectra.
Given that the fluorescence spectra of the two populations as

plotted in Figures 3c are proportional to the PL quantum
yields, we plot B1(T) = ∫ β1(T,E)dE and B2(T) = ∫ β2(T,E)dE
in Figure 3d to reveal additional nonradiative recombination
channels. Remarkably, B2(T) suggests an Arrhenius-like
thermally activated nonradiative channel:
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where B2(0) is proportional to the quantum yield at 0 K, τnr2 is
the Arrhenius prefactor of the additional thermally activated
nonradiative channel, and Δεnr2 is the activation energy.
Fitting our results with eq 3, we obtain τnr2 ∼ 0.5 ps and

Δεnr2 = 110 meV.
B1(T), on the other hand, starts to increase from 125 K,

reaches its maximum value at 200 K, and then is quenched at

higher temperatures. n1 is populated predominantly from n2 via
thermal activation. Together with the introduction of an
Arrhenius-type nonradiative term, this results in a more
complex temperature-dependent quantum yield:

B T
B

a e
c

a e
a e

( )
(0)

(1 )
1

(1 )k T

k T

k T1
1

1
/ 2

2
/

2
/nr1 b

1 b

1 b
=

+
+

+ε

ε

ε−Δ

−Δ

−Δ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
(4)

where B1(0) is proportional to the quantum yield at 0 K, Δε1
and Δεnr1 are the activation energies of the transfer from n2 to
n1 and the nonradiative processes for n1, respectively, a1= τ1/
τnr1, a2 = τ2/τtr, and c is the ratio between the initial
populations n2 and n1.
This model is adapted from the one developed for a system

including two emitter populations where (i) the carrier can
recombine to the ground state from each of the populations;
(ii) the species can migrate only from one population to the
other and not vice versa.29 We note that this formalism has
been developed for CW PL data. Because the CW PL intensity
is proportional to the PL quantum yield, we can apply the
same formalism to model our B1(T).
From the fit, we obtain Δε1 ∼ 45 meV, which is in good

agreement with the value of 52 meV obtained from the fit of
the spectrally integrated dynamics with eq 1. For the
nonradiative processes, we extracted τnr1 ∼ 2 ps and an
activation energy Δεnr1 ∼ 140 meV. The a2 ratio between τ2
and τtr extracted from the fit is ∼5, which is higher than the
one obtained from the fit of the dynamics to eq 1 without this
additional nonradiative process (a2 ∼ 2), whereas for c, we
obtained n1 = 12% and n2 = 88%, in good agreement with the
initial populations used to solve the rate equations (20%, 80%).
The agreement between the fit parameters could be improved
by iterating through eqs 1−4, but no added understanding
would be gained. The activation energies of nonradiative
processes of both n1 and n2 are ∼3 times that of the transfer
from n2 to n1. It is plausible that this activation involves either
excitation into different bands within the crowded band
structure of GeCH3,

17 from which nonradiative recombination
occurs, or thermally activated exciton dissociation. In the latter
case, the activation energy would be a measure of the exciton
binding energy.
For further insight into the nature of the two exciton

populations, we fit A1(E) and A2(E) with a Gaussian curve and
plot the peak positions as a function of the temperature in
Figure 3e, f. The A2(E) peak position follows the O’Donnell
and Chen model,30 which is a refinement of the empirical
Varshni equation31 and provides more insight into the
electron−phonon coupling at the origin of the temperature-
dependent bandgap:
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where E0 is the PL peak at 0 K, S is the Huang−Rhys
parameter, and ⟨Eph⟩ is the average energy of phonons
coupling to the involved electronic levels. From the fit, we
obtain E0 = 1.97 eV, S = 5.3, and ⟨Eph⟩ = 66 meV.
The temperature-dependent peak position of A1(E) exhibits

first a blue shift from 77 to 150 K and a subsequent red shift
from 175 to 323 K. Such “S shape” behavior has been
previously reported for the high energy band of the GeCH3 PL
emission,22 but it was not investigated in detail. The initial blue
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shift followed by a red shift of the emission peak energy has
been observed in both CW and TRPL measurements for
different semiconductor systems,29,32−39 including excitonic
materials with a certain amount of disorder, such as organic−
inorganic lead-halide perovskites,40,41 2D transition metal
dichalcogenides,42−44 or phosphorene.45 It has been ascribed
to thermal redistribution of excitons within an ensemble of
width σ of localization centers with a mean activation energy
ΔE. We obtain the temperature-dependent PL peak position:36
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where the first two terms of eq 6 are the same as in eq 5. The
third term accounts for exciton migration between RCs,35 with
x(T) being the solution of eq 7. τ1 and τtr are temperature-
dependent and are taken from panels d and f in Figure 2. From
the fit reported in Figure 3e, we extracted E0 = 2.1 eV, S = 5.2,
⟨Eph⟩= 30 meV, ΔE = 37 meV, and, σ = 145 meV. Hence, we
can conclude that the width of the distribution is similar to the
width of the PL peaks and the activation energy for exciton
migration is a fraction of this width.
Our results allow us to extract vital information about the

nature of the two types of excitons at the origin of the observed
fluorescence. The formalism of eqs 1 and 3−7 has been
developed for arrays of two species of quantum wells
(QWs),29,32−39 where both species of QWs show a certain
distribution of exciton energy. Analogously, germanane
provides a disordered energy landscape for exciton migration.
The temperature-dependent A1(E) and A2(E) peak positions
suggest that exciton migration is relevant only for the longer-
lived exciton species.
Intriguingly, the temperature dependence of A1(E) and

A2(E) as described in eqs 5−7 arises from coupling to phonons
with mean energy ⟨Eph⟩ = 30 meV (240 cm−1) for A1(E) and
⟨Eph⟩ = 66 meV (530 cm−1) for A2(E), suggesting that the two
excitons preferentially interact with different vibrational modes
of the lattice. The presence of the 1.97 eV emission after
annealing suggests that the residual water bears sufficient
concentration to change the electronic structure locally and to
provide a high density of recombination centers that enables
exciton migration between them. Quantum chemical calcu-
lations17 have found a dense ensemble of electronic levels close
to the valence and conduction band edges as a consequence of
the small local structural distortions in each layer induced by
the presence of H2O. We can thus assume two types of
emitting excitons that have their electrons and/or holes in
different levels from this ensemble. Our results prescribe the
following requirements for the two emitting states: (i) both
have an allowed transition to the ground state but not toward
the band edges, (ii) one of them can transition to the other via
thermal activation, and (iii) they couple with different lattice
modes. Concerning the transition from n2 to n1, the energy
difference between the A1(E) and A2(E) peaks in panels e and f
in Figure 3 varies strongly with temperature. This variation is
inconsistent with a simple Arrhenius-like thermally stimulated
transfer with a fixed activation energy of 37 meV, as assumed in
eq 1 and confirmed in Figure 3f. An alternative mechanism has
recently been proposed for the interlayer exciton recombina-

tion in a heterostructure of two 2D monolayers.46 Low energy
phonons periodically modulate the band structure between a
direct and an indirect gap, leading to a recombination rate that
has a temperature dependence very similar to an Arrhenius
behavior with formal activation energy much higher than the
energies of the phonons involved. We can assume a similar
mechanism for the population transfer from n2 to n1 via a
phonon-induced modulation of the band structure.
To summarize, we used TRPL spectroscopy at different

temperatures to study the above bandgap fluorescence of
GeCH3 samples. We find two distinct populations of emitting
excitons localized at RCs within the intercalated water.
Compared to 2D transition metal dichalcogenides, research
on Xenes and Xanes is still in its infancy and the exciton
binding energy, exciton transport mechanisms, trions,
biexcitons, and higher many-body effects still need inves-
tigation, as well as fluorescence quantum yield and charge
separation at interfaces as the groundwork for future
applications in optoelectronics, light harvesting, and sensing.
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