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Abstract  The various non-standard schedules required of shift workers 
force abrupt changes in the timing of sleep and light-dark exposure. These 
changes result in disturbances of the endogenous circadian system and its 
misalignment with the environment. Simulated night-shift experiments and 
field-based studies with shift workers both indicate that the circadian system 
is resistant to adaptation from a day- to a night-oriented schedule, as deter-
mined by a lack of substantial phase shifts over multiple days in centrally 
controlled rhythms, such as those of melatonin and cortisol. There is evi-
dence that disruption of the circadian system caused by night-shift work 
results not only in a misalignment between the circadian system and the 
external light-dark cycle, but also in a state of internal desynchronization 
between various levels of the circadian system. This is the case between 
rhythms controlled by the central circadian pacemaker and clock genes 
expression in tissues such as peripheral blood mononuclear cells, hair follicle 
cells, and oral mucosa cells. The disruptive effects of atypical work schedules 
extend beyond the expression profile of canonical circadian clock genes and 
affects other transcripts of the human genome. In general, after several days 
of living at night, most rhythmic transcripts in the human genome remain 
adjusted to a day-oriented schedule, with dampened group amplitudes. In 
contrast to circadian clock genes and rhythmic transcripts, metabolomics 
studies revealed that most metabolites shift by several hours when working 
nights, thus leading to their misalignment with the circadian system. 
Altogether, these circadian and sleep-wake disturbances emphasize the all-
encompassing impact of night-shift work, and can contribute to the increased 
risk of various medical conditions. Here, we review the latest scientific evi-
dence regarding the effects of atypical work schedules on the circadian sys-
tem, sleep and alertness of shift-working populations, and discuss their 
potential clinical impacts.
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Shift Work in Modern Society

Shift work is essential in today’s 24/7 society, 
including in health care and emergency services, 
hospitality, transport, and manufacturing. In an 
effort to monitor global trends in working condi-
tions, the International Labour Organization and the 
European Foundation for the Improvement of Living 
and Working Conditions compared exposure to shift 
work across 187 countries covering approximately 
1.2 billion workers (Eurofound and International 
Labour Organization, 2019). Between 10% and 30% 
of workers are working night shifts at least once a 
month whereas working on a rotating or regular 
night-shift schedule was reported by 12% to 13% of 
the workforce in North America (Yong et  al., 2017; 
Rydz et  al., 2020), although other types of atypical 
shifts (e.g., split shifts, irregular shifts, on call) also 
occur and are more difficult to define and quantify. 
When only regular night shifts are considered, a 3.6% 
to 4.4% prevalence was reported (Yong et al., 2017; 
Bureau of Labor Statistics, 2019). Women represent 
roughly half of the shift workers, and are more likely 
to work part time and experience work-life conflicts 
(Eurofound and International Labour Organization, 
2019).

The aim of this narrative review is to summarize 
the latest scientific evidence on disturbances of the 
circadian system associated with working atypical 
schedules and to discuss their impacts on the physi-
cal and mental health of shift-working populations. 
We focused on circadian misalignment and internal 
desynchrony rather than intervention studies, with 
an emphasis on work done in real shift workers.

The Human Circadian System

From gene expression to behavior, nearly every 
function is influenced by the endogenous circadian 
timing system. In humans, physiological parameters 
(e.g., body temperature, heart rate variability, brain 
waves, resting energy expenditure), biological pro-
cesses (e.g., hormone, metabolites, clock gene, and 
protein expression), and behavior (sleep propensity 
and organization, cognitive abilities and perfor-
mance) demonstrate circadian variations.

The Central Clock and Molecular Clockwork

In 2017, the Nobel Prize in Physiology and 
Medicine was awarded to Jeffrey C. Hall, Michael 
Rosbash, and Michael W. Young for their discoveries 
which clarified the molecular mechanisms underly-
ing self-sustained intracellular circadian oscillations 

(Young, 2018). The core of the molecular clockwork 
is composed of transcriptional autoregulated feed-
back loops and a set of clock genes whose tran-
scription can generate and maintain circadian 
rhythms in the absence of environmental time cues 
(Honma, 2018; Cox and Takahashi, 2019). At the cel-
lular level, the clock genes CLOCK and ARNTL (alias 
BMAL1) encode activators of the main feedback loop, 
whereas period circadian regulators 1 to 3 (PER1, 
PER2, PER3) and cryptochrome circadian regulators 
1 to 2 (CRY1, CRY2) encode repressors. The processes 
of translation/transcription and accumulation/deg-
radation of these core components form the basic cir-
cadian clock and cycles with a period of approximately 
24 h. Besides these main core clock genes and associ-
ated feedback loops, additional components have 
been described, adding to the complexity and preci-
sion of the clockwork mechanisms. Clock-controlled 
genes are considered the molecular output of the cir-
cadian clock as they are the links between the core 
clockwork and observable rhythms in cells, tissues, 
functions, and behaviors.

Peripheral Clocks

Today, we know that the molecular clockwork 
underlying circadian rhythms is intrinsic to most 
cells and tissues in mammals (Yamazaki et al., 2000), 
including in humans (Bjarnason et  al., 2001; Archer 
et  al., 2008; Akashi et  al., 2010; Cuesta et  al., 2017; 
Kervezee et  al., 2019b; Du and Brown, 2021). The 
suprachiasmatic nucleus (SCN) is considered the cen-
tral clock, while other tissues generating self-sus-
tained circadian rhythms are named peripheral clocks 
(Brown et al., 2019). Contrary to the SCN which can 
self-sustain circadian rhythms for weeks without 
environmental cues, the oscillations observed in 
peripheral tissues usually dampen after a few days in 
vitro at the tissue level (Yamazaki et al., 2000), but not 
necessarily at the individual cell level (Welsh et al., 
2004).

The existence of peripheral clocks in humans was 
demonstrated in oral mucosa cells (Bjarnason et al., 
2001), then in peripheral blood mononuclear cells 
(PBMCs) and other blood cells (Boivin et  al., 2003; 
Kusanagi et al., 2004; James et al., 2007a), in hair fol-
licles (Akashi et  al., 2010), skin cells (Brown et  al., 
2005; Wu et  al., 2018), and in adipose fat tissues 
(Gomez-Abellan et al., 2008; Garaulet et  al., 2011). 
We and others have shown the existence of non-
SCN clocks in human post-mortem brain tissues, 
with desynchronized or dampened rhythmicity in 
Alzheimer’s disease or major depressive disorders 
(Cermakian et al., 2011; Li et al., 2013; Lim et al., 2013). 
A comprehensive study of the transcriptome carried 
out in 64 tissues collected in 12 baboons (one animal 
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per time point) revealed that more than 80% of the 
detected protein-coding genes exhibited a 24-h 
rhythm in at least one tissue, with only limited over-
lap between tissues (Mure et al., 2018). Interestingly, 
Ruben et al. (2018) used an open access database of 
post-mortem RNA-sequenced human donor samples, 
combined with an automatic ordering algorithm, to 
create a population-level atlas of gene expression in 
13 human tissues. They showed that 44% of the 
protein-coding genes cycled in at least one tissue 
studied.

Resetting of Circadian Clocks

Light is the most powerful synchronizer of the cen-
tral circadian pacemaker in humans. The light-dark 
information is captured by the retina via specialized 
intrinsically photosensitive retinal ganglion cells 
expressing the photopigment melanopsin (Provencio 
et al., 2000; Yamazaki et al., 2000; Berson et al., 2002; 
Panda et al., 2002; Ruby et al., 2002). Based on animal 
studies, rods and cones are not necessary to photoen-
trainment (Freedman et al., 1999), but probably mod-
ulate the response to light (Foster et  al., 2020). The 
light information is then directly transmitted to the 
SCN via monosynaptic connections of the retinohy-
pothalamic tract. In humans, light exposure in the 
morning causes a phase advance of the circadian sys-
tem, whereas exposure in the evening/early night 
causes a phase delay (Czeisler et  al., 1989; Minors 
et  al., 1991; Czeisler and Buxton, 2011; Vetter et  al., 
2021). Light administered in the middle of the day 
exerts only a small or non-discernible effect. The 
resetting effect of a light stimulus is also influenced 
by its intensity (Boivin et al., 1996; Zeitzer et al., 2000), 
duration (Dewan et al., 2011) and spectral composi-
tion (Ruger et  al., 2013). Exposure to light can dis-
place not only rhythms regulated by the central 
circadian clock such as those of cortisol and melato-
nin secretion, but also those of peripheral clocks 
(Yamazaki et al., 2000; James et al., 2007b; Ackermann 
et al., 2009; Cuesta et al., 2017; Kervezee et al., 2019b). 
Initial studies have suggested that the central circa-
dian clock can be shifted faster than peripheral clocks 
in humans (James et  al., 2007b) and rats (Yamazaki 
et al., 2000). However, it was later shown that bright 
light exposure in humans can synchronize peripheral 
clock gene expression more rapidly than previously 
suspected (Cuesta et al., 2017).

In humans, only a few nonphotic stimuli have 
been reported to modify the rhythmicity of the cen-
tral circadian system under very dim light conditions 
or in free-running blind individuals, including exog-
enous melatonin (Lockley et al., 2000; Burgess et al., 
2010) and exercise (Buxton et al., 2003; Barger et al., 

2004). Social contacts have also been proposed to 
entrain the circadian system in mammals and humans 
(Mistlberger and Skene, 2004), but their resetting 
effects remain controversial as social interactions 
may rather modulate the daily pattern of light-dark 
exposure than directly shift the circadian system.

Sex Differences in Circadian Physiology

Women have, on average, a shorter intrinsic circa-
dian period than men and are more likely than men 
to have a circadian period shorter than 24 h (Duffy 
et al., 2011). Probably as a consequence, the circadian 
phases of many biological processes (e.g., melatonin 
and core body temperature) occur earlier in women 
than men for a similar habitual sleep timing (Baehr 
et  al., 2000; Mongrain et  al., 2004; Cain et  al., 2010; 
Duffy et al., 2011; Boivin et al., 2016). It is presumed 
these sex differences in circadian physiology can 
affect the timing of sleep and waking, although dif-
ferences tend to disappear with aging (Roenneberg 
et al., 2007).

The circadian variations of sleep parameters (e.g., 
sleep efficiency, sleep onset latency, REM sleep, and 
non-REM sleep propensity) have been shown to be 
advanced in women compared to men when 
rhythms are aligned by their habitual wake time 
(Boivin et  al., 2016), although these results are not 
consistent across studies (Santhi et  al., 2016). For 
similar sleep times, women also presented an 
advanced alertness rhythm compared to men 
(Boivin et al., 2016), with lower nocturnal alertness 
levels and/or performances (Boivin et  al., 2016; 
Santhi et  al., 2016). Moreover, menstrual phase or 
hormonal contraceptives can affect the circadian 
variation of sleep (Shechter et al., 2010; Boivin et al., 
2016) and alertness (Wright and Badia, 1999; Boivin 
et al., 2016). These observations underline the role of 
sex and gonadotropic steroids on circadian physiol-
ogy, although contradictory results persist and more 
studies are needed, especially field studies of shift-
working populations. These are important to better 
understand the reported reduced tolerance to shift 
work (Saksvik et al., 2011) and greater risk for work 
injury (Wong et al., 2011) observed in women com-
pared to men.

Circadian Disturbances In Shift Work

General Observations

For the impact of shift work on rhythms controlled 
by the central circadian clock, such as cortisol, mela-
tonin, and core body temperature, a search of the 
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PubMed database was conducted using the follow-
ing strategy: (“shift work” OR “night shift”) AND 
([circadian rhythms] OR (circadian misalignment)) 
AND (“cortisol” OR “melatonin” OR “body temper-
ature”). Only studies published since 2000 with real 
shift workers were considered. A total of 482 refer-
ences were obtained and 30 original studies were 
kept after screening titles and abstracts. Three rele-
vant studies known to the authors were added to the 
list. Search results are summarized in Table 1. In gen-
eral, markers of the central circadian pacemaker such 
as melatonin, cortisol, and body temperature are 
reduced in amplitude or distorted when working 
atypical shifts, especially night shifts (e.g., Goh et al., 
2000; Harris et  al., 2010; Bostock and Steptoe, 2013; 
Bracci et al., 2016). With some exceptions (e.g., Gibbs 
et al., 2007; Hansen et al., 2010), rhythms when work-
ing night shifts remain misaligned to a night-oriented 
schedule, showing few signs of circadian adaptation 
(e.g., Ferguson et al., 2012; Gomez-Acebo et al., 2015; 
Bracci et al., 2016; Daugaard et al., 2017; Molzof et al., 
2019; Razavi et al., 2019).

For the impact of shift work on peripheral clocks, a 
search of the PubMed database was conducted using 
the following string “shift work” AND “clock genes” 
with no time restrictions. Only studies including 
>12-h sampling in at least one peripheral tissue, in 
real or simulated shift work, without interventions 
were considered. A total of 236 references were 
obtained, and five original studies were kept after 
screening titles and abstracts. One pertinent study 
found in the reference lists of these papers was added. 
Search results are summarized in Table 2, upper 
panel.

For the impact of shift work on the transcriptome 
and metabolome, a search of the PubMed database 
was conducted using the following string, “shift 
work” AND (“transcriptome” OR “metabolome”) 
with no time restrictions. Only studies including 
>12-h sampling in at least one peripheral tissue, in 
real or simulated shift work, without interventions 
were considered. A total of 22 references were 
obtained, from which four original studies were kept 
after screening titles and abstracts, including one 
which was already identified in the previous search 
on clock genes. Search results are summarized in 
Table 2, lower panel.

In general, peripheral clocks remain adjusted to a 
day-oriented schedule, with dampened rhythms at 
the group level. This is the case for clock gene expres-
sion in PBMCs (Cuesta et  al., 2017; Resuehr et  al., 
2019), blood cells (Skene et  al., 2018), hair follicle 
cells (Akashi et  al., 2010; Bescos et  al., 2018; 
Hattammaru et  al., 2019), and oral mucosa cells 
(Koshy et al., 2019), as well as transcriptomic rhythms 
in PBMCs (Kervezee et al., 2018; Resuehr et al., 2019). 

In contrast, the majority of metabolite rhythms rap-
idly adjust to the night-oriented schedule. Overall, a 
misalignment between circadian rhythms (either cen-
tral or peripheral) and the environment is observed 
when working nights. An internal desynchrony also 
occurs between transcriptomic and metabolomic 
rhythms.

Circadian Misalignment

The various non-standard hours and rosters 
required of shift workers inevitably force abrupt 
changes in the sleep-wake and light-darkness sched-
ules to which the central and peripheral clocks are 
usually entrained. These changes result in circadian 
misalignment, which describes a state of desynchro-
nization between circadian clocks and the environ-
ment (Boivin and James, 2002a; Boudreau et  al., 
2013a; Skene et  al., 2018; Kervezee et  al., 2019a). 
Another immediate effect of night-shift work is the 
reduction in amplitude or distortion of circadian 
rhythms such as those of melatonin and cortisol 
secretion (Touitou et al., 1990; Dijk et al., 2012; Mirick 
et al., 2013). As schematically presented in Figure 1, 
simulated night-shift experiments and field-based 
studies with shift workers both indicate that the cen-
tral clock is resistant to adaptation from a day-ori-
ented to a night-oriented schedule, as determined by 
the magnitude of phase shifts in rhythms of melato-
nin, cortisol, and body temperature over multiple 
days (Crowley et  al., 2004; Boudreau et  al., 2013a; 
Jensen et al., 2016; Molzof et al., 2019; Resuehr et al., 
2019; Jensen et al., 2020). Thus, the nadir of cortisol, 
peak of melatonin, and trough of body temperature, 
which normally occur in the first, middle, and last 
thirds of the nocturnal sleep period, coincide with 
wake periods during night shifts (Boivin and James, 
2002a; Benloucif et  al., 2005; Resuehr et  al., 2019). 
This misalignment of endogenous rhythms with the 
shifted sleep-wake cycle means that shift workers 
must perform their tasks and sleep at incongruous 
biological times.

Internal Desynchrony

There is evidence that disruption of the circadian 
system caused by night-shift work results not only 
in a misalignment between the circadian system and 
the external light-dark cycle but also in a state of 
internal desynchronization between several levels 
of the circadian system. We demonstrated this 
between rhythms controlled by the central circa-
dian pacemaker (e.g., core body temperature, mel-
atonin, cortisol) and those expressed in peripheral 
tissues (see Figure 1, central vs. peripheral rhythms). 
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The discovery that rhythmic clock gene expression 
could be observed in PBMCs led to the exploration 
of the impact of a night-oriented schedule on this 
peripheral clock (Boivin et  al., 2003; James et  al., 
2007a, 2007b; Cuesta et al., 2017). Under controlled 
laboratory conditions, rhythms of PER1, PER2, 
PER3, and BMAL1 clock genes expression desyn-
chronized from the sleep-wake cycle and from each 
other after 3 days on a night-oriented schedule 

(Cuesta et  al., 2017). While PER1 and BMAL1 
rhythms delayed by ~2.5 to 3 h, other clock genes 
and rhythms of cortisol and melatonin remained 
adjusted to a day-oriented schedule. Three cycles 
of 8-h bright light exposure at night induced sig-
nificant phase delays of ~7 to 9 h for central and 
peripheral markers, except BMAL1 (advanced by 
+5 h 29 minutes), thus demonstrating their endog-
enous circadian nature.

Table 2.  Peripheral clocks and omic studies in shift work.

References Population Tissue and Circadian Markers Observations

Clock gene expression in peripheral tissues

  Akashi et al. (2010) Rotating shift workers Scalp hair follicle cells: PER2, PER3, 
NR1D1, NR1D2

Phase: ~2 h delay

  Cuesta et al. (2017) Healthy participants PBMCs: PER1 Amp.: ↓ during night shifts (trend)
Phase: 3.17 h delay

PBMCs: PER2, PER3, NR1D1 Amp.: ↓ during night shifts
Phase: n.s.

PBMCs: ARNTL Phase: 2.45 h delay

  Besco et al. (2018) Healthy participants Scalp hair follicle cells: PER1, PER3, 
NR1D1, NR1D2

Similar profile between simulated night and day 
shifts

  Skene et al. (2018) Healthy participants Blood cells: PER3 Phase: n.s.

  Hattammaru et al. 
(2019)

Daytime workers, 
Nurses and doctors, 
Factory workers

Facial hair follicle cells: PER3 Mesor: ↓ after consecutive night shifts
Amp.: Fewer workers with sig. 24 h rhythms after 

night shifts
Phase: n.s.

Facial hair follicle cells: NR1D1 Mesor: n.s.
Amp.: n.s.
Phase: n.s

Facial hair follicle cells: NR1D2 Mesor: ↓ after one night shift
Amp.: Fewer workers with sig. 24 h rhythms after 

1 vs. ≥3 night shifts
Phase: n.s.

  Koshy et al. (2019) Police officers Oral mucosa cells: PER1 Phase: 11 h delay

Oral mucosa cells: PER2, PER3, 
ARTNL, NR1D1, NR1D2

Amp.: Loss of group rhythm after night shifts

  Resuehr et al. (2019) Nurses PBMCs: PER1, PER3, ARNTL Amp.: Only rhythmic in night-shift workers

PBMCs: PER2, NR1D1 Amp.: Not rhythmic in day- or night-shift workers

Omic studies in peripheral tissues

  Kervezee et al. (2018) Healthy participants PBMCs: Transcriptome Mesor: Heterogenous
Amp.: ↓  in rhythmic transcripts with simulated 

night shifts.
Phase: Misalignment of most (~73%) rhythmic 

transcripts with simulated night shifts.

  Resuehr et al. (2019) Nurses PBMCs: Transcriptome Only 20 rhythmic transcripts in both day- 
and night-shift groups (out of 446 and 341, 
respectively).

  Skene et al. (2018) Healthy participants Plasma: Metabolome Mesor: Heterogenous
Amp.: Heterogenous
Phase: Phase shift of most (~95%) rhythmic 

metabolites with simulated night shifts

  Kervezee et al. (2019a) Healthy participants Plasma: Metabolome Mesor: Heterogenous
Amp.: Heterogenous
Phase: Phase shift of most (~75%) rhythmic 

metabolites with simulated night shifts

Abbreviations: PBMC = peripheral blood mononuclear cell; n.s. = non-significant; sig. = significant. Studies were screened for results 
on mesor, amplitude (amp.) and acrophase (phase). Results on amplitudes also includes changes in the number of participants with 
significant rhythms.
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The disruptive effects of atypical work schedules 
extend beyond the expression profile of canonical cir-
cadian clock genes and affect other transcripts of the 
human transcriptome. In a simulated 4-night-shifts 
laboratory study of the transcriptome, we demon-
strated that about 11.8% of transcripts in the human 
genome were rhythmic, and the majority of these 
rhythms did not adjust to a night schedule (Kervezee 
et al., 2018). In general, amplitudes of probe sets that 
were rhythmic in both conditions were significantly 
reduced in the night-shift condition compared with 
baseline. These results are consistent with those of 

Archer et al. (2014) who demonstrated, using a forced 
desynchrony protocol, that circadian disruption pro-
duced a 6-fold reduction in circadian transcripts com-
pared with when sleeping in phase with the melatonin 
rhythm. In addition to circadian misalignment, sleep 
restriction can affect the expression of the human 
transcriptome and alter its circadian expression. It 
remains to be determined whether these rhythmic 
transcripts are under circadian control or are rather 
linked to the rest-activity cycle. The circadian nature 
of peripheral rhythmic transcripts is supported 
by their sensitivity to light-induced phase shifts 

Figure 1.  Disruption of central and peripheral rhythms by night-shift work. Under a night-oriented schedule, group rhythms are mis-
aligned relative to the shifted rest-activity cycle and dampened in amplitude. Yellow and gray rectangles represent the environmental 
light and dark cycles, respectively. Rhythms are adapted from Cuesta et al. (2017) J Biol Rhythms 23; Cuesta et al. (2017); Koshy et al. 
(2019); Hattammaru et al. (2019). Abbreviation: PBMC = peripheral blood mononuclear cell.
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(Möller-Levet et  al., 2013; Archer et  al., 2014; 
Arnardottir et al., 2014; Kervezee et al., 2019b).

Research conducted with real shift workers dem-
onstrates a similar resistance of peripheral clocks to 
adapt to a night-oriented schedule (Akashi et al., 2010; 
Koshy et al., 2019). Akashi et al. (2010) found the phase 
of clock genes expression in hair follicle cells to be 
delayed by only ~2 h on late shifts (1500-0000 h) 
despite a ~7-h delay in behavioral rhythms relative to 
early shifts (0600-1500 h). Hattammaru et  al. (2019) 
observed that PER3, Nr1D1 and Nr1D2 expression in 
facial hair follicle cells of night workers remained 
adjusted to a day-oriented schedule after one shift 
and that their phases were scattered after ≥3 consecu-
tive nights, leading to dampened group rhythms. 
Koshy et  al. (2019) studied 11 police officers before 
and after 7 days of night shifts. At baseline, central 
clock rhythms (urinary 6-sulfatoxymelatonin and sali-
vary cortisol) and peripheral clock rhythms (clock 
genes expression in oral mucosa cells and PBMCs) 
were aligned to a day-oriented schedule. After seven 
night shifts, central group rhythms were partially 
adjusted and dampened, and individual rhythms 
were scattered (Koshy et  al., 2019). In addition, 
rhythms of PER1-3 and REV-ERBα expression in oral 
mucosa cells were disrupted and the time-of-day vari-
ation in PBMCs clock genes PER1-3 was lost (Koshy 
et  al., 2019). Recently, Resuehr et  al. (2019) reported 
the rhythms of cortisol, melatonin, and clock gene 
expression in PBMCs of night nurses to be adjusted to 
a day-oriented schedule and more scattered, leading 
to a significantly dampened group rhythm. In com-
parison, these rhythms were clustered and well 
aligned to the sleep-wake cycle for day-shift nurses. 
Surprisingly, however, significant rhythms of the 
canonical circadian clock genes PER1 and PER3 were 
only detected in night nurses. More studies are needed 
on the disruption of the central and peripheral clocks 
of shift workers.

Altogether, these results further emphasize the all-
encompassing impact of night-shift work, which not 
only affects rhythms controlled by the central clock 
but also those of peripheral clocks, and provides 
insight into molecular mechanisms affecting most of 
the entire genome.

Rate of Circadian Adaptation

Circadian adaptation to a night-oriented schedule 
is a gradual process requiring extended, consistent 
exposure to the altered work-rest cycle, and there is a 
high degree of variability in the capacity of night-
shift workers to do so (Crowley et  al., 2004; Boivin 
et al., 2012a, 2012b; Stone et al., 2018; Molzof et al., 
2019). Without specific interventions to facilitate 

shifts in the central clock, it is estimated only ~25% 
of workers show circadian adaptation to night work 
(Folkard, 2008). Field-based studies indicate that 
most night workers are unlikely to demonstrate 
signs of substantial adaptation in melatonin or corti-
sol rhythms within three consecutive night shifts 
(Grundy et al., 2009; Dumont et al., 2012). However, 
these studies generally focused on comparing the 
daily patterns of hormone levels between work 
schedules rather than documenting changes in circa-
dian phase (Hansen et  al., 2006; Garde et  al., 2009; 
Leung et  al., 2016; Daugaard et  al., 2017). While a 
couple of these found small reductions in melatonin 
levels during the night shift, none indicated phase 
shifts that would warrant a classification of even par-
tial adaptation (Grundy et  al., 2011; Leung et  al., 
2016; Daugaard et  al., 2017; Stone et  al., 2018). In 
another study, Molzof et  al. (2019) monitored the 
core body temperature rhythm of nurses working 
three consecutive night or day shifts and found the 
temperature minimum was improperly aligned with 
daytime sleep. Work cycles comprising sequences of 
more than four or five consecutive night shifts are 
more likely than shorter sequences to show signs of 
circadian adaptation. However, even in these cases, 
changes in the profile of these rhythms are still highly 
variable between individuals and usually not large 
enough to represent complete adaptation of the cen-
tral clock (Hansen et  al., 2010; Harris et  al., 2010; 
Ferguson et al., 2012).

Of the different shift-working populations that 
have been studied, the largest rates of adaptation to 
night work have consistently been reported in off-
shore oil-rig workers, whose isolated working envi-
ronments and operating schedules are conducive to 
facilitating and maintaining changes to circadian 
alignment (Barnes et  al., 1998; Gibbs et  al., 2007; 
Hansen et al., 2010). Barnes et al. (1998) found that the 
acrophase of urinary sulfatoxymelatonin rhythm 
shifted on average ~1.3 to 1.8 h per day, with 96% of 
workers having their final acrophase within the sec-
ond half of their daytime sleep period. Gibbs et  al. 
(2007) and Hansen et al. (2010) found similar rates of 
adaptation for oil-rig workers compared with other 
occupations, over a week of consecutive shifts. In 
contrast, shift workers on similar sequences of night 
shifts who do not experience large phase shifts (e.g., 
police officers, nurses, and doctors) often have to 
meet work and domestic responsibilities that can 
interfere with their circadian adaptation (Boudreau 
et al., 2013a; Stone et al., 2018).

Some of the discrepancies in circadian adaptation 
observed in naturalistic field studies may be a conse-
quence of the different environmental and behavioral 
confounders of various biomarkers of the central 
clock (Harris et al., 2010; Ferguson et al., 2012; Jensen 
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et al., 2016). Indeed, the rhythms of melatonin, corti-
sol, and body temperature can be affected by light 
exposure, work-related stressors, and activity levels, 
respectively (Gander et  al., 1986; Boivin and James, 
2002b; Duffy and Dijk, 2002; van Eekelen et al., 2003). 
Furthermore, different metrics for assessing circadian 
rhythms in naturalistic environments may also influ-
ence whether adaptation can be determined (Barnes 
et al., 1998; Kudielka et al., 2007; Grundy et al., 2011; 
Jensen et al., 2020).

Interventions involving judicial exposure to light 
and darkness have been used to varying success for 
facilitating adaptation to night work. In a recent 
meta-analysis, Lam and Chung (2021) examined the 
phase-shifting effects of light therapy from the 
pooled-results of 13 studies comprising both real and 
simulated shift workers. Consistent with experimen-
tal protocols (Boivin et al., 1996; Zeitzer et al., 2000), 
brighter light at night was found to result in larger 
phase shifts and greater suppression of melatonin in 
a dose-responsive manner (Lam and Chung, 2021). 
However, the phase-shifting effects of longer or 
shorter treatments were more ambiguous (Lam and 
Chung, 2021). Light attenuation with goggles or sun-
glasses during the morning commute after night 
shifts has been shown to facilitate phase shifting 
(Boivin et al., 2012a), and studies focusing on the use 
or avoidance of blue-enriched light have demon-
strated greater suppression of melatonin with more 
exposure (Rahman et al., 2013; Motamedzadeh et al., 
2017).

Effect of Chronotype in Night-Shift Adaptation

Chronotype is a behavioral trait that describes an 
individual’s habitual sleep-timing preferences in 
relation to the 24-h light-dark cycle (Juda et al., 2013b) 
and is associated with the ability to adapt to specific 
shifts. For instance, early chronotypes generally have 
earlier bedtimes and wake-times than later chrono-
types and typically function best in the morning than 
during the afternoon or evening (van de Ven et  al., 
2016). In contrast, late chronotypes typically have 
later and more flexible bedtimes, are more resilient to 
the consequences of night work (higher shift work 
tolerance), and obtain less sleep when engaging in 
morning shifts (Juda et al., 2013a; van de Ven et al., 
2016; Kervezee et al., 2021). Moreover, early chrono-
types tend to sleep for shorter durations when engag-
ing in night work (Juda et al., 2013a), although this 
effect disappears when the effect of napping is con-
sidered (Kervezee et  al., 2021). Increased morning-
ness and eveningness were correlated with longer 
sleep duration during series of consecutive morning 
and evening shifts, respectively (Kervezee et  al., 

2021). Interestingly, Vetter et al. (2015) implemented a 
shift system wherein work hours were adjusted to 
accommodate workers’ chronotypes: morning shifts 
were abolished for late chronotypes, and night shifts 
were abolished for early chronotypes. It was found 
that aligning work hours and chronotype was associ-
ated with longer sleep duration across the work 
schedule (Vetter et al., 2015).

From an occupational health perspective, the 
impact of the chronotype on sleep duration and tim-
ing may mediate some of the adverse health effects 
associated with shift work (Kecklund and Axelsson, 
2016; Kervezee et al., 2020). In a study of a large group 
of female hospital employees, it was shown that sleep 
duration is an important mediator of the relationship 
between shift work and metabolic syndrome (Korsiak 
et  al., 2018). It remains to be determined whether 
chronotype affects this relationship. Using a cross-
sectional design, Yu et al. (2015) reported that being 
an evening chronotype was associated with increased 
risk of metabolic syndromes in middle-aged adults. 
Similar results were reported in a case-control study, 
where metabolic syndrome cases were more often 
evening chronotypes (Assmann et  al., 2020). The 
increased risk of metabolic syndromes in evening 
chronotypes would be related to modifiable lifestyle 
behavior rather than genetic factors (Vera et al., 2018). 
However, as detailed in the following section, the 
effect of chronotype on metabolic risks appears to dif-
fer in individuals’ working shifts.

Circadian Disruption of the Metabolome

When entrained to a day-oriented schedule, the 
central clock synchronizes the timing of peripheral 
clocks, including those related to metabolism in the 
liver and gut (Yamazaki et  al., 2000; Brown et  al., 
2019). Given previous findings of internal desyn-
chrony between central and peripheral clocks during 
night work, it has been proposed that circadian dis-
ruption may be one of the mechanisms behind 
increases in metabolic risks associated with night-
shift work (Kecklund and Axelsson, 2016; Skene 
et al., 2018; Kervezee et al., 2019a). In a study of 100 
female workers, Rotter et al. (2018) found that 70% of 
44 analyzed urine metabolites after waking were 
altered between night and day shifts. When stratified 
by chronotype, working at night affected more 
metabolites for early chronotypes than late chrono-
types. Skene et  al. (2018) compared the rhythms of 
132 circulating metabolites during a constant routine 
protocol following three simulated day versus night 
shifts. A shift was observed in 95% of rhythmic 
metabolites with 24-h rhythmicity whereas the circa-
dian rhythms of melatonin, cortisol, and PER3 
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expression in PBMCs did not adapt to the shifted 
schedule. Kervezee et al. (2019a) also demonstrated 
that 75% of the metabolites that were rhythmic at 
both baseline and during the night-shift condition 
were driven by the delayed sleep-wake cycles. Thus, 
most rhythmic metabolites became misaligned rela-
tive to the endogenous circadian system when work-
ing at night. Further studies are needed to clarify if 
similar observations occurs in shift workers.

Shift Work and Sleep-Wake 
Disturbances

As initially proposed by Borbely (1982), sleep pro-
pensity is regulated by an interaction between 
homeostatic and circadian processes. The homeo-
static process, known as process S, reflects the sleep 
pressure that builds up and dissipates exponentially 
over time during the wake and sleep periods, respec-
tively. The circadian process, known as process C, 
varies according to a near 24-h rhythm with a circa-
dian crest and nadir of alertness occurring in the eve-
ning and late night, respectively (Figure 2, upper 
panel). Sleep is initiated in the late evening because of 
the long period awake (Process S). The exponential 
decline in Process S as a function of time asleep sug-
gests that most of the slow wave sleep needs are ful-
filled within the first half of the night. The sleep 
period is prolonged to approximately 8 h because, 
despite the reduced homeostatic need for sleep, 
Process C promotes sleep in the second half of the 
night (red downward arrow, Figure 2, upper panel). 
After awakening in the morning, sleep propensity 
starts to increase. In the evening, Process C sends its 
strongest wake signal and promotes wakefulness 
until bedtime (green upward arrow, Figure 2, upper 
panel), even though Process S is elevated. Abrupt 
shifts in the timing of sleep, as frequently occurs in 
shift workers, disrupts the temporal harmony 
between processes S and C and leads to sleep-wake 
disturbances (Figure 2, lower panel). Typically, night-
shift work gives rise to complaints of reduced sleep 
duration and quality, and impaired alertness, espe-
cially at night and in the early morning. Weitzer et al. 
(2021) reported that insomnia and daytime sleepiness 
can persist for years in former night-shift workers. 
After working at night, shift workers fall asleep rap-
idly in the morning as Processes S and C (red down-
ward arrow, Figure 2, lower panel) are maximal at 
this moment. Compared with nocturnal sleep, work-
ers wake up after shorter sleep duration during the 
day due to the exponential decline in Process S and 
because Process C starts to promote wakefulness. At 
the start of their night shift in the evening, they feel 

alert as Process C maximally promotes wakefulness, 
but feel sleepier as the night progresses.

Sleep Disturbances

Reduced sleep quality and duration, and symp-
toms of insomnia are frequent in shift workers 
(Kecklund and Axelsson, 2016; Wyse et al., 2017; Yong 
et  al., 2017; Moreno et  al., 2019), especially those 
working nights, early morning, and rotating shifts 
(Akerstedt and Wright, 2009). Typically, the daytime 
sleep periods of night-shift workers end prematurely 
after 4 to 6 h (Akerstedt and Wright, 2009; Kecklund 
and Axelsson, 2016) and workers are often unable to 
resume sleep afterward. Early day shifts can be asso-
ciated with similar levels of sleep restriction (Ganesan 
et al., 2019), as workers have difficulty falling asleep 
at earlier bedtimes coinciding with the evening wake 
maintenance zone, and sleep duration is curtailed to 
comply with the early work start. A large UK popula-
tion-based study of more than 277,000 workers found 
that shift workers report less sleep per 24-h day and 
poorer sleep quality than non-shift workers (Wyse 
et al., 2017). A 5-year longitudinal study of 2615 hos-
pital night-shift workers showed that the odds of 
reporting insomnia (Insomnia Severity Index ≥ 15) 
were increased by ~2-fold when working consecutive  
nights (vs. only one) (Lee et al., 2021). A meta-analysis  
summarizing 11 cross-sectional studies of police offi-
cers revealed that about 50% of workers report poor 
sleep quality (Pittsburgh sleep quality index > 5; 
Garbarino et  al., 2019). In a large meta-analysis, 
Pilcher et al. (2000) reported an effect of the shift sys-
tem on sleep duration. Compared with permanent 
day workers (7.0 h), permanent evening or night 
workers reported sleeping more (7.6 h, effect size = 
0.42) or less (6.6 h, effect size = 0.35), respectively. 
Rotating shift workers slept more after evening shifts 
and less after night shifts, and this effect was more 
pronounced for rapid rotating schedules (evening 
shifts: 8.1 h, night shifts: 5.7 h, effect size ≥ 0.93). As a 
result of sleep loss during days of work on atypical 
shifts, rest days are often used for recovery and are 
associated with longer sleep periods (Garde et  al., 
2009; Paech et al., 2010; Garde et al., 2020; Kervezee 
et  al., 2021). Recovery from one night of total sleep 
deprivation usually takes about one to two nights of 
recovery sleep (Balkin et al., 2008), whereas chronic 
sleep restriction takes longer. Axelsson et  al. (2008) 
demonstrated that 7 days of recovery sleep was not 
enough to completely restore performances to base-
line levels following 5 days of 4-h sleep per night. In 
a study of Norwegian nurses, Eldevik et  al. (2013) 
found that the duration of breaks between successive 
work shifts was important, with quick returns (< 11 h 
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off between shifts) associated with insomnia, exces-
sive sleepiness, and shift work disorder. As detailed 
later, the negative cognitive, metabolic, and health 
outcomes of sleep curtailment are numerous, and 
probably play a role in the adverse effects associated 
with shift work.

Sleepiness

Sleepiness, impaired cognition and performance 
are common in shift workers, and have been reported 
in numerous studies, including in nurses (Behrens 
et al., 2019; Ganesan et al., 2019; Wilson et al., 2019), 

Figure 2.  Sleep propensity as regulated by the homeostatic and circadian processes. The S process illustrates the homeostatic sleep 
drive, whereas the C process illustrates the wake propensity rhythm. The upper panel represents a person living on a day-oriented 
schedule, whereas the lower panel represents a person doing a first night shift after a nap in the afternoon. The strength of each process 
increases from bottom to top. Work shifts are represented by gray rectangles, sleep and nap periods by dark blue rectangles, and wake 
periods in yellow. Red and green arrows identify the circadian nadir and peak of wake propensity, respectively. During a typical work-
day, the circadian nadir of alertness occurs at the end of the nocturnal sleep period when the homeostatic drive for sleep is low. At the 
end of the first night shift, the circadian nadir of alertness occurs at the end of the night shift when the homeostatic drive for sleep is 
very high.
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medical residents (Basner et al., 2017), police officers 
(Boivin et al., 2012a; Boudreau et al., 2013a), miners 
(Ferguson et al., 2010, 2011), marine pilots (Boudreau 
et al., 2018), professional truck drivers (Anund et al., 
2018), train drivers (Jay et al., 2006), and airline pilots 
(Ingre et  al., 2014; Sallinen et  al., 2017; Aljurf et  al., 
2018; Sallinen et  al., 2020). Extended wakefulness, 
lack of adequate recovery sleep between shifts, and 
being awake during the circadian trough of alertness, 
at night or in the early morning, lead to excessive 
sleepiness in shift workers (Mullins et  al., 2014). 
Adjustment to consecutive night shifts is only modest 
under normal conditions but can improve signifi-
cantly if circadian adaptation occurs (Bjorvatn et al., 
2006; Boudreau et al., 2013a).

In the transportation industry, sleepiness raises 
important safety concerns (Akerstedt, 2019). On-the-
road studies using electroencephalogram recordings 
in professional drivers (Kecklund and Akerstedt, 
1993; Mitler et al., 1997) and inappropriate line cross-
ing in non-professional drivers (Sagaspe et al., 2008; 
Hallvig et al., 2014) revealed increased incidence of 
severe sleepiness at night. In a group of 54 profes-
sional truck drivers, the odds of severe sleepiness 
(Karolinska sleepiness scale ≥ 7) were nine times 
higher during the first night shift compared with day 
and evening shifts (Pylkkonen et  al., 2015). 
Commuting home after a night shift was also associ-
ated with higher risk of excessive sleepiness and acci-
dents (Lee et  al., 2016; Anderson et  al., 2018; Liang 
et  al., 2019). Cross-sectional studies of airline pilots 
revealed that about one airline pilot out of two 
reported to have unintentionally felt asleep while fly-
ing (Marqueze et al., 2017; Aljurf et al., 2018), which 
was confirmed by electroencephalogram recordings 
during real flights (Wright and McGown, 2001).

Performance and Cognitive Functions

Shift work, and especially night-shift work, has 
been associated with impairments in performance and 
cognitive functions (Boivin et  al., 2012a; Boudreau 
et al., 2013a; Behrens et al., 2019; Chellappa et al., 2019; 
Wilson et  al., 2019; Anvekar et  al., 2021; Zhao et  al., 
2021). Circadian misalignment can impair cognitive 
functions (Goel et al., 2011), increase the risk of severe 
sleepiness, and lead to attentional errors (de Cordova 
et al., 2016). Performance also declines during extended 
work hours (Anderson et al., 2012; Rahman et al., 2021) 
and with shorter prior sleep duration (Ferguson et al., 
2011). The first night shift usually leads to worst 
impairments, as both extended wakefulness and work 
during the circadian nadir of alertness are combined. 
Studies of shift workers have shown that the cognitive 
impairment associated with the first night shift can 
either gradually improve (Lamond et al., 2003; Bjorvatn 

et al., 2006; Santhi et al., 2007; Hansen et al., 2010), sta-
bilize (Crowley et al., 2004; Ganesan et al., 2019), or 
deteriorate with consecutive night shifts (Axelsson 
et  al., 2008; Boivin et  al., 2012a; Flynn-Evans et  al., 
2018), probably depending on the working conditions 
(e.g., light exposure, work rosters, familial and social 
isolation), degree of circadian adaptation, and cumu-
lative sleep debt. When circadian adaptation occurred, 
shift workers were found to have better sleep, have 
improved performance, and be more alert (Boivin 
et al., 2012b; Boudreau et al., 2013a; Molzof et al., 2019).

Acute (Lim and Dinges, 2010) and chronic sleep 
deprivation (Van Dongen et al., 2003) both contribute 
to impairment of performance and cognitive func-
tions during atypical work schedules. Based on labo-
ratory experiments carried out in a group of young 
adults (42 men, 6 women), it was concluded that an 
average human needs about 8.16 h of sleep per 24-h 
day to prevent cumulative neurobehavioral deficits 
(Van Dongen et al., 2003), although important interin-
dividual differences exist (Van Dongen et al., 2004). 
As shift workers often report shorter sleep duration 
(Akerstedt and Wright, 2009; Kecklund and Axelsson, 
2016; Wyse et  al., 2017), performance and cognitive 
impairments are to be expected. However, the size of 
these effects in the field cannot be directly translated 
from laboratory-based studies, especially if they are 
carried out in a different demographic group.

Impact of Shift Work on Physical and 
Mental Health

Working atypical shifts is associated with an 
increased risk of developing many chronic health 
conditions compared with day workers which may 
explain the high rates of absenteeism and long-term 
disability observed in shift workers (Violanti et  al., 
2011; Wong et  al., 2011). Disturbed behavioral 
rhythms can be a contributing factor to these risks. 
Shift work has been associated with physical inactiv-
ity and disruption of family and social activities 
(Atkinson et  al., 2008; Arlinghaus et  al., 2019). The 
maintenance of regular physical activity was 
reported to be harder in shift workers due to several 
factors, including the opening hours of leisure facili-
ties, availabilities of other team members, conflicting 
domestic and familial activities, and fatigue associ-
ated with shift work.

Shift work also disrupts behavioral rhythms such 
as the timing of meals, which a growing body of 
research suggests has consequences for metabolic 
processes and health (Banks et al., 2015; Skene et al., 
2018). In a study of police officers on rotating shift 
schedules, Kosmadopoulos et  al. (2020) found that 
caloric intake was significantly more dispersed across 
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the 24-h day, with a greater proportion of caloric 
intake at night, on night-shift days than other types of 
days. This is relevant as eating later or having a 
greater caloric intake later in the circadian day is 
associated with greater body fat and reduced weight 
loss effectiveness, independent of total daily con-
sumption (Garaulet et  al., 2013; Reid et  al., 2014; 
Hermenegildo et al., 2016; Ruiz-Lozano et al., 2016; 
McHill et al., 2017; Lopez-Minguez et al., 2018; McHill 
et al., 2019). The cause of this impairment of metabo-
lism is hypothesized to be due to the circadian mis-
alignment of peripheral clocks in the liver, pancreas, 
and gastrointestinal tract due to changes in the fast-
ing/feeding cycle (Skene et al., 2018; Kervezee et al., 
2019a).

Under laboratory conditions, it has been demon-
strated that circadian misalignment can reduce daily 
energy expenditure, which could contribute to weight 
gain and adverse health outcomes if not accompa-
nied by increased activity or a reduction in caloric 
intake (McHill et al., 2014). Thus, the displacement of 
typical rest-activity rhythms caused by shift work can 
also affect energy metabolism (McHill et al., 2014).

Physical Health

As previously described, the circadian misalign-
ment associated with working at night has been 
implicated in the increased risk of cardiometabolic 
disorders (Brum et al., 2015; Kecklund and Axelsson, 
2016), including metabolic syndrome (Khosravipour 
et al., 2021; Wang et al., 2021), type 2 diabetes (Vetter 
et al., 2018; Gao et al., 2020), and cardiovascular heart 
diseases (Vetter et  al., 2016; Kervezee et  al., 2020). 
Other studies have reported different forms of cancer 
(Schernhammer et al., 2006; Mancio et al., 2018; Ward 
et  al., 2019), various gastrointestinal and digestive 
complaints (Knutsson and Bøggild, 2010; Gupta et al., 
2019), menstrual irregularities, dysmenorrhea, and 
difficulties with pregnancy (Labyak et al., 2002; Zhu 
et al., 2004; Hammer et al., 2018). These are likely to 
be at least partially due to the circadian disruption of 
internal physiological processes.

Many studies identify shift work as having an 
adverse effect on various risk factors for metabolic 
and cardiovascular diseases, including elevated glu-
cose, insulin and triacylglyceride levels, and higher 
white blood cell counts (Sookoian et  al., 2007; van 
Drongelen et  al., 2011; Manodpitipong et  al., 2017; 
Wirth et al., 2017). Longitudinal studies also provide 
evidence for an effect of shift work on impaired glu-
cose tolerance, being overweight, and gaining weight 
(Proper et al., 2016). In a cross-sectional population-
based study, Sookoian et al. (2007) found that rotating 
shift workers had a significantly higher odds ratio 

(OR) for metabolic syndrome than day workers, even 
after controlling for age and physical activity. In 
another study, Manodpitipong et al. (2017) reported 
that night work was associated with poorer glycemic 
control than day work after controlling for factors 
such as body mass index and sleep duration. It has 
been hypothesized that metabolic conditions com-
mon in shift work may partly be exacerbated by dis-
turbances of healthy gut microbiota caused by sleep 
loss and circadian misalignment (Reynolds et  al., 
2017). Working at night may also lead to altered 
autonomous nervous system modulation of the heart 
when sleep occurs at adverse circadian phases (Scheer 
et al., 2009; Boudreau et al., 2013b; Morris et al., 2016). 
Combined, these findings give credence to an effect 
of circadian misalignment as a risk factor of cardio-
metabolic disturbances, independent of behavioral 
changes associated with night-shift work.

A number of meta-analyses and systematic reviews 
have attempted to combine the various epidemiolog-
ical studies that address the relationship between 
shift work and metabolic and cardiovascular health, 
providing evidence for an association between shift 
work and metabolic syndrome (Wang et  al., 2021), 
diabetes mellitus (Gan et al., 2015; Gao et al., 2020), 
obesity (Sun et  al., 2018), hypertension (Manohar 
et  al., 2017), and cardiovascular disease (Torquati 
et al., 2018). Sex appears to moderate some of these 
relationships, as female shift workers were shown to 
have a higher risk of developing metabolic syndrome 
and diabetes mellitus compared with male shift 
workers (Gao et  al., 2020; Wang et  al., 2021), but a 
lower risk of hypertension (Manohar et  al., 2017). 
However, Gan et al. (2015) reported an increased risk 
of diabetes mellitus in female compared with male 
shift workers. A recent meta-analysis of 21 studies 
with follow-up periods ranging from 4 to 24 years 
concluded that the pooled relative risk of diabetes 
mellitus was 1.10 (95% confidence interval [CI] [1.05, 
1.14]) in shift workers compared with non-shift work-
ers (Gao et al., 2020). A dose-response analysis com-
prising three cohorts of female shift workers indicated 
that relative risk increased by 1.05 (95% CI [1.03, 
1.07]) per 5 years of exposure to shift work (Gao et al., 
2020). More follow-up studies are required to assess 
the cumulative exposure risk of shift work and the 
modulating effect of sex and gender.

The type of shift schedule has also been shown to 
affect the risk of different health conditions. For 
instance, several meta-analyses indicated that a rotat-
ing shift schedule was associated with an increased 
risk of diabetes and hypertension compared with 
other types of shift schedules, even fixed night shifts 
(Gan et  al., 2015; Manohar et  al., 2017), whereas 
another analysis indicated permanent night-shift 
workers had a greater risk of developing obesity than 
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workers on rotating shift schedules (Sun et al., 2018). 
In a large meta-analysis comprising 21 longitudinal 
and case-controls studies, Torquati et  al. (2018) 
recently demonstrated a heightened risk of coronary 
heart disease and ischemic heart disease associated 
with shift work. Several meta-analyses have revealed 
dose-response effects in the relationship between 
health and exposure to shift work, such that more 
years as a shift worker is linked to poorer cardiometa-
bolic health (Sun et al., 2018; Torquati et al., 2018; Gao 
et al., 2020; Wang et al., 2021). Nonetheless, there is no 
consensus on the definition of exposure, and more 
research is required to differentiate the effect of years 
of work and intensity of shift schedules on health 
outcomes (Kecklund and Axelsson, 2016). Improving 
understanding of the different means through which 
shift work affects health outcomes will facilitate the 
development of strategies to mitigate the burden of 
shift work.

A working group of the International Agency for 
Research on Cancer (IARC, 2020) concluded that 
night-shift work is probably carcinogenic to humans, 
based on extensive analysis of human research, 
experimental animal studies, and mechanistic evi-
dence. There is evidence that night work may have a 
role in causing or exacerbating several specific can-
cers, including those of the breast (Manouchehri 
et al., 2021), prostate (Gan et al., 2018; Mancio et al., 
2018), colon, and rectum (Wang et al., 2015). There is 
weak support from other meta-analyses of an 
increased relative risk of prostate cancer for rotating 
shift schedules compared with fixed daytime work-
ers, but no increased risk for fixed night-shift work 
(Du et al., 2017; Gan et al., 2018; Mancio et al., 2018). 
A couple of recent meta-analyses found that shift 
work had little to no effect on breast cancer or other 
types of cancer risk, including prostate, pancreatic, 
and colorectal (Travis et  al., 2016; Dun et  al., 2020). 
These contradictory results might be explained by 
factors such as the lifetime duration of shift work 
exposure. Indeed, Wegrzyn et  al. (2017) found that 
nurses with long-term rotating night work (≥20 
years) experience had a higher risk of breast cancer, 
especially those who were younger when they began 
shift work. Support for a dose-responsive effect of 
night work on colorectal cancer has been demon-
strated with a meta-analysis, describing an estimated 
11% increase in risk for every 5 years of exposure 
(Wang et  al., 2015). More recent epidemiological 
research by Papantoniou et al. (2018) also found that 
nurses with more than 15 years of shift work expo-
sure had a higher risk of rectal cancer. In shift work-
ers, it was hypothesized that photic suppression of 
melatonin at night may be a plausible mechanism 
for the increased risk of breast cancer (IARC, 2020). 
Some studies support a carcinogenic effect of light 
exposure at night (Yang et al., 2014), whereas others 

do not (Dun et  al., 2020). Some studies in humans 
have also found an association between the risk of 
breast cancer and either the homozygous or heterozy-
gous 5-repeat allele of PER3 (Zhu et al., 2005) or the 
Ala394Thr polymorphism of the NPAS2 gene (Zhu 
et  al., 2008). However, other analyses which found 
marginal associations between polymorphisms of 
ARNTL and CRY1 and breast cancer revealed insig-
nificant results after statistically adjusting for multi-
ple comparisons (Grundy et al., 2013). While the data 
from these separate studies do not uniformly report 
effects of specific clock genes on cancer, they raise the 
possibility that desynchronized rhythms of clock 
gene expression in peripheral tissues provide a plau-
sible mechanism for increased risk of cancer 
development.

Mental Health and Well-being

There is a large body of research demonstrating 
adverse effects of shift work on mental health and 
general well-being (Eldevik et al., 2013; James et al., 
2017; Sletten et  al., 2020). Atypical working time 
arrangements are commonly associated with dete-
rioration of social and familial life because workers 
are forced to live on a pattern that diverges from that 
of their family and community (Arlinghaus et  al., 
2019). Combined with the disruption caused by cir-
cadian misalignment, this temporal isolation from 
family and community provides context for the 
mental health concerns often experienced by shift 
workers, including an increased prevalence of burn-
out (Woo et al., 2020), depression and anxiety (Nabe-
Nielsen et al., 2011; Angerer et al., 2017; Brown et al., 
2020), insomnia or excessive sleepiness (Eldevik 
et al., 2013; Wright et al., 2013; Richter et al., 2016), 
and suicide ideation (Violanti et  al., 2008; Petrie 
et al., 2020).

Burnout is a psychological syndrome described by 
the International Classification of Diseases (ICD-11) 
as an occupational phenomenon characterized by 
emotional exhaustion, depersonalization, and 
reduced sense of accomplishment resulting from 
chronic workplace stress (World Health Organization, 
2019). There is evidence that the nature of many emo-
tionally demanding occupations largely comprised of 
shift workers, such as nursing and policing, can lead 
to burnout (Bakker and Heuven, 2006).

In terms of other mental health conditions, Angerer 
et al. (2017) conducted a systematic review of longitu-
dinal studies on the relationship between depression 
and night work. In this systematic review, most pro-
spective studies of health care workers conducted 
over 2-year periods were inconclusive (Nabe-Nielsen 
et al., 2011; Thun et al., 2014). For example, Thun et al. 
(2014) found that day-working nurses who became 
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night workers during the study period did not have 
worse symptoms of depression or anxiety than at 
baseline. However, nurses who changed from work-
ing at night to working during the day did report 
improvements in depression and anxiety symptoms 
over time (Thun et al., 2014). In contrast, other pro-
spective studies of night workers recruited from the 
general population and followed for a minimum of 2 
years did show an elevated risk of depression after 
several years (Angerer et al., 2017). In a meta-analy-
sis, Zhao et al. (2019) reported an association between 
mental health disturbances (psychological distress or 
depressive symptoms) and shift work. The strength 
of this association was stronger for irregular/unpre-
dictable shifts than permanent night and evening 
shifts. In addition to the type of shift schedule, the 
time off between shifts (Eldevik et al., 2013) and the 
number of hours per week was shown to affect men-
tal health outcomes. In a study of the work hours of 
2706 randomly selected junior doctors, Petrie et  al. 
(2020) found that those who worked more than 55 h 
per week were more than twice as likely to report a 
mental disorder or suicide ideation than doctors who 
worked 40 to 44 h per week.

There is evidence that individual factors such as 
gender and sex can modulate the effects of shift work 
on mental health. A meta-analysis of five studies 
showed a 42% increase in the risk of depression 
among night workers (Angerer et al., 2017), whereas 
another comprising seven longitudinal studies 
reported a 33% higher risk of depressive symptoms 
in shift workers (Torquati et  al., 2019). In the latter 
study, 90% of the heterogeneity was explained by a 
gender difference; female shift workers were more 
likely to report depressive symptoms than female 
non-shift workers (OR = 1.73). A cross-sectional 
study on the payroll records of 111 police officers 
found that suicide ideation increased for police-
women with symptoms of depression as percentage 
of total work hours beginning between 0400 h and 
1100 h increased (Violanti et  al., 2008). Suicide ide-
ation increased for men who had high post-traumatic 
stress as the percentage of work beginning between 
2000 h and 0300 h (Violanti et al., 2008).

Concluding Remarks

Shift work is prevalent in modern society and 
affects between 10% and 30% of the adult working 
population. The non-standard and often irregular 
work times force abrupt frequent changes in the tim-
ing of sleep and waking. This situation leads to a state 
of misalignment between the endogenous circadian 
system and the sleep-wake and light-dark cycles as 
well as between the various oscillatory components 

of the circadian system (Figure 1). Shift work leads to 
acute and chronic disturbances of sleep and alertness 
and an increased risk of fatigue-related incidents and 
accidents (Kecklund and Axelsson, 2016; Fischer 
et al., 2017). An increased risk of various physical and 
mental health conditions is observed in shift-working 
populations suggesting that, over time, the stress 
imposed by sleep-wake disruption and living at unfa-
vorable circadian phases represent risk factors for 
these conditions (Boivin and Boudreau, 2014; 
Kecklund and Axelsson, 2016; Moreno et  al., 2019). 
Even though it remains difficult to establish clear 
causal relationships between shift work and health 
outcomes, numerous factors have been identified as 
contributors to these increased health risks, including 
sleep curtailment, circadian disturbances, altered 
behavioral rhythms, and personal characteristics such 
as age, sex, gender, and chronotype. As a take-home 
message, managing exposure to these factors in 
exposed individuals appears a wise and clinically  
relevant practice, although it might be challenging to 
implement in various workplaces due to operational 
constraints. The size effects, in real working environ-
ments, of specific factors mediating the health impacts 
of atypical shifts remain unclear. It is thus difficult to 
set clear limits as to specific parameters of shift work 
exposure, more specifically its intensity, duration, or 
type of rosters, above which reasonable health and 
safety risks would be exceeded. More longitudinal and 
dose-response studies are also needed on personal bio-
logical and behavioral factors affecting individual sus-
ceptibility to shift work, as well as mediating factors 
involved in the development of its health conse-
quences. Besides scientific evidences, shift work situa-
tions must be analyzed as individual cases in point, 
and several other considerations including societal, 
economic, and legal aspects must simultaneously be 
considered and balanced.
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